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Abstract: From the viewpoints of both fuzzy system and fuzzy
reasoning, a new fuzzy reasoning method which contains the α-
triple I restriction method as its particular case is proposed. The
previous α-triple I restriction principles are improved, and then
the optimal restriction solutions of this new method are achieved,
especially for seven familiar implications. As its special case, the
corresponding results of α-triple I restriction method are obtained
and improved. Lastly, it is found by examples that this new method
is more reasonable than the α-triple I restriction method.
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1. Introduction

At present, fuzzy reasoning is widely used in the fields of
fuzzy control, complex system modeling and simulation,
natural language processing together with affective com-
puting [1– 6]. Its basic problems are fuzzy modus ponens
(FMP) and fuzzy modus tollens (FMT) as follows:

FMP : from given rule A → B and input A∗,

calculate B∗ (output) (1)

FMT : from given rule A → B and input B∗,

calculate A∗ (output) (2)

in which A, A∗ ∈ F (U), B, B∗ ∈ F (V ). F (U) and F (V )
denote the set of all fuzzy subsets of universe U and V ,
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respectively.

In order to deal with these problems, the widely used
method is the compositional rule of inference (CRI)
method proposed by Zadeh [7–11]. In 1999, Wang drew
the conclusion that the CRI method had some blemishes,
and he put forward the triple I method (as an improvement
of the CRI method) [12]. The basic idea of triple I method
(taking the α-triple I method as an example) is to seek out
the smallest B∗ ∈ F (V ) (or the largest A∗ ∈ F (U)) mak-
ing

(A(u) → B(v)) → (A∗(u) → B∗(v)) � α (3)

hold for any u ∈ U, v ∈ V , where α ∈ [0, 1] and → is an
implication (see Definition 1).

The triple I method is presently a subject of intensive
study. Wang et al. systemically researched the triple I
method, as well as its related theories of sustaining de-
grees and reversibility properties [13–15]. Wang and Pei
presented the regular implication which was derived from
the left-continuous t-norm, and based on it established the
unified forms of triple I method [16,17]. Song et al. an-
alyzed a similar form to (3), i.e., (A∗(u) → B∗(v)) →
(A(u) → B(v)) � α, and brought forward the reverse
triple I method [18] which was also discussed by [19,20].
Pei formalized related triple I methods and their reversibil-
ity properties from a new first-order formal system K∗ to-
gether with its extension K∗

ms, then put fuzzy reasoning
into the framework of fuzzy logic [21]. Liu and Wang
proposed the concept of pointwise sustaining degrees, and
generalized the α-triple I method to the triple I method
based on pointwise sustaining degrees [22]. From the
syntactical viewpoint [23], Zhang and Yang discussed the
triple I method by generalized roots in four familiar logic
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systems [24]. It is shown that the triple I method possesses
many acknowledged advantages which are embodied as
excellent logic basis, reversibility properties, the property
of pointwise optimization and so on [13,15,25,26].

Song et al. indicated in [27] that the formula which was
opposite to (3) should also be take into account for a cer-
tain kind of fuzzy reasoning, then proposed the α-triple I
restriction method. Its solution is the largest B∗ ∈ F (V )
(or the smallest A∗ ∈ F (U)) satisfying

(A(u) → B(v)) → (A∗(u) → B∗(v)) � α (4)

for any u ∈ U, v ∈ V , where α ∈ (0, 1). Then the α-triple
I restriction method was also investigated by [28–30] aim-
ing at (4) or other similar forms.

However, it is found that the triple I method is imper-
fect in virtue of its inferior response ability and practica-
bility from the viewpoint of some kinds of fuzzy systems
[26,31–33]. For example, Li et al. drew the conclusion
that 12 fuzzy systems can be practicable in 23 ones based
on the CRI method (by analyzing their response ability)
[31], while only two usable fuzzy systems are obtained in
51 ones based on the triple I method [32]. Such inferior
effect will keep back the development and application of
the triple I method.

To solve this problem, enlightened by [26], we gener-
alized the triple I method to the differently implicational
universal triple I method of (1, 2, 2) type (universal triple
I method for short) in [34]. The idea of universal triple I
method is to find the smallest B∗ ∈ F (V ) (or the largest
A∗ ∈ F (U)) such that

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)) � α (5)

holds for any u ∈ U, v ∈ V , where α ∈ [0, 1] and implica-
tions →1 and →2 can be different.

Similar to the α-triple I restriction method, we also need
to investigate the condition opposite to (5), i.e.,

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)) � α (6)

where α ∈ (0, 1). The α-triple I restriction method derived
from (6) is called the differently implicational α-universal
triple I restriction method of (1, 2, 2) type (α-universal
triple I restriction method for short). The aim of this pa-
per is to systematically investigate the α-universal triple I
restriction method.

2. The α-universal triple I restriction method
for FMP

For convenience, we denote R1(u, v) = A(u) →1 B(v),
and x

′
= 1 − x.

Definition 1 An implication on [0, 1] is a mapping
I : [0, 1]2 → [0, 1] satisfying the conditions I(0, 0) =

I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. I(a, b) is also
written as a → b for any a, b ∈ [0, 1].

Here seven familiar implications are mainly considered,
which are Lukasiewicz implication IL, Goguen implica-
tion IGo, Gödel implication IG, implication I0, Kleene-
Dienes implication IKD, Reichenbach implication IR, and
Gaines-Rescher implication IGR as follows:

IL(a, b) =
{

1, a � b

a
′
+ b, a > b

IGo(a, b) =
{

1, a = 0
(b/a) ∧ 1, a �= 0

I0(a, b) =
{

1, a � b

a
′ ∨ b, a > b

IG(a, b) =
{

1, a � b

b, a > b

IKD(a, b) = a
′ ∨ b

IR(a, b) = a
′
+ a × b

IGR(a, b) =
{

1, a � b

0, a > b
.

Definition 2 Suppose that Z is any nonempty set, and
F (Z) is the set of all fuzzy subsets on Z . Define partial
order relation �F on F (Z) as A �F B, if and only if
A(z0) � B(z0) for ∀z0 ∈ Z , where A, B ∈ F (Z).

Lemma 1 [35] < F (Z), �F > is a complete lattice.
For the FMP problem (1), from the viewpoint of α-

universal triple I restriction method, we can obtain the fol-
lowing principle:

α-universal triple I restriction principle for FMP
The conclusion B∗ (in < F (V ), �F >) of FMP problem

(1) is the largest fuzzy set satisfying (6).
Such principle obviously improves the previous α-triple

I restriction principle for FMP in [27,28].

Definition 3 Let A, A∗ ∈ F (U), B ∈ F (V ), if B∗

(in < F (V ), �F >) makes (6) hold for any u ∈ U, v ∈ V ,
then B∗ is called an α-FMP-universal triple I restriction
solution (α-FMP-solution for short).

Definition 4 Suppose that A, A∗ ∈ F (U), B ∈
F (V ), and nonempty set E is the set of all α-FMP-
solutions, and finally that D∗ (in < F (V ), �F >) is the
supremum of E, then D∗ is called an α-SupP-quasi uni-
versal triple I restriction solution (α-SupP-quasi solution
for short). And if D∗ is the maximum of E, then D∗ is
also called an α-MaxP-universal triple I restriction solu-
tion (α-MaxP-solution for short).

Proposition 1 If the implication →2 satisfies (C1)
a → b is non-decreasing with regard to (w.r.t.) b (a, b ∈
[0, 1]), and D1 is an α-FMP-solution, and finally D2 �F
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D1 (in which D1, D2 ∈ < F (V ), �F >). Then D2 is an
α-FMP-solution.

Proof Since D1 is an α-FMP-solution, it follows that
R1(u, v) →2 (A∗(u) →2 D1(v)) � α holds for any
u ∈ U, v ∈ V . Because D2 �F D1 and →2 satisfies
(C1), we get that A∗(u) →2 D2(v) � A∗(u) →2 D1(v)
and

α � R1(u, v) →2 (A∗(u) →2 D1(v)) �

R1(u, v) →2 (A∗(u) →2 D2(v))

hold for any u ∈ U, v ∈ V . Therefore D2 is also an α-
FMP-solution. �

Theorem 1 Let the implication →2 satisfy (C1), α ∈
(0, 1). Then there exists an α-FMP-solution if and only if
the following inequality holds for any u ∈ U, v ∈ V :

R1(u, v) →2 (A∗(u) →2 0) � α. (7)

Proof (i) If (7) holds, then we take B∗(v) ≡ 0
(v ∈ V ), thus B∗ obviously satisfies (6), and hence B∗

is an α-FMP-solution.
(ii) If there exists a B∗ ∈ F (V ) which is an α-FMP-

solution, then it follows from Proposition 1 that B∗(v) ≡ 0
(v ∈ V ) is also an α-FMP-solution (since→2 satisfies (C1)
and 0 �F B∗), which means (7) holds. �

Remark 1 Suppose that →2 satisfies (C1) and (7)
holds. For an α-FMP-solution B∗, every fuzzy set D

which is less than B∗, will be an α-FMP-solution (where
B∗, D in < F (V ), �F >). This means that there are many
α-FMP-solutions which include B∗(v) ≡ 0 (v ∈ V ). This
last is a special solution, since (6) always holds no mat-
ter what major premise A →1 B and minor premise A∗

are employed. Therefore, if the optimal α-FMP-solution
exists, then it should be the largest one; in other words, it
should be the supremum of all solutions (i.e., the supre-
mum of E).

It is easy to get Proposition 2.

Proposition 2 Equation (7) is respectively equivalent
to the following formulas:

(i) 2 − R1(u, v) − A∗(u) � α, if →2 takes IL;
(ii) R1(u, v) × A∗(u) > 0, if →2 takes IGo;
(iii) R1(u, v) > (A∗(u))′ and (R1(u, v))′∨(A∗(u))′ �

α, if →2 takes I0;
(iv) R1(u, v) × A∗(u) > 0, if →2 takes IG;
(v) (R1(u, v))′ ∨ (A∗(u))′ � α, if →2 takes IKD;
(vi) 1 − R1(u, v) × A∗(u) � α, if →2 takes IR;
(vii) R1(u, v) × A∗(u) > 0, if →2 takes IGR.
It follows from Lemma 1 that < F (V ), �F > is a com-

plete lattice. Once there exists an α-FMP-solution, then the

α-SupP-quasi solution (i.e., the supremum of E) uniquely
exists because the nonempty set E ⊂ F (V ).

Theorem 2 If the implication →2 satisfies (C1) and
(C2) a → b is left-continuous w.r.t. b (a ∈ [0, 1], b ∈
(0, 1]), α ∈ (0, 1), and (7) holds. Then the α-SupP-quasi
solution is the α-MaxP-solution.

Proof Noting that the α-SupP-quasi solution B∗ =
supE, it is enough to prove that B∗ is the maximum of E.
Consider that

E = {D∗ ∈ F (V )|R1(u, v) →2 (A∗(u) →2 D∗(v)) � α,

u ∈ U, v ∈ V }.
On the contrary, assume that B∗ /∈ E, then there exist

fuzzy sets B1, B2, . . . in E such that

lim
n→∞Bn(v) = B∗(v), v ∈ V. (8)

Since B∗ = sup E, we get Bn(v) � B∗(v) (v ∈ V, n =
1, 2, . . .), and thus it follows from (8) that B∗(v) is the left
limit of {Bn(v)| n = 1, 2, . . .} (v ∈ V ). Notice that →2

satisfies (C2), so we obtain

lim
n→∞{A∗(u) →2 Bn(v)} = A∗(u) →2 B∗(v),

u ∈ U, v ∈ V. (9)

Because →2 satisfies (C1), we have A∗(u) →2 Bn(v) �
A∗(u) →2 B∗(v) (u ∈ U, v ∈ V, n = 1, 2, . . .), and it
follows from (9) that A∗(u) →2 B∗(v) is the left limit of
{A∗(u) →2 Bn(v)| n = 1, 2, . . .}.

Since B1, B2, . . . ∈ E, it follows that

R1(u, v) →2 (A∗(u) →2 Bn(v)) � α.

Noting that →2 satisfies (C2), we have

α � lim
n→∞{R1(u, v) →2 (A∗(u) →2 Bn(v))} =

R1(u, v) →2 (A∗(u) →2 B∗(v))

which contradicts the assumption. Therefore B∗ ∈ E and
thus B∗ is the maximum of E. �

Theorem 3 If →2 takes IL, α ∈ (0, 1), and (7) holds,
then the α-MaxP-solution can be computed as follows:

B∗(v) = α− 2 + inf
u∈U

{A∗(u)+ R1(u, v)}, v ∈ V. (10)

Proof Let G1 = {v ∈ V | B∗(v) = 0}, and G2 =
{v ∈ V | B∗(v) > 0}. Suppose that C ∈ F (V ), and that
C(v) = 0 for v ∈ G1, and that C(v) < B∗(v) for v ∈ G2.
We shall show that C is an α-FMP-solution, that is, the
following inequality holds for any u ∈ U, v ∈ V :

R1(u, v) →2 (A∗(u) →2 C(v)) � α. (11)
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If v ∈ G1, then it follows from (7) that C(v) = 0 satis-
fies (11) for any u ∈ U .

If v ∈ G2, then it follows from (10) and C(v) < B∗(v)
that the following formula holds for any u ∈ U :

C(v) < α − 2 + A∗(u) + R1(u, v).

Thus we get A∗(u) > C(v), and

A∗(u) →2 C(v) = 1 − A∗(u) + C(v) <

1 − A∗(u) + α − 2 + A∗(u) + R1(u, v) =

α − 1 + R1(u, v) < R1(u, v),

and then

R1(u, v) →2 (A∗(u) →2 C(v)) = 1 − R1(u, v) +

1 − A∗(u) + C(v) < 1 − R1(u, v) +

1 − A∗(u) + α − 2 + A∗(u) + R1(u, v) = α.

Therefore (11) holds for any u ∈ U, v ∈ V , which implies
that C is an α-FMP-solution.

Next, we shall check that B∗ determined by (10) is
the supremum of all α-FMP-solutions. Assume that D ∈
F (V ), and there exists v0 ∈ V such that D(v0) > B∗(v0).
We shall prove that D is not an α-FMP-solution. In fact, it
follows from (10) that there exists u0 ∈ U such that

D(v0) > α − 2 + A∗(u0) + R1(u0, v0) (12)

holds. If R1(u0, v0) � A∗(u0) →2 D(v0), then

R1(u0, v0) →2 (A∗(u0) →2 D(v0)) = 1 > α,

otherwise (i.e., A∗(u0) > D(v0) and R1(u0, v0) > 1 −
A∗(u0) + D(v0) hold), we have from (12) that

R1(u0, v0) →2 (A∗(u0) →2 D(v0)) =

R1(u0, v0) →2 (1 − A∗(u0) + D(v0)) =

1 − R1(u0, v0) + 1 − A∗(u0) + D(v0) >

1 − R1(u0, v0) + 1 − A∗(u0) +

α − 2 + A∗(u0) + R1(u0, v0) = α.

So D is not an α-FMP-solution.
To sum up, B∗ determined by (10) is the supremum of

all α-FMP-solutions, thus it is the α-SupP-quasi solution.
Moreover, since IL satisfies (C1) and (C2), it follows

from Theorem 2 that B∗ determined by (10) is also the
α-MaxP-solution. �

Similar to Theorem 3, we can get Theorems 4–6 (noting
that IGo, IKD, IR all satisfy (C1) and (C2)).

Theorem 4 If →2 takes IGo, α ∈ (0, 1), and (7)
holds, then the α-MaxP-solution can be expressed as

B∗(v) = inf
u∈U

{α × A∗(u) × R1(u, v)}, v ∈ V.

Theorem 5 If →2 takes IKD , α ∈ (0, 1), and (7)
holds, then the α-MaxP-solution can be expressed as

B∗(v) = α, v ∈ V.

Theorem 6 If →2 takes IR, α ∈ (0, 1), and (7) holds,
then the α-MaxP-solution can be expressed as

B∗(v) = inf
u∈U

{
1 − 1 − α

R1(u, v) × A∗(u)

}
, v ∈ V.

Similar to Theorem 3, we can prove Theorem 7 (noting
that I0 does not satisfy (C2)).

Theorem 7 If →2 takes I0, α ∈ (0, 1), and (7) holds,
then the α-SupP-quasi solution can be computed as

B∗(v) = inf
u∈U

{A∗(u) ∧ R1(u, v)} ∧ α, v ∈ V. (13)

Theorem 8 If →2 takes I0, α ∈ (0, 1), and (7) holds,
then the α-SupP-quasi solution B∗ determined by (13) is
the α-MaxP-solution if and only if

B∗(v) < A∗(u) ∧ R1(u, v), u ∈ U, v ∈ V. (14)

Proof Since (7) holds, we get from Proposition 2(iii)
that the following formulas hold for any u ∈ U, v ∈ V :

R1(u, v) > (A∗(u))′, (R1(u, v))′ ∨ (A∗(u))′ � α.

(15)
(i) If (14) holds, then A∗(u) > B∗(v), R1(u, v) >

B∗(v). Hence it follows from (15) that

A∗(u) →2 B∗(v) = (A∗(u))′ ∨ B∗(v) < R1(u, v),

and (noting that obviously B∗(v) � α)

R1(u, v) →2 (A∗(u) →2 B∗(v)) =

(R1(u, v))′ ∨ (A∗(u))′ ∨ B∗(v) � α

hold for any u ∈ U, v ∈ V . Therefore the α-SupP-quasi
solution B∗ determined by (13) is an α-FMP-solution,
which implies that B∗ is the α-MaxP-solution.

(ii) If (14) does not hold, i.e., there exist u0 ∈ U, v0 ∈ V

such that

B∗(v0) � A∗(u0) ∧ R1(u0, v0).

We have two cases to be considered.
(a) If B∗(v0) � A∗(u0), then

R1(u0, v0) →2 (A∗(u0) →2 B∗(v0)) =



564 Journal of Systems Engineering and Electronics Vol. 23, No. 4, August 2012

R1(u0, v0) →2 1 = 1 > α.

(b) If B∗(v0) � R1(u0, v0), then noting that
A∗(u0) →2 B∗(v0) � (A∗(u0))′ ∨B∗(v0) � R1(u0, v0),
we also get

R1(u0, v0) →2 (A∗(u0) →2 B∗(v0)) = 1 > α.

Thus the α-SupP-quasi solution B∗ determined by (13) is
not an α-FMP-solution, and then it is not the α-MaxP-
solution. �

We can get Proposition 3 by virtue of Theorem 8.

Proposition 3 If →2 takes I0, α ∈ (0, 1), and (7)
holds, then the α-SupP-quasi solution B∗ determined by
(13) is the α-MaxP-solution if and only if (u ∈ U, v ∈ V )

inf
u∈U

{A∗(u) ∧ R1(u, v)} < A∗(u) ∧ R1(u, v)

or
α < A∗(u) ∧ R1(u, v).

Theorem 9 If →2 takes IG, α ∈ (0, 1), and (7) holds,
then the α-SupP-quasi solution can be computed as

B∗(v) = inf
u∈U

{A∗(u) ∧ R1(u, v)} ∧ α, v ∈ V.

Moreover, the α-SupP-quasi solution B∗ is the α-MaxP-
solution if and only if

B∗(v) < A∗(u) ∧ R1(u, v), u ∈ U, v ∈ V.

Theorem 10 If →2 takes IGR, α ∈ (0, 1), and (7)
holds, then the α-SupP-quasi solution can be computed as

B∗(v) = inf
u∈U

{A∗(u)}, v ∈ V.

Moreover, the α-SupP-quasi solution B∗ is the α-MaxP-
solution if and only if

B∗(v) < A∗(u), u ∈ U, v ∈ V.

When →1 =→2, the α-FMP-solution degenerates into
the solution of the α-triple I restriction method for FMP
(1) (α-FMP-triple I restriction solution for short). Denote
→�→1 =→2. Inspecting the results mentioned above,
we can similarly get the following definitions and conclu-
sions of the α-triple I restriction method for FMP. We de-
note R(u, v) = A(u) → B(v).

Definition 5 Let A, A∗ ∈ F (U), B ∈ F (V ), if B∗

(in < F (V ), �F >) makes (4) hold for any u ∈ U, v ∈ V ,
then B∗ is called an α-FMP-triple I restriction solution.

Definition 6 Suppose that A, A∗ ∈ F (U), B ∈
F (V ), and that nonempty set E◦ is the set of all α-
FMP-triple I restriction solutions, and finally that D∗ (in

< F (V ), �F >) is the supremum of E◦, then D∗ is called
an α-SupP-quasi triple I restriction solution. And if D∗ is
the maximum of E◦, then D∗ is also called an α-MaxP-
triple I restriction solution.

Corollary 1 Let the implication → satisfy (C1), α ∈
(0, 1). Then there exists an α-FMP-triple I restriction so-
lution if and only if the following inequality holds for any
u ∈ U, v ∈ V :

R(u, v) → (A∗(u) → 0) � α. (16)

Corollary 2 Equation (16) is respectively equivalent
to the following formulas:

(i) 2 − R(u, v) − A∗(u) � α, if → takes IL;
(ii) R(u, v) × A∗(u) > 0, if → takes IGo;
(iii) R(u, v) > (A∗(u))′ and (R(u, v))′∨(A∗(u))′ � α,

if → takes I0;
(iv) R(u, v) × A∗(u) > 0, if → takes IG;
(v) (R(u, v))′ ∨ (A∗(u))′ � α, if → takes IKD;
(vi) 1 − R(u, v) × A∗(u) � α, if → takes IR;
(vii) R(u, v) × A∗(u) > 0, if → takes IGR.
Similarly, once there exists an α-FMP-triple I restriction

solution, then the α-SupP-quasi triple I restriction solution
uniquely exists.

Corollary 3 If the implication → satisfies (C1) and
(C2), α ∈ (0, 1), and (16) holds, then the α-SupP-quasi
triple I restriction solution is the α-MaxP-triple I restric-
tion solution.

Corollary 4 If→ takes IL, α ∈ (0, 1), and (16) holds,
then the α-MaxP-triple I restriction solution is B∗(v) =
α − 2 + inf

u∈U
{A∗(u) + R(u, v)}, v ∈ V.

Corollary 5 If → takes IGo, α ∈ (0, 1), and (16)
holds, then the α-MaxP-triple I restriction solution is
B∗(v) = inf

u∈U
{α × A∗(u) × R(u, v)}, v ∈ V.

Corollary 6 If → takes IKD, α ∈ (0, 1), and (16)
holds, then the α-MaxP-triple I restriction solution is
B∗(v) = α, v ∈ V.

Corollary 7 If→ takes IR, α ∈ (0, 1), and (16) holds,
then the α-MaxP-triple I restriction solution is

B∗(v) = inf
u∈U

{
1 − 1 − α

R(u, v) × A∗(u)

}
, v ∈ V.

Corollary 8 If → takes I0, α ∈ (0, 1), and (16) holds,
then the α-SupP-quasi triple I restriction solution is

B∗(v) = inf
u∈U

{A∗(u) ∧ R(u, v)} ∧ α, v ∈ V. (17)

Corollary 9 If → takes I0, α ∈ (0, 1), and (16) holds,
then the α-SupP-quasi triple I restriction solution B∗ de-
termined by (17) is the α-MaxP-triple I restriction solution
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if and only if

B∗(v) < A∗(u) ∧ R(u, v), u ∈ U, v ∈ V.

Corollary 10 If → takes I0, α ∈ (0, 1), (16) holds,
then the α-SupP-quasi triple I restriction solution B∗ de-
termined by (17) is the α-MaxP-triple I restriction solution
if and only if (u ∈ U, v ∈ V )

inf
u∈U

{A∗(u) ∧ R(u, v)} < A∗(u) ∧ R(u, v),

or
α < A∗(u) ∧ R(u, v).

Corollary 11 If → takes IG, α ∈ (0, 1), and (16)
holds, then the α-SupP-quasi triple I restriction solution is

B∗(v) = inf
u∈U

{A∗(u) ∧ R(u, v)} ∧ α, v ∈ V.

Moreover, the α-SupP-quasi triple I restriction solution B∗

is the α-MaxP-triple I restriction solution if and only if

B∗(v) < A∗(u) ∧ R(u, v), u ∈ U, v ∈ V.

Corollary 12 If → takes IGR, α ∈ (0, 1), and (16)
holds, then the α-SupP-quasi triple I restriction solution is

B∗(v) = inf
u∈U

{A∗(u)}, v ∈ V.

Moreover, the α-SupP-quasi triple I restriction solution B∗

is the α-MaxP-triple I restriction solution if and only if

B∗(v) < A∗(u), u ∈ U, v ∈ V.

Remark 2 In [27], Song et al. researched the α-triple
I restriction method for FMP, which only aimed at I0. By
Theorem 2 in [27], Song et al. provided the existence con-
dition of α-FMP-triple I restriction solutions as follows:

There exists u0 ∈ U such that A∗(u0) > 0, and

(A∗(u))′ < R(u, v), A∗(u) ∧ R(u, v) � α′

hold for any u ∈ U, v ∈ V.

Note that A∗(u) � α′ implies A∗(u) > 0, thus this exis-
tence condition is equivalent to

(A∗(u))′ < R(u, v), (A∗(u))′ ∨ (R(u, v))′ � α,

u ∈ U, v ∈ V

which coincides with Corollary 2(iii) in this paper. Then,
the α-SupP-quasi triple I restriction solution is also shown
by Theorem 2 in [27], which is the same as Corollary 8 in
this paper. Moreover, they obtain the necessary and suf-
ficient condition that the α-SupP-quasi triple I restriction

solution is an α-MaxP-triple I restriction solution. It coin-
cides with Corollary 10 in this paper. Notice that Corol-
lary 2(iii), Corollary 10 can be deduced by Corollary 1 and
Corollary 9, respectively. Furthermore, all of these conclu-
sions are the special cases of Proposition 2(iii), Theorem 7
and Proposition 3 in this paper.

Remark 3 In [36], Sun et al. discussed the α-triple
I restriction method for FMP where only employed IL.
By Theorem 1 in [36], Sun et al. achieved the existence
condition of α-FMP-triple I restriction solutions, and the
α-MaxP-triple I restriction solution. It is easy to get that
these results are the same as the related ones of Corollary
2(i) and Corollary 4 in this paper. Note that Corollary 2(i)
can be deduced by Corollary 1, moreover, it is obvious that
Theorem 1 in [36] is a special case of Proposition 2(i) and
Theorem 3 in this paper.

Remark 4 In [28], Peng investigated the α-triple I re-
striction method. By Theorem 2.1.1 in [28], Peng drew the
conclusion that if → satisfies (C1), (C2), and

R(u, v) → (A∗(u) → 0) < α (18)

holds for any u ∈ U, v ∈ V , then the α-MaxP-triple I re-
striction solution uniquely exists. It should be pointed out
that when R(u, v) → (A∗(u) → 0) = α, Theorem 2.1.1
in [28] also holds (by virtue of Corollary 1 and Corollary 3
in this paper), which implies that (18) can be changed into
(16). Moreover, it is easy to find that Theorem 2.1.1 in [28]
is a special case of Corollary 3 in this paper.

For a set D ⊂ U , let χD denote the characteristic func-

tion of D, which is defined as χD(u) =
{

1, u ∈ D

0, u /∈ D
,

and let Dc = U − D.

Remark 5 By Theorem 2.1.3 –Theorem 2.1.6 in [28],
Peng obtained the α-MaxP-triple I restriction solutions
where respectively employed IKD, IR, IL, and IGo. These
conclusions coincide with Corollary 4−Corollary 7 in this
paper (where (18) can be changed into (16), and note that
(16) holds). For example, Theorem 2.1.5 in [28] got the
fact that the α-MaxP-triple I restriction solution where →
takes IL is

B∗(v) = inf
u∈Ev

{α−2+A∗(u)+R(u, v)}χEv +χEc
v
, v ∈ V

(19)
where Ev = {u ∈ U |(R(u, v))′ + (A∗(u))′ < 1}. Since
(16) holds, we get from Corollary 2(i) that 2 − R(u, v) −
A∗(u) � α (u ∈ U, v ∈ V ), which implies R(u, v) +
A∗(u) � 2 − α > 1 and then (R(u, v))′ + (A∗(u))′ < 1.
Thus (19) is equivalent to

B∗(v) = inf
u∈U

{α − 2 + A∗(u) + R(u, v)}, v ∈ V.



566 Journal of Systems Engineering and Electronics Vol. 23, No. 4, August 2012

Therefore, Theorem 2.1.5 in [28] coincides with Corol-
lary 4 in this paper.

Example 1 Let U = V = [0, 1], A(u) = (1 − u)/2,
B(v) = (1 + v)/4, A∗(u) = (1 + u)/2 and α = 1/2,
where u ∈ U, v ∈ V . Suppose that →2= IGo, →1= IL

in the α-universal triple I restriction method for FMP. We
now calculate the α-MaxP-solution.

R1(u, v) = A(u) →1 B(v) = IL(A(u), B(v)) =

⎧⎪⎨
⎪⎩

1 − 1 − u

2
+

1 + v

4
,

1 − u

2
>

1 + v

4

1,
1 − u

2
� 1 + v

4

=

⎧⎨
⎩

2u + v + 3
4

, 2u + v < 1

1, 2u + v � 1
.

Here (7) obviously holds (from Proposition 2(ii)). Thus we
get from Theorem 4 that the α-MaxP-solution (v ∈ V ) is

B∗(v) = inf
u∈U

{α × A∗(u) × R1(u, v)} =

inf
u∈[0,1]

{α × A∗(u) × R1(u, v)|2u + v < 1}∧

inf
u∈[0,1]

{α × A∗(u) × R1(u, v)|2u + v � 1} =

inf
u∈[0,1]

{
u + 1

4
× 2u + v + 3

4
|2u + v < 1

}
∧

inf
u∈[0,1]

{
u + 1

4
|2u + v � 1

}

(i) Suppose v = 1, then {u ∈ [0, 1] | 2u + v < 1} = ∅,
and 0 ∈ {u ∈ [0, 1] | 2u + v � 1}. Taking into account

that
u + 1

4
is increasing w.r.t. u, we get

B∗(v) = (inf ∅) ∧ 1
4

= 1 ∧ 1
4

=
1
4

=
3 + v

16
.

(ii) Suppose 0 � v < 1, then 0 ∈ {u ∈ [0, 1] | 2u+ v <

1}. Since
u + 1

4
,
2u + v + 3

4
are increasing w.r.t. u, we

have

B∗(v) =
3 + v

16
∧

1 − v

2
+ 1

4
=

3 + v

16
∧ 3 − v

8
=

3 + v

16

where
3 + v

16
<

3 − v

8
since v < 1.

Together we obtain

B∗(v) =
3 + v

16
, v ∈ V.

Example 2 Let U, V, A, B, A∗, α be the same as in
Example 1. Suppose that →= IGo in the α-triple I restric-
tion method for FMP. We now calculate the α-MaxP-triple
I restriction solution.

R(u, v)=IGo(A(u), B(v))=

⎧⎨
⎩

v + 1
2 − 2u

, 2u+v<1

1, 2u+v�1

Here (16) obviously holds (from Corollary 2(ii)), and it fol-
lows from Corollary 5 that the α-MaxP-triple I restriction
solution (v ∈ V ) is

B∗(v) = inf
u∈U

{α × A∗(u) × R(u, v)} =

inf
u∈[0,1]

{u + 1
4

× v + 1
2 − 2u

|2u + v < 1}∧

inf
u∈[0,1]

{u + 1
4

|2u + v � 1}.

(i) Suppose v = 1. We can also get B∗(v) = 1/4 =
(1 + v)/8.

(ii) Suppose 0 � v < 1, we similarly have B∗(v) =
1 + v

8
∧ 3 − v

8
=

1 + v

8
. Together we obtain

B∗(v) =
1 + v

8
, v ∈ V.

Remark 6 Aiming at the same U, V, A, B, A∗, α, the
α-MaxP-solution in Example 1 is larger than the α-MaxP-
triple I restriction solution in Example 2 (noting that v < 1

implies
3 + v

16
>

1 + v

8
, and that v = 1 implies

3 + v

16
=

1 + v

8
). From the basic idea of the α-universal triple I re-

striction method (i.e., α-universal triple I restriction prin-
ciple for FMP, which seeks out the largest B∗ satisfying
(6)), the α-universal triple I restriction method makes the
reasoning closer, thus it is better than the α-triple I restric-
tion method.

3. The α-universal triple I restriction method
for FMT

For the FMT problem (2), from the viewpoint of α-
universal triple I restriction method, we can achieve the
following principle (which similarly improves the previ-
ous α-triple I restriction principle for FMT in [27,28]): α-
universal triple I restriction principle for FMT. The con-
clusion A∗ (in < F (U), �F >) of FMT problem (2) is the
smallest fuzzy set satisfying (6).

Definition 7 Let A ∈ F (U), B, B∗ ∈ F (V ), if A∗

(in < F (U), �F >) makes (6) hold for any u ∈ U, v ∈ V ,
then A∗ is called an α-FMT-universal triple I restriction
solution (α-FMT-solution for short).
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Definition 8 Suppose that A ∈ F (U), B, B∗ ∈
F (V ), and that nonempty set F is the set of all α-FMT-
solutions, and finally that C∗ (in < F (U), �F >) is the
infimum of F , then C∗ is called an α-InfT-quasi univer-
sal triple I restriction solution (α-InfT-quasi solution for
short). And if C∗ is the minimum of F , then C∗ is also
called an α-MinT-universal triple I restriction solution (α-
MinT-solution for short).

Similar to Proposition 1 and Theorem 1, we can prove
Proposition 4 and Theorem 11.

Proposition 4 If the implication→2 satisfies (C1) and
(C3) a → b is non-increasing w.r.t. a (a, b ∈ [0, 1]), and
C1 is an α-FMT-solution, and finally C1 �F C2 (in which
C1, C2 ∈< F (U), �F >). Then C2 is an α-FMT-solution.

Theorem 11 Let the implication →2 satisfy (C1) and
(C3), α ∈ (0, 1). Then there exists an α-FMT-solution
if and only if the following inequality holds for any u ∈
U, v ∈ V :

R1(u, v) →2 (1 →2 B∗(v)) � α. (20)

Remark 7 Suppose that →2 satisfies (C1), (C3) and
that (20) holds. For an α-FMT-solution A∗, every fuzzy
set C which is larger than A∗, will be an α-FMT-solution
(where A∗, C in < F (U), �F >). This implies that there
are many α-FMT-solutions including A∗(u) ≡ 1 (u ∈ U ).
The last is a special solution, because (6) always holds no
matter what A →1 B and B∗ are adopted. Thus, if the op-
timal α-FMT-solution exists, then it should be the smallest
one; in other words, it should be the infimum of all solu-
tions (i.e., the infimum of F ).

It is easy to get Proposition 5.

Proposition 5 Equation (20) is respectively equiva-
lent to the following formulas:

(i) 1 − R1(u, v) + B∗(v) � α, if →2 takes IL;
(ii) R1(u, v) > B∗(v), B∗(v) � α × R1(u, v), if →2

takes IGo;
(iii) R1(u, v) > B∗(v) and (R1(u, v))′ ∨B∗(v) � α, if

→2 takes I0;
(iv) R1(u, v) > B∗(v) and B∗(v) � α, if →2 takes IG;
(v) (R1(u, v))′ ∨ B∗(v) � α, if →2 takes IKD;
(vi) (R1(u, v))′ + R1(u, v) × B∗(v) � α, if →2 takes

IR;
(vii) 1 > B∗(v) and R1(u, v) > 0, if →2 takes IGR.
Similarly, once there exists an α-FMT-solution, then the

α-InfT-quasi solution (i.e., the infimum of F ) uniquely ex-
ists since the nonempty set F ⊂ F (U).

Theorem 12 If the implication →2 satisfies (C1),
(C2), (C3) and (C4) a → b is right-continuous w.r.t. a

(a ∈ [0, 1), b ∈ [0, 1]), α ∈ (0, 1), and (20) holds. Then
the α-InfT-quasi solution is an α-MinT-solution.

Proof Note that the α-InfT-quasi solution A∗ =
inf F , thus it is enough to verify that A∗ is the minimum
of F . It is obvious that

F ={C∗∈F (U)| R1(u, v) →2 (C∗(u) →2 B∗(v)) � α,

u ∈ U, v ∈ V }.
On the contrary, assume that A∗ /∈ F , then there exist

fuzzy sets A1, A2, . . . in F such that

lim
n→∞An(u) = A∗(u), u ∈ U. (21)

Because A∗ = inf F , it follows that An(u) � A∗(u)
(u ∈ U, n = 1, 2, . . .), and thus we get from (21) that
A∗(u) is the right limit of {An(u)| n = 1, 2, . . .} (u ∈ U ).
Considering that →2 satisfies (C4), we achieve

lim
n→∞{An(u) →2 B∗(v)} = A∗(u) →2 B∗(v),

u ∈ U, v ∈ V (22)

Since →2 satisfies (C3), we get An(u) →2 B∗(v) �
A∗(u) →2 B∗(v) (u ∈ U, v ∈ V, n = 1, 2, . . .), and it
follows from (22) that A∗(u) →2 B∗(v) is the left limit of
{An(u) →2 B∗(v)| n = 1, 2, . . .}.

Because A1, A2, . . . ∈ F , it follows that

R1(u, v) →2 (An(u) →2 B∗(v)) � α, u ∈ U, v ∈ V

Noting that →2 satisfies (C2), we get

α � lim
n→∞{R1(u, v) →2 (An(u) →2 B∗(v))} =

R1(u, v) →2 (A∗(u) →2 B∗(v)),

which contradicts the assumption. So A∗ ∈ F and thus A∗

is the minimum of F . �
Theorem 13 If →2 takes IL, α ∈ (0, 1), and (20)

holds, then the α-MinT-solution can be computed as

A∗(u) = 2−α+ sup
v∈V

{B∗(v)−R1(u, v)}, u ∈ U. (23)

Proof Let H1 = {u ∈ U | A∗(u) = 1} and H2 =
{u ∈ U | A∗(u) < 1}. Assume that C ∈ F (U), and
that C(u) = 1 for u ∈ H1, and that C(u) > A∗(u) for
u ∈ H2. We shall prove that C is an α-FMT-solution, i.e.,
the following inequality holds for any u ∈ U, v ∈ V :

R1(u, v) →2 (C(u) →2 B∗(v)) � α. (24)

If u ∈ H1, then it follows from (20) that C(u) = 1
satisfies (24) for any v ∈ V .

If u ∈ H2, then it follows from (23) and C(u) > A∗(u)
that the following formula holds for any v ∈ V :

C(u) > 2 − α + B∗(v) − R1(u, v).
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So we have C(u) > B∗(v), and

C(u) →2 B∗(v) = 1 − C(u) + B∗(v) <

1 − (2 − α + B∗(v) − R1(u, v)) + B∗(v) =
α − 1 + R1(u, v) < R1(u, v),

and then

R1(u, v) →2 (C(u) →2 B∗(v)) =

1 − R1(u, v) + 1 − C(u) + B∗(v) <

1 − R1(u, v) + 1 − (2 − α + B∗(v) − R1(u, v)) +
B∗(v) = α.

Thus (24) holds for any u ∈ U, v ∈ V , which means that
C is an α-FMT-solution.

Next, we shall verify that A∗ determined by (23) is the
infimum of all α-FMT-solutions. Assume that D ∈ F (U),
and that there exists u0 ∈ U such that D(u0) < A∗(u0).
We shall show that D is not an α-FMT-solution. In fact, it
follows from (23) that there exists v0 ∈ V such that

D(u0) < 2 − α + B∗(v0) − R1(u0, v0). (25)

If R1(u0, v0) � D(u0) →2 B∗(v0), then

R1(u0, v0) →2 (D(u0) →2 B∗(v0)) = 1 > α;

otherwise (i.e., D(u0) > B∗(v0) and R1(u0, v0) > 1 −
D(u0) + B∗(v0) hold), we get from (25) that

R1(u0, v0) →2 (D(u0) →2 B∗(v0))=1 − R1(u0, v0) +

1 − D(u0) + B∗(v0) > 1 − R1(u0, v0) +

1 − (2 − α + B∗(v0) − R1(u0, v0)) + B∗(v0) = α.

Therefore D is not an α-FMT-solution.
Summarizing above, A∗ determined by (23) is the in-

fimum of all α-FMT-solutions, thus it is the α-InfT-quasi
solution.

Moreover, since IL satisfies (C1), (C2), (C3) and (C4),
it follows from Theorem 12 that A∗ determined by (23) is
also the α-MinT-solution. �

It is similar to Theorem 13 that we can get Theorems
14 –16, where IKD, IR satisfy (C1), (C2), (C3), and (C4),
and I0 only satisfies (C1), (C3), and (C4).

Theorem 14 If →2 takes IKD, α ∈ (0, 1), and (20)
holds, then the α-MinT-solution can be computed as

A∗(u) = α′, u ∈ U.

Theorem 15 If →2 takes IR, α ∈ (0, 1), and (20)
holds, then the α-MinT-solution can be computed as

A∗(u) = sup
v∈V

{ 1 − α

R1(u, v) × (B∗(v))′
}
, u ∈ U.

Theorem 16 If →2 takes I0, α ∈ (0, 1), and (20)
holds, then the α-InfT-quasi solution can be computed as

A∗(u) = sup
v∈V

{(R1(u, v))′ ∨ B∗(v)} ∨ α′, u ∈ U. (26)

Theorem 17 If →2 takes I0, α ∈ (0, 1), and (20)
holds, then the α-InfT-quasi solution A∗ determined by
(26) is the α-MinT-solution if and only if

A∗(u) > (R1(u, v))′ ∨ B∗(v), u ∈ U, v ∈ V. (27)

Proof Since (20) holds, it follows from Proposi-
tion 5(iii) that the following formulas hold for any u ∈
U, v ∈ V :

R1(u, v) > B∗(v), (R1(u, v))′ ∨ B∗(v) � α. (28)

(i) If (27) holds, then we get from (28) that

A∗(u) →2 B∗(v) = (A∗(u))′ ∨ B∗(v) < R1(u, v),

and (noting that obviously A∗(u) � α′ and (A∗(u))′ � α)

R1(u, v) →2 (A∗(u) →2 B∗(v)) =

(R1(u, v))′ ∨ (A∗(u))′ ∨ B∗(v) � α

hold for any u ∈ U, v ∈ V . Therefore the α-InfT-quasi
solution A∗ is an α-FMT-solution, which means that A∗ is
the α-MinT-solution.

(ii) If (27) does not hold, i.e., there exist u0 ∈ U, v0 ∈ V

such that

A∗(u0) � (R1(u0, v0))′ ∨ B∗(v0).

We have two cases to be considered.
(a) If A∗(u0) � B∗(v0), then

R1(u0, v0) →2 (A∗(u0) →2 B∗(v0)) =

R1(u0, v0) →2 1 = 1 > α.

(b) If A∗(u0) � (R1(u0, v0))′, then A∗(u0) →2

B∗(v0) � (A∗(u0))′ ∨ B∗(v0) � R1(u0, v0) and thus

R1(u0, v0) →2 (A∗(u0) →2 B∗(v0)) = 1 > α.

As a result, the α-InfT-quasi solution A∗ is not an α-FMT-
solution, and then it is not the α-MinT-solution. �

Similar to Theorems 16 and 17, we can prove Theorems
18 – 20.

Theorem 18 If →2 takes IGo, α ∈ (0, 1), and (20)
holds, then the α-InfT-quasi solution can be computed as

A∗(u) = sup
v∈V

{ B∗(v)
α × R1(u, v)

}
, u ∈ U. (29)
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Moreover, if

A∗(u) >
B∗(v)

α × R1(u, v)
, u ∈ U, v ∈ V (30)

holds, then the α-InfT-quasi solution A∗ determined by
(29) is the α-MinT-solution.

Remark 8 In Theorem 18, the condition (30) is not
the necessary condition making the α-InfT-quasi solution
A∗ determined by (29) be the α-MinT-solution. In fact,
suppose that (30) does not hold, i.e., there exist u0 ∈
U, v0 ∈ V such that

A∗(u0) � B∗(v0)/(α × R1(u0, v0)).

If the cases that A∗(u0) = B∗(v0)/(α × R1(u0, v0)) and
that R1(u0, v0) > A∗(u0) →2 B∗(v0) happen, we have

R1(u0, v0) →2 (A∗(u0) →2 B∗(v0)) =

B∗(v0)/(A∗(u0) × R1(u0, v0)) = α,

which implies that the α-InfT-quasi solution A∗ is the α-
MinT-solution (when (30) does not hold).

Theorem 19 If →2 takes IG, α ∈ (0, 1), and (20)
holds, then the α-InfT-quasi solution can be computed as

A∗(u) = sup
v∈V

{B∗(v)}, u ∈ U.

Moreover, the α-InfT-quasi solution A∗ is the α-MinT-
solution if and only if

A∗(u) > B∗(v), u ∈ U, v ∈ V.

Theorem 20 If →2 takes IGR, α ∈ (0, 1), and (20)
holds, then the α-InfT-quasi solution can be computed as

A∗(u) = sup
v∈V

{B∗(v)}, u ∈ U.

Moreover, the α-InfT-quasi solution A∗ is the α-MinT-
solution if and only if

A∗(u) > B∗(v), u ∈ U, v ∈ V.

When →1 =→2, the α-FMT-solution degenerates into
the solution of α-triple I restriction method for FMT (2)
(α-FMT-triple I restriction solution for short). Denote
→�→1 =→2. From the conclusions mentioned above,
we can similarly obtain the following definitions and re-
sults of the α-triple I restriction method for FMT.

Definition 9 Let A ∈ F (U), B, B∗ ∈ F (V ), if A∗

(in < F (U), �F >) makes (4) hold for any u ∈ U, v ∈ V ,
then A∗ is called an α-FMT-triple I restriction solution.

Definition 10 Suppose that A ∈ F (U), B, B∗ ∈
F (V ), and the nonempty set F ◦ is the set of all α-FMT-
triple I restriction solutions, and finally that C∗ (in<F (U),
�F >) is the infimum of F ◦, then C∗ is called an α-InfT-
quasi triple I restriction solution. And if C∗ is the mini-
mum of F ◦, then C∗ is also called an α-MinT-triple I re-
striction solution.

Corollary 13 Let the implication → satisfy (C1) and
(C3), α ∈ (0, 1). Then there exists an α-FMT-triple I
restriction solution if and only if the following inequality
holds for any u ∈ U, v ∈ V :

R(u, v) → (1 → B∗(v)) � α. (31)

Corollary 14 Equation (31) is respectively equivalent
to the following formulas:

(i) 1 − R(u, v) + B∗(v) � α, if → takes IL;
(ii) R(u, v) > B∗(v), B∗(v) � α×R(u, v), if → takes

IGo;
(iii) R(u, v) > B∗(v) and (R(u, v))′ ∨ B∗(v) � α, if

→ takes I0;
(iv) R(u, v) > B∗(v) and B∗(v) � α, if → takes IG;
(v) (R(u, v))′ ∨ B∗(v) � α, if → takes IKD;
(vi) (R(u, v))′ + R(u, v) × B∗(v) � α, if → takes IR;
(vii) 1 > B∗(v) and R(u, v) > 0, if → takes IGR.
Similarly, once there exists an α-FMT-triple I restriction

solution, then the α-InfT-quasi triple I restriction solution
uniquely exists.

Corollary 15 If the implication → satisfies (C1),
(C2), (C3) and (C4), α ∈ (0, 1), and (31) holds. Then
the α-InfT-quasi triple I restriction solution is the α-MinT-
triple I restriction solution.

Corollary 16 If → takes IL, α ∈ (0, 1), and (31)
holds, then the α-MinT-triple I restriction solution is
A∗(u) = 2 − α + sup

v∈V
{B∗(v) − R(u, v)} (u ∈ U).

Corollary 17 If → takes IKD, α ∈ (0, 1), and
(31) holds, then the α-MinT-triple I restriction solution is
A∗(u) = α′ (u ∈ U).

Corollary 18 If → takes IR, α ∈ (0, 1), and (31)
holds, then the α-MinT-triple I restriction solution is

A∗(u) = sup
v∈V

{ 1 − α

R(u, v) × (B∗(v))′
}
, u ∈ U.

Corollary 19 If → takes I0, α ∈ (0, 1), and (31)
holds, then the α-InfT-quasi triple I restriction solution is

A∗(u) = sup
v∈V

{(R(u, v))′ ∨ B∗(v)} ∨ α′, u ∈ U. (32)

Corollary 20 If → takes I0, α ∈ (0, 1), and (31)
holds, then the α-InfT-quasi triple I restriction solution A∗
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determined by (32) is the α-MinT-triple I restriction solu-
tion if and only if

A∗(u) > (R(u, v))′ ∨ B∗(v), u ∈ U, v ∈ V. (33)

Corollary 21 If → takes IGo, α ∈ (0, 1), and (31)
holds, then the α-InfT-quasi triple I restriction solution is

A∗(u) = sup
v∈V

{ B∗(v)
α × R(u, v)

}
, u ∈ U.

Moreover, if

A∗(u) >
B∗(v)

α × R(u, v)
, u ∈ U, v ∈ V

holds, then the α-InfT-quasi triple I restriction solution A∗

is the α-MinT-triple I restriction solution.

Corollary 22 If → takes IG, α ∈ (0, 1), and (31)
holds, then the α-InfT-quasi triple I restriction solution is

A∗(u) = sup
v∈V

{B∗(v)}, u ∈ U.

Moreover, the α-InfT-quasi triple I restriction solution A∗

is the α-MinT-triple I restriction solution if and only if

A∗(u) > B∗(v), u ∈ U, v ∈ V.

Corollary 23 If → takes IGR, α ∈ (0, 1), and (31)
holds, then the α-InfT-quasi triple I restriction solution is

A∗(u) = sup
v∈V

{B∗(v)}, u ∈ U.

Moreover, the α-InfT-quasi triple I restriction solution A∗

is the α-MinT-triple I restriction solution if and only if

A∗(u) > B∗(v), u ∈ U, v ∈ V.

Remark 9 In [27], Song et al. researched the α-triple
I restriction method for FMT, which only employed I0.
By Theorem 3 in [27], Song et al. have given the exis-
tence condition of α-FMT-triple I restriction solutions as
follows:

There exists v0 ∈ V such that B∗(v0) < 1, and

R(u, v) > B∗(v), (R(u, v))′ ∨ B∗(v) � α

hold for any u ∈ U, v ∈ V.

Note that R(u, v) > B∗(v) implies 1 > B∗(v), therefore
this existence condition is equivalent to

R(u, v) > B∗(v), (R(u, v))′ ∨ B∗(v) � α

which is the same as Corollary 14(iii). Thus it is a spe-
cial case of Corollary 13. Then, the α-InfT-quasi triple I

restriction solution is also shown by Theorem 3 in [27],
which coincides with Corollary 19. Moreover, they also
achieved the necessary and sufficient condition that the
α-InfT-quasi triple I restriction solution was the α-MinT-
triple I restriction solution. It is similar to Remark 2 that
this is a special case of Corollary 20 in this paper. Further-
more, all of these results are the special cases of Proposi-
tion 5(iii), Theorem 16 and Theorem 17 in this paper.

Remark 10 In [36], Sun et al. researched the α-triple
I restriction method for FMT where only aimed at IL. By
Theorem 2 in [36], Sun et al. obtained the existence con-
dition of α-FMT-triple I restriction solutions, and the α-
MinT-triple I restriction solution. It is easy to know that
these conclusions coincide with the related ones of Corol-
lary 14(i) and Corollary 16 in this paper. Taking into ac-
count that Corollary 14(i) can be deduced by Corollary 13,
moreover it is evident that Theorem 2 in [36] is a special
case of Proposition 5 and Theorem 13 in this paper.

Remark 11 By Theorem 2.2.1 in [28], Peng obtained
the result that if → satisfies (C1), (C2), (C3), and (C4), and

R(u, v) → (1 → B∗(v)) < α (34)

held for any u ∈ U, v ∈ V , then the α-MinT-triple I re-
striction solution uniquely exists. It should be pointed out
that when R(u, v) → (1 → B∗(v)) = α, Theorem 2.2.1
in [28] also holds (from Corollary 13 and Corollary 15 in
this paper), which means that (34) can be transformed into
(31). Furthermore, it is easy to know that Theorem 2.2.1
in [28] is a special case of Corollary 15 in this paper.

Remark 12 By Theorems 2.2.3 and 2.2.4 in [28],
Peng achieved the α-MinT-triple I restriction solutions
where respectively employed IR, IL. These results coin-
cide with Corollaries 16 and 18 in this paper (where (34)
can be transformed into (31), and notice that (31) holds).
For example, Theorem 2.2.4 in [28] drew the conclusion
that the α-MinT-triple I restriction solution (where→ takes
IL) is

A∗(u) = sup
v∈Eu

{α′ +B∗(v)+(R(u, v))′}, u ∈ U (35)

where Eu = {v ∈ V |B∗(v) < R(u, v)}. Since (31) holds,
it follows from Corollary 14(i) that 1−R(u, v)+B∗(v) �
α (u ∈ U, v ∈ V ), which implies

B∗(v) � R(u, v) + α − 1 < R(u, v).

So (35) is equivalent to

A∗(u) = sup
v∈V

{α′ + B∗(v) + (R(u, v))′} =
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2 − α + sup
v∈V

{B∗(v) − R(u, v)}, u ∈ U.

Thus Theorem 2.2.4 in [28] coincides with Corollary 16 in
this paper.

Remark 13 In [28], Peng pointed out the fact that the
α-MinT-triple I restriction solution for IGo may not exist,
and he did not give corresponding results w.r.t. the α-InfT-
quasi triple I restriction solution and the α-MinT-triple I
restriction solution. However, by Corollary 21 in this pa-
per, we obtain the expression of the α-InfT-quasi triple I
restriction solution, and the condition that the α-InfT-quasi
triple I restriction solution is the α-MinT-triple I restriction
solution (where → takes IGo). Therefore we provide the
further results related to IGo.

Example 3 Let U = V = [0, 1], A(u) = (1 − u)/2,
B(v) = (1 + v)/4, B∗(v) = (1 − v)/2 and α = 3/4,
where u ∈ U, v ∈ V . Suppose that →2= IR, →1= IL

in the α-universal triple I restriction method for FMT. We
now calculate the α-MinT-solution:

R1(u, v) = IL(A(u), B(v)) =

⎧⎨
⎩

2u + v + 3
4

, 2u + v < 1

1, 2u + v � 1
.

For (20), we have

(R1(u, v))′ + R1(u, v) × B∗(v) =

⎧⎪⎨
⎪⎩

1− 2u+v+3
4

+
2u+v+3

4
× 1−v

2
, 2u+v<1

0 + 1 × 1 − v

2
, 2u+v�1

=

⎧⎪⎪⎨
⎪⎪⎩

5 − 2u − v

8
− v(2u + v + 3)

8
, 2u + v < 1

1 − v

2
, 2u + v � 1

� α.

Thus (20) holds (from Proposition 5(vi)). Then we get
from Theorem 15 that the α-MinT-solution is

A∗(u) = sup
v∈V

{α′/[R1(u, v) × (B∗(v))′]} =

sup
v∈[0,1]

{α′/[R1(u, v) × (B∗(v))′] | 2u + v < 1}∨

sup
v∈[0,1]

{α′/[R1(u, v) × (B∗(v))′] | 2u + v � 1} =

sup
v∈[0,1]

{2/[(2u + v + 3) × (1 + v)] | 2u + v < 1}∨

sup
v∈[0,1]

{1/(2 + 2v) | 2u + v � 1}, u ∈ U.

(i) Suppose 1 � u � 1/2, then {v ∈ [0, 1] | 2u + v <

1} = ∅, and 0 ∈ {v ∈ [0, 1] | 2u + v � 1}. Taking into

account that
1

1 + v
is decreasing w.r.t. v, we get

A∗(u) = (sup ∅) ∨ 1
2

= 0 ∨ 1
2

=
1
2
.

(ii) Suppose 1/2 > u � 0, then 0 ∈ {v ∈ [0, 1] | 2u +

v < 1}. Noting that
1

1 + v
,

1
2u + v + 3

are decreasing

w.r.t. v, we have

A∗(u) =
2

2u + 3
∨ 1

2 + 2(1 − 2u)
=

2
2u + 3

∨ 1
4 − 4u

=
2

2u + 3

where
2

2u + 3
>

1
4 − 4u

since u <
1
2
.

Together we obtain

A∗(u) =
{

2/(2u + 3), 1/2 > u � 0
1/2, 1 � u � 1/2

.

Example 4 Let U, V, A, B, B∗, and α be the same as
in Example 3. Suppose that →= IR in the α-triple I re-
striction method for FMT. We now calculate the α-MinT-
triple I restriction solution:

R(u, v) = IR(A(u), B(v)) =

1 − 1 − u

2
+

1 − u

2
× 1 + v

4
=

5 + 3u + v − uv

8
.

For (31), we have

(R(u, v))′ + R(u, v) × B∗(v) = 1 − 5 + 3u + v − uv

8
+

5 + 3u + v − uv

8
× 1 − v

2
=

11 − 3u − v + uv

16
−

v(5 + 3u + v − uv)
16

� 12
16

= α.

So (31) holds (from Corollary 14(vi)). Thus it follows from
Corollary 18 that the α-MinT-triple I restriction solution is

A∗(u) = sup
v∈V

{α′/[R(u, v) × (B∗(v))′]} =

sup
v∈[0,1]

{4/[(5 + 3u + v − uv) × (1 + v)]}, u ∈ U.

Noting that
1

5 + 3u + v − uv
,

1
1 + v

are decreasing w.r.t.

v(v ∈ V ), we have

A∗(u) =
4

(5 + 3u) × 1
=

4
5 + 3u

.

Remark 14 Aiming at the same U, V, A, B, B∗, and
α, the α-MinT-solution in Example 3 is smaller than the
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α-MinT-triple I restriction solution in Example 4 (since

1 > u � 1
2

implies
1
2

<
4

5 + 3u
, and

1
2

> u � 0 im-

plies
2

2u + 3
<

4
5 + 3u

, and u = 1 implies
1
2

=
4

5 + 3u
).

From the α-universal triple I restriction principle for FMT
(which seeks out the smallest A∗ satisfying (6)), the α-
universal triple I restriction method makes the reason-
ing closer, thus it is superior to the α-triple I restriction
method.

4. Conclusions

The α-universal triple I restriction method is put forward
and investigated. The main contributions and conclusions
are as follows.

(i) New α-universal triple I restriction principles for
FMP and FMT are brought forward, which improve the
previous α-triple I restriction principles.

(ii) The α-universal triple I restriction method for
FMP is investigated. The existence condition of α-FMP-
solutions, and the condition that the α-SupP-quasi solution
is the α-MaxP-solution, are obtained from the properties
of the implication →2.

Then, aiming at the case that →2 respectively employs
seven familiar implications, we achieve the corresponding
expression of the α-SupP-quasi solution (or the α-MaxP-
solution), as well as the necessary and sufficient condition
that the α-SupP-quasi solution is the α-MaxP-solution.

(iii) The α-universal triple I restriction method for
FMT is researched. The existence condition of α-FMT-
solutions, and the condition that the α-InfT-quasi solution
is the α-MinT-solution, are given from the properties of the
implication →2.

Following that, for the case that →2 respectively takes
seven implications, we obtain the corresponding expres-
sion of the α-InfT-quasi solution (or the α-MinT-solution),
together with the necessary and sufficient condition (or the
sufficient condition) that the α-InfT-quasi solution is the
α-MinT-solution.

(iv) As a special case of the α-universal triple I restric-
tion method, the corresponding results of the α-triple I re-
striction method are obtained and improved.

(v) By four examples, it is found that the α-universal
triple I restriction method makes the reasoning be closer
than the α-triple I restriction method, implying that the
former is more reasonable (in the light of the α-universal
triple I restriction principles).

In the current triple I restriction methods, there is an-
other important form to be investigated (besides (4)), i.e.,

(A(u) → B(v)) → (A∗(u) → B∗(v)) < α

where α ∈ (0, 1] (see [27,36,37]). Similar to Section 1, it

is natural to research the following formula:

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)) < α,

thus we get a new α-universal triple I restriction method,
which will be discussed in another paper.

Moreover, we shall investigate how to construct and an-
alyze the reasonable fuzzy systems [38,39] based on the
proposed α-universal triple I restriction methods. What
is more, we shall apply the proposed methods and related
fuzzy systems to the fields of fuzzy control, complex sys-
tem modeling and simulation, natural language processing
and so on.
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