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DOUBLE FUZZY IMPLICATIONS-BASED RESTRICTION

INFERENCE ALGORITHM

Y. M. TANG, X. Z. YANG, X. P. LIU AND J. YANG

Abstract. The main condition of the differently implicational inference algo-

rithm is reconsidered from a contrary direction, which motivates a new fuzzy

inference strategy, called the double fuzzy implications-based restriction infer-
ence algorithm. New restriction inference principle is proposed, which improves

the principle of the full implication restriction inference algorithm. Further-

more, focusing on the new algorithm, we analyze the basic property of its
solution, and then obtain its optimal solutions aiming at the problems of

fuzzy modus ponens (FMP) as well as fuzzy modus tollens (FMT). Lastly,

comparing with the full implication restriction inference algorithm, the new
algorithm can make the inference closer, and generate more, better specific

inference algorithms.

1. Introduction

Two basic forms of fuzzy inference (see [2,16,22]) are fuzzy modus ponens (FMP)
and fuzzy modus tollens (FMT) as following:

FMP: for a given rule A→ B and input A∗, to compute B∗ (output), (1)

FMT: for a given rule A→ B and input B∗, to compute A∗ (output), (2)

where A,A∗ ∈ F (U), B,B∗ ∈ F (V ), in which F (U), F (V ) denote the set of all
fuzzy subsets of universe U, V , respectively. To deal with these forms, the classical
method is the compositional rule of inference (CRI) algorithm, proposed by Zadeh
in 1973 (see [7,9,10,32]). In order to improve the CRI algorithm, Wang [29] put
forward the full implication inference algorithm, which is broadly investigated by
lots of scholars, see e.g. [13,15,33]. It is found that the full implication inference
algorithm possesses many advantages, which are embodied as strict logic basis,
reversibility and so on (see [14,18,20,24]).

The basic idea of the full implication inference algorithm is to seek out the
smallest B∗ ∈ F (V ) (or the largest A∗ ∈ F (U)) such that

(A(u)→ B(v))→ (A∗(u)→ B∗(v)) (3)

takes its maximum for any u ∈ U, v ∈ V (where → is a fuzzy implication on [0, 1],
see Definition 2.2), in which (3) is called the basic formula of the full implication
inference algorithm. Moreover it is generalized to the α-full implication inference
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algorithm, whose solution is the smallest B∗ ∈ F (V ) (or the largest A∗ ∈ F (U))
making

(A(u)→ B(v))→ (A∗(u)→ B∗(v)) ≥ α (4)

hold for any u ∈ U, v ∈ V (where α ∈ (0, 1]). Here (4) implies that the basic
formula (3) should be greater than or equal to α, and (4) is obviously equivalent to

(A(u)→ B(v))→ (A∗(u)→ B∗(v)) ∈ [α, 1]. (5)

Then, what happens if the basic formula (3) belongs to the complementary set of
[α, 1]? That is,

(A(u)→ B(v))→ (A∗(u)→ B∗(v)) ∈ [0, α). (6)

This motivates a new, interesting strategy called the full implication restriction
inference algorithm [23] (which provides necessary theoretical foundation for ob-
taining some performance measure of a new type of fuzzy controllers [21]), whose
solution is the largest B∗ ∈ F (V ) (or the smallest A∗ ∈ F (U)) making (6) hold for
any u ∈ U, v ∈ V .

On the other hand, although the full implication inference algorithm has many
acknowledged advantages mentioned above, the effect of the full implication in-
ference algorithm is imperfect (due to its inferior response ability and practicabil-
ity) from the viewpoint of some kind of fuzzy controller (see [8,11,12]). To solve
this problem, Tang and Liu generalized in [25] the full implication inference algo-
rithm to the differently implicational universal triple I method of (1, 2, 2) type
(the differently implicational inference algorithm for short), and then proposed the
α-differently implicational inference algorithm. The α-differently implicational in-
ference algorithm seeks the smallest B∗ ∈ F (V ) (or the largest A∗ ∈ F (U)) making

(A(u)→1 B(v))→2 (A∗(u)→2 B
∗(v)) ∈ [α, 1] (7)

hold for any u ∈ U, v ∈ V , where double fuzzy implications →1 and →2 can be
different (in which α ∈ (0, 1]). Moreover, it was found that the differently impli-
cational inference algorithm can obtain more usable fuzzy controllers comparing
with the CRI algorithm and full implication inference algorithm (see [25]). Later,
the reversibility of differently implicational inference algorithm was discussed for
FMT (where →2 employed IL, and →1 respectively took seven familiar fuzzy im-
plications), and obtained excellent conclusion (see [26]). In [27], the differently
implicational inference algorithm was researched for FMP (where →2 employed
IFD) and applied to pattern recognition of textual emotion polarity.

For the differently implicational inference algorithm, its main condition (7) can
be similarly reconsidered from a contrary direction, that is,

(A(u)→1 B(v))→2 (A∗(u)→2 B
∗(v)) ∈ [0, α). (8)

The fuzzy inference strategy derived from (8) is called the double fuzzy implications-
based restriction inference algorithm (DFI-restriction inference algorithm for short),
which is the research aim of this paper.
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2. Preliminaries

Definition 2.1. A function T : [0, 1]2 → [0, 1] is said to be a t-norm if T is
associative, increasing and commutative and satisfies the condition T (1, a) = a
(a ∈ [0, 1]).

Definition 2.2. [1, 5] A fuzzy implication on [0, 1] is a function I : [0, 1]2 → [0, 1]
satisfying the conditions as follows:

(C1) I is decreasing in the first variable,
(C2) I is increasing in the second variable,
(C3) I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0.

I(a, b) is also written as a→ b for any a, b ∈ [0, 1].

It is easy to find that for every fuzzy implication, I(0, a) = I(a, 1) = 1 (a ∈ [0, 1])
and obviously I(0, 1) = 1.

Definition 2.3. A function I : [0, 1]2 → [0, 1] is said to be an R-implication if
there exist a t-norm T such that

I(a, b) = sup{x ∈ [0, 1]| T (a, x) ≤ b}, a, b ∈ [0, 1]. (9)

Definition 2.4. Let T and I be two [0, 1]2 → [0, 1] functions, (T, I) is called
a residual pair or, T and I are residual to each other, if the following residual
condition holds (iff denotes “if and only if”):

T (a, b) ≤ c iff b ≤ I(a, c) (a, b, c ∈ [0, 1]). (10)

Proposition 2.5. [6] Let T be a t-norm, then the following statements are equiv-
alent:

(i) T is left-continuous;
(ii) T and I form a residual pair, where I is obtained from (9).

Lemma 2.6. [30, 31] Suppose that T is a left-continuous t-norm on [0, 1], and that
I is an R-implication derived from T , then (T, I) is a residual pair, and I satisfies
the following conditions:

(C4) a ≤ I(b, c)⇐⇒ b ≤ I(a, c),
(C5) I(a, I(b, c)) = I(b, I(a, c)),
(C6) I(T (a, b), c) = I(a, I(b, c)),
(C7) I(1, a) = a (a ∈ [0, 1]),
(C8) a ≤ b⇐⇒ I(a, b) = 1,
(C9) I(supx∈X x, a) = infx∈X I(x, a),
(C10) I(a, infx∈X x) = infx∈X I(a, x),

where a, b, c, x ∈ [0, 1] and X ⊂ [0, 1], X 6= ∅.

It is easy to get Proposition 2.7 from Theorem 3.1 in [25].

Proposition 2.7. Let I be a fuzzy implication satisfying
(C11) I(a, b) is right-continuous w.r.t. b (a ∈ [0, 1] , b ∈ [0, 1) ),
(C12) {x ∈ [0, 1]| I(a, x) = 1} 6= ∅ (a ∈ [0, 1] ),

then the function T : [0, 1]2 → [0, 1] defined by

T (a, b) = inf{x ∈ [0, 1] | b ≤ I(a, x)}, a, b ∈ [0, 1]
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is residual to I, and (9) holds.

Remark 2.8. It is easy to verify that the R-implication derived from left-continuous
t-norm also satisfies (C11) and (C12).

Definition 2.9. Let Z be any nonempty set and F (Z) the set of all fuzzy subsets
on Z, define partial order relation ≤F on F (Z) (according to pointwise order) as:
A ≤F B iff A(z0) ≤ B(z0) for any z0 ∈ Z, where A,B ∈ F (Z).

Lemma 2.10. < F (Z),≤F> is a complete lattice.

3. The DFI-restriction Inference Algorithm for FMP

For the FMP problem (1), from the viewpoint of the double fuzzy implications-
based restriction inference algorithm, we can obtain the following restriction infer-
ence principle:
DFI-restriction Inference Principle for FMP: The conclusion B∗ of FMP
problem (1) is the largest fuzzy set satisfying (8) in < F (V ),≤F>.

It is obvious that such DFI-restriction inference principle for FMP improves the
full implication restriction inference principle w.r.t. (6) for FMP in [23].

Definition 3.1. Let A,A∗ ∈ F (U), B ∈ F (V ), if B∗ (in < F (V ),≤F>) makes (8)
hold for any u ∈ U, v ∈ V , then B∗ is called a DFI-restriction inference solution of
FMP (DFI-solution of FMP for short).

Theorem 3.2. Assume that A,A∗ ∈ F (U), B ∈ F (V ), α ∈ (0, 1]. Then there
exists a B∗ ∈ F (V ) as a DFI-solution of FMP iff the following inequality holds for
any u ∈ U, v ∈ V :

(A(u)→1 B(v))→2 (A∗(u)→2 0) < α. (11)

Proof. On the one hand, if (11) holds, then we take B∗(v) ≡ 0, thus B∗ obviously
satisfies (8), and hence B∗ is a DFI-solution of FMP. On the other hand, if there
exists a B∗ ∈ F (V ) which is a DFI-solution of FMP, then B∗ satisfies (8), and
because →2 satisfies (C2) we have that A∗(u) →2 B∗(v) ≥ A∗(u) →2 0, and
α > (A(u) →1 B(v)) →2 (A∗(u) →2 B

∗(v)) ≥ (A(u) →1 B(v)) →2 (A∗(u) →2 0),
i.e. (11) holds. �

Similar to Theorem 3.2, we can prove Proposition 3.3.

Proposition 3.3. Suppose that D1 is a DFI-solution of FMP, and that D2 ≤F D1

(in which D1, D2 ∈< F (V ),≤F>). Then D2 is a DFI-solution of FMP.

Remark 3.4. Suppose that (11) holds. For a DFI-solution of FMP D∗1, every fuzzy
set D∗2 which is less than D∗1, will be a DFI-solution of FMP (see Proposition 3.3,
where D∗1 , D

∗
2 ∈< F (V ),≤F>). This means that there are many DFI-solutions of

FMP, including D∗3(v) ≡ 0 (v ∈ V ). The last D∗3 is a special solution, for which
(8) always holds no matter what major premise A→1 B and minor premise A∗ are
adopted. Therefore, when the optimal DFI-solution of FMP exists, it should be the
largest one; in other words, it should be the supremum of all solutions.
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Theorem 3.5. If →2 is a fuzzy implication satisfying (C11) and (C12), and T is
the function residual to →2, and A,A∗ ∈ F (U), B ∈ F (V ), α ∈ (0, 1], (11) holds,
then the supremum of DFI-solutions of FMP can be computed as follows:

B∗(v) = inf
u∈U

T (A∗(u), T (A(u)→1 B(v), α)), v ∈ V. (12)

Proof. Since →2 is a fuzzy implication satisfying (C11) and (C12), it follows from
Proposition 2.7 that the residual condition (10) holds.

Let G1 = {v ∈ V | B∗(v) = 0}, and G2 = {v ∈ V | B∗(v) > 0}. Suppose that
C ∈ F (V ), and that C(v) = 0 for v ∈ G1, and that C(v) < B∗(v) for v ∈ G2. We
shall show that C is a DFI-solution of FMP, that is, the following inequality holds
for any u ∈ U, v ∈ V :

(A(u)→1 B(v))→2 (A∗(u)→2 C(v)) < α. (13)

If v ∈ G1, then it follows from (11) that C(v) = 0 satisfies (13) for any u ∈ U .
If v ∈ G2, then it follows from (12) and C(v) < B∗(v) that

C(v) < T (A∗(u), T (A(u)→1 B(v), α)) (14)

holds for any u ∈ U . Suppose, on the contrary, that (13) does not hold. Then there
exist u0 ∈ U and v0 ∈ V such that

(A(u0)→1 B(v0))→2 (A∗(u0)→2 C(v0)) ≥ α

holds (obviously v0 ∈ G2). Thus it follows from the residual condition (10) that
T (A(u0) →1 B(v0), α) ≤ A∗(u0) →2 C(v0), and T (A∗(u0), T (A(u0) →1 B(v0), α)) ≤
C(v0), which contradicts (14). Thus (13) holds for any u ∈ U, v ∈ V . As a result,
C is a DFI-solution of FMP.

Next, we shall check that B∗ determined by (12) is the supremum of DFI-
solutions of FMP. Assume that D ∈ F (V ) , and that there exists v0 ∈ V such
that D(v0) > B∗(v0). We shall prove that D is not a DFI-solution of FMP. In fact,
it follows from (12) that there exists u0 ∈ U such that

D(v0) > T (A∗(u0), T (A(u0)→1 B(v0), α))

holds. We have from the residual condition (10) that T (A(u0) →1 B(v0), α) ≤
A∗(u0) →2 D(v0), and α ≤ (A(u0) →1 B(v0)) →2 (A∗(u0) →2 D(v0)). Thus, D is
not a DFI-solution of FMP.

To sum up, B∗ determined by (12) is the supremum of DFI-solutions of FMP. �

It follows from Theorem 3.5 and Remark 2.8 that we have Corollary 3.6.

Corollary 3.6. If →2 is an R-implication derived from left-continuous t-norm T ,
and A,A∗ ∈ F (U), B ∈ F (V ), α ∈ (0, 1], (11) holds, then the supremum of DFI-
solutions of FMP is as follows:

B∗(v) = inf
u∈U

T (A∗(u), T (A(u)→1 B(v), α)), v ∈ V.

Example 3.7. The following functions are fuzzy implications satisfying (C11) and
(C12), where IFD is from [4] (which is also called I0 implication, see [17,29]), and
IEP , IY a are from [25,28], and IRR is from [3] (in which a, b ∈ [0, 1], and x ′ denotes
1− x).
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IL(a, b) =

{
1, a ≤ b
a ′ + b, a > b

(Lukasiewicz implication);

IG(a, b) =

{
1, a ≤ b
b, a > b

(Gödel implication);

IGo(a, b) =

{
1, a = 0
(b/a) ∧ 1, a 6= 0

(Goguen implication);

IFD(a, b) =

{
1, a ≤ b
a ′ ∨ b, a > b

(Fodor implication);

IGR(a, b) =

{
1, a ≤ b
0, a > b

(Gaines-Rescher implication);

IY (a, b) = ba (IY (0, 0) = 1) (Yager implication);

IR(a, b) = a
′
+ a× b (Reichenbach implication);

IY a(a, b) =

{
1, a ≤ b
1− (

√
1− b−

√
1− a)2, a > b

;

IEP (a, b) =

{
1, a ≤ b
(2b− ab)/(a+ b− ab), a > b

;

IRR(a, b) =

{
1, a ≤ b
1− a+ ab, a > b

(revised Reichenbach implication).

Moreover, the functions respectively residual to IL, IG, IGo, IFD, IGR, IY , IR, IY a, IEP ,
IRR are as follows.

TL(a, b) =

{
a+ b− 1, a+ b > 1
0, a+ b ≤ 1

,

TG(a, b) = a ∧ b,
TGo(a, b) = a× b,

TFD(a, b) =

{
a ∧ b, a+ b > 1
0, a+ b ≤ 1

,

TGR(a, b) =

{
a, b > 0
0, b = 0

,

TY (a, b) =

{ a√
b, a > 0

0, a = 0
,

TR(a, b) =

{
(a+ b− 1)/a, a+ b > 1
0, a+ b ≤ 1

,

TY a(a, b) =

{
1− (g(a, b))2, g(a, b) ≤ 1
0, g(a, b) > 1

where g(a, b) =
√

1− a+
√

1− b,

TEP (a, b) = ab/[2− (a+ b− ab)],

TRR(a, b) =

{
[(a+ b− 1)/a] ∧ a, a+ b > 1
0, a+ b ≤ 1

.

Here TEP is the Einstein product; and TY a is the t-norm of Yager (where ω takes
0.5), which is defined as
TY a−ω(a, b) = 1−min[1, ((1− a)ω + (1− b)ω)1/ω], in which ω ∈ (0,∞).

It is easy to know that TL, TG, TGo, TFD, TEP , TY a are left-continuous t-norm, thus
IL, IG, IGo, IFD, Iy−0.5, IEP are R-implications derived from left-continuous t-norm.
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Proposition 3.8. Suppose that →2∈ {IL, IG, IGo, IFD, IGR, IY , IR, IY a, IEP , IRR}
in (8), and that (11) holds, then the supremum of DFI-solutions of FMP is as
follows, respectively (v ∈ V ):

(i) If →2 takes IL, then B∗(v) = infu∈U{A∗(u) + (A(u)→1 B(v)) + α− 2};
(ii) If →2 takes IG, then B∗(v) = infu∈U{A∗(u) ∧ (A(u)→1 B(v))} ∧ α;
(iii) If →2 takes IGo, then B∗(v) = infu∈U{A∗(u)× (A(u)→1 B(v))× α};
(iv) If →2 takes IFD, then B∗(v) = infu∈U{A∗(u) ∧ (A(u)→1 B(v))} ∧ α;
(v) If →2 takes IGR, then B∗(v) = infu∈U{A∗(u)};
(vi) If →2 takes IY , then B∗(v) = infu∈U{ A∗(u)×(A(u)→1B(v))

√
α};

(vii) If →2 takes IR, then B∗(v) = infu∈U{[A∗(u) + ϕR(u, v)− 1]/A∗(u)} where
ϕR(u, v) = [(A(u)→1 B(v)) + α− 1]/(A(u)→1 B(v));

(viii) If →2 takes IY a, then B∗(v) = infu∈U{1− (
√

1− α+
√

1−A∗(u) +√
1− (A(u)→1 B(v)) )2};
(ix) If →2 takes IEP , then B∗(v) = infu∈U{A∗(u) × ϕEP (u, v)/[2 − A∗(u) −

ϕEP (u, v) + A∗(u) × ϕEP (u, v)]} where ϕEP (u, v) = α × (A(u) →1 B(v))/[2 −
(A(u)→1 B(v))− α+ α× (A(u)→1 B(v))];

(x) If →2 takes IRR, then B∗(v) = infu∈U{[(A∗(u) + ϕRR(u, v) − 1)/A∗(u)] ∧
A∗(u)} where ϕRR(u, v) = [((A(u)→1 B(v)) +α−1)/(A(u)→1 B(v))]∧ (A(u)→1

B(v)).

Proof. If →2∈ {IL, IG, IGo, IFD, IGR, IY , IR, IY a, IEP , IRR}, then →2 is a fuzzy
implication satisfying (C11) and (C12), thus it follows from Theorem 3.5 that
the supremum of DFI-solutions of FMP is B∗(v) = infu∈U T (A∗(u), T (A(u) →1

B(v), α)), v ∈ V (where T is the function residual to →2). Then, we need to get
the specific expression of B∗. We only prove the cases of IL, IRR as examples, the
remainders can be proved similarly.

(i) Suppose that→2 takes IL. It follows from Example 3.7 that TL is the function
residual to IL. By (11), we have that A∗(u) > 0, A(u) →1 B(v) > 1− A∗(u), and
1 − (A(u) →1 B(v)) + 1 − A∗(u) < α hold for any u ∈ U, v ∈ V . We further get
that (A(u) →1 B(v)) + α > 1 and A∗(u) + (A(u) →1 B(v)) + α − 1 > 1 hold for
any u ∈ U, v ∈ V . Thus,

B∗(v) = inf
u∈U

TL(A∗(u), TL(A(u)→1 B(v), α))

= inf
u∈U

TL(A∗(u), ((A(u)→1 B(v)) + α− 1))

= inf
u∈U
{A∗(u) + (A(u)→1 B(v)) + α− 2}, v ∈ V.

(xi) Suppose that →2 takes IRR. We get from Example 3.7 that TRR is the
function residual to IRR. It follows from (11) that A∗(u) > 0, A(u) →1 B(v) >
1− A∗(u), and 1− (A(u)→1 B(v)) + (A(u)→1 B(v))× (1− A∗(u)) < α hold for
any u ∈ U, v ∈ V . We further have

(A(u)→1 B(v)) +A∗(u) > 1,

(A(u)→1 B(v)) + α > 1,

1−A∗(u)× (A(u)→1 B(v)) < α.
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Then A∗(u)+{[((A(u)→1 B(v))+α−1)/(A(u)→1 B(v))]∧ (A(u)→1 B(v))} > 1
holds for any u ∈ U, v ∈ V . Summarizing above, we obtain that

B∗(v) = inf
u∈U

TRR(A∗(u), TRR(A(u)→1 B(v), α))

= inf
u∈U

TRR(A∗(u), ϕRR(u, v))

= inf
u∈U
{[(A∗(u) + ϕRR(u, v)− 1)/A∗(u)] ∧A∗(u)}, v ∈ V

where ϕRR(u, v) , [((A(u)→1 B(v)) +α− 1)/(A(u)→1 B(v))]∧ (A(u)→1 B(v)).
�

Theorem 3.9. If→2∈ {IL, IG, IGo, IFD, IGR, IY , IR, IY a, IEP , IRR}, A,A∗ ∈ F (U),
B ∈ F (V ), α ∈ (0, 1], (11) holds, then the condition, which the supremum of DFI-
solutions of FMP is the maximum, is as follows, respectively (for any u ∈ U, v ∈ V ):

(i) Let→2 take IL, A∗(u)+(A(u)→1 B(v)) > infu∈U{A∗(u)+(A(u)→1 B(v))}
holds;

(ii) Let →2 take IG, (A∗(u)∧ (A(u)→1 B(v)))∧ α > infu∈U{A∗(u)∧ (A(u)→1

B(v))} holds;
(iii) Let →2 take IGo, A∗(u) × (A(u) →1 B(v)) > infu∈U{A∗(u) × (A(u) →1

B(v))} holds;
(iv) Let→2 take IFD, (A∗(u)∧(A(u)→1 B(v)))∧α > infu∈U{A∗(u)∧(A(u)→1

B(v))} holds;
(v) Let →2 take IGR, A∗(u) > infu∈U{A∗(u)} holds;
(vi) Let →2 take IY , A∗(u)×(A(u)→1B(v))

√
α > infu∈U{ A∗(u)×(A(u)→1B(v))

√
α} holds;

(vii) Let →2 take IR, [A∗(u)+ϕR(u, v)−1]/A∗(u) > infu∈U{[A∗(u)+ϕR(u, v)−
1]/A∗(u)} holds;

(viii) Let →2 take IY a, 1− (
√

1−A∗(u) +
√

1− (A(u)→1 B(v)) +
√

1− α )2 >

infu∈U{1− (
√

1−A∗(u) +
√

1− (A(u)→1 B(v)) +
√

1− α )2} holds;
(ix) Let →2 take IEP , A∗(u) × ϕEP (u, v)/[2 − A∗(u) − ϕEP (u, v) + A∗(u) ×

ϕEP (u, v)] > infu∈U{A∗(u)×ϕEP (u, v)/[2−A∗(u)−ϕEP (u, v)+A∗(u)×ϕEP (u, v)]}
holds;

(x) Let→2 take IRR, [(A∗(u)+ϕRR(u, v)−1)/A∗(u)]∧A∗(u) > infu∈U{[(A∗(u)+
ϕRR(u, v)− 1)/A∗(u)] ∧A∗(u)} holds.

Proof. Note that if the supremum B∗ of DFI-solutions of FMP is a DFI-solution
of FMP, then B∗ is the maximum of DFI-solutions of FMP. Thus it is enough to
prove that B∗ is a DFI-solution of FMP (i.e., B∗ should make (8) hold for any
u ∈ U, v ∈ V ). We still prove the cases of IL, IRR as examples.

(i) Let →2 take IL. It follows from Proposition 3.8 that the supremum of DFI-
solutions of FMP is B∗(v) = infu∈U{A∗(u) + (A(u) →1 B(v)) + α − 2}. By the
condition given in (i), we obtain

B∗(v) = inf
u∈U
{A∗(u) + (A(u)→1 B(v)) + α− 2}

= α− 2 + inf
u∈U
{A∗(u) + (A(u)→1 B(v))}

< α− 2 +A∗(u) + (A(u)→1 B(v)).
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Note that 0 ≥ α − 2 + (A(u) →1 B(v)), then A∗(u) ≥ A∗(u) + α − 2 + (A(u) →1

B(v)) > B∗(v) holds. Thus

A(u)→1 B(v) ≥ α− 1 + (A(u)→1 B(v))

= (1−A∗(u)) + [α− 2 +A∗(u) + (A(u)→1 B(v))]

> 1−A∗(u) +B∗(v).

To sum up, we get (u ∈ U, v ∈ V )

(A(u)→1 B(v))→2 (A∗(u)→2 B
∗(v))

= (A(u)→1 B(v))→2 [1−A∗(u) +B∗(v)]

= 1− (A(u)→1 B(v)) + 1−A∗(u) +B∗(v)

< 1− (A(u)→1 B(v)) + 1−A∗(u) + α− 2 +A∗(u) + (A(u)→1 B(v))

= α.

Thus B∗ makes (8) hold for any u ∈ U, v ∈ V , and hence it is a DFI-solution of
FMP.

(x) Let →2 take IRR. It follows from Proposition 3.8 that the supremum of
DFI-solutions of FMP is as follows:

B∗(v) = inf
u∈U
{[(A∗(u) + ϕRR(u, v)− 1)/A∗(u)] ∧A∗(u)}.

For convenience, denote R1(u, v) = A(u) →1 B(v). It follows from (11) that
A∗(u) > 0, R1(u, v) > 1 − A∗(u), and 1 − R1(u, v) × A∗(u) < α hold for any
u ∈ U, v ∈ V . By the condition given in (x), we obtain

B∗(v) < [(A∗(u) + ϕRR(u, v)− 1)/A∗(u)] ∧A∗(u)

=
A∗(u) + [((R1(u, v) + α− 1)/R1(u, v)) ∧R1(u, v)]− 1

A∗(u)
∧A∗(u).

Further, we get A∗(u) > B∗(v), and

B∗(v) <
A∗(u) + [(R1(u, v) + α− 1)/R1(u, v)]− 1

A∗(u)

=
R1(u, v)×A∗(u) + α− 1

R1(u, v)×A∗(u)
,

B∗(v) < (A∗(u) +R1(u, v)− 1)/A∗(u),

i.e., R1(u, v) > 1−A∗(u) +A∗(u)×B∗(v).

To sum up, we achieve (u ∈ U, v ∈ V )

(A(u)→1 B(v))→2 (A∗(u)→2 B
∗(v))

= R1(u, v)→2 [1−A∗(u) +A∗(u)B∗(v)]

= 1−R1(u, v) +R1(u, v)× [1−A∗(u) +A∗(u)B∗(v)]

= 1−R1(u, v)×A∗(u) +R1(u, v)×A∗(u)×B∗(v)

< 1−R1(u, v)×A∗(u) +R1(u, v)×A∗(u)×
[(R1(u, v)×A∗(u) + α− 1)/(R1(u, v)×A∗(u))]

= 1−R1(u, v)×A∗(u) +R1(u, v)×A∗(u) + α− 1

= α.

Therefore B∗ makes (8) hold for any u ∈ U, v ∈ V , and hence it is a DFI-solution
of FMP. �
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→2 The supremum B∗ The condition which B∗ is the maximum

IL
infu∈U{A∗(u)+ A∗(u) + (A(u)→1 B(v)) >

(A(u)→1 B(v)) + α− 2} infu∈U{A∗(u) + (A(u)→1 B(v))}

IG
infu∈U{A∗(u)∧ (A∗(u) ∧ (A(u)→1 B(v))) ∧ α >
(A(u)→1 B(v))} ∧ α infu∈U{A∗(u) ∧ (A(u)→1 B(v))}

IGo
infu∈U{A∗(u)× A∗(u)× (A(u)→1 B(v)) >

(A(u)→1 B(v))× α} infu∈U{A∗(u)× (A(u)→1 B(v))}

IFD
infu∈U{A∗(u)∧ (A∗(u) ∧ (A(u)→1 B(v))) ∧ α >
(A(u)→1 B(v))} ∧ α infu∈U{A∗(u) ∧ (A(u)→1 B(v))}

IGR infu∈U{A∗(u)} A∗(u) > B∗

IY infu∈U{ A∗(u)×(A(u)→1B(v))
√
α} A∗(u)×(A(u)→1B(v))

√
α > B∗

IR infu∈U{[A∗(u) + ϕR(u, v) [A∗(u) + ϕR(u, v)− 1]/A∗(u)

−1]/A∗(u)} > B∗

IY a

infu∈U{1− (
√

1−A∗(u)+ 1− (
√

1−A∗(u)+√
1− (A(u)→1 B(v))

√
1− (A(u)→1 B(v)) +

√
1− α )2

+
√

1− α )2} > B∗

IEP

infu∈U{A∗(u)× ϕEP (u, v)/[2− A∗(u)× ϕEP (u, v)/[2−A∗(u)−
A∗(u)− ϕEP (u, v)+ ϕEP (u, v) +A∗(u)× ϕEP (u, v)]

A∗(u)× ϕEP (u, v)]} > B∗

IRR
infu∈U{[(A∗(u) + ϕRR(u, v) [(A∗(u) + ϕRR(u, v)− 1)/A∗(u)]

−1)/A∗(u)] ∧A∗(u)} ∧A∗(u) > B∗

Table 1. Some Conclusions of the DFI-restriction Inference

Algorithm for FMP

In the following Table 1 we show some conclusions of the DFI-restriction inference
algorithm for FMP from Proposition 3.8 and Theorem 3.9.

Example 3.10. Let U = V = [0, 1], A(u) = (2 + u)/4, B(v) = (1 + 2v)/4,
A∗(u) = (2 − u)/2, α = 1/2, in which u ∈ U, v ∈ V . Assume that →2= IGo,
→1= IL in the DFI-restriction inference algorithm for FMP. We now compute the
supremum of DFI-solutions of FMP.

A(u)→1 B(v) = IL(A(u), B(v)) =

{
1− 2+u

4
+ 1+2v

4
, if 2+u

4
> 1+2v

4

1, if 2+u
4
≤ 1+2v

4

=

{ 3−u+2v
4

, if 1 + u > 2v

1, if 1 + u ≤ 2v
.

Here (11) evidently holds. Then it follows from Proposition 3.8 (iii) that the
supremum of DFI-solutions of FMP is as follows (v ∈ V ):

B∗(v) = inf
u∈U
{A∗(u)× (A(u)→1 B(v))× α}

= inf
u∈[0,1]

{A∗(u)× (A(u)→1 B(v))× α | 1 + u > 2v}

∧ inf
u∈[0,1]

{A∗(u)× (A(u)→1 B(v))× α | 1 + u ≤ 2v}

= inf
u∈[0,1]

{2− u
4
× 3− u+ 2v

4

∣∣∣ 1 + u > 2v
}
∧ inf

u∈[0,1]

{2− u
4

∣∣∣ 1 + u ≤ 2v
}
.
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(i) Suppose v = 1, then {u ∈ [0, 1] | 1+u > 2v} = ∅, and 1 ∈ {u ∈ [0, 1] | 1+u ≤
2v}. Note that 2−u

4 is decreasing w.r.t. u, thus we obtain B∗(v) = (inf ∅) ∧ 1
4 =

1 ∧ 1
4 = 1

4 = 1+v
8 .

(ii) Suppose 1 > v ≥ 1/2, then 1 ∈ {u ∈ [0, 1] | 1 + u > 2v}. Since 2−u
4 , 3−u+2v

4

are decreasing w.r.t. u, we get B∗(v) = 2+2v
16 ∧

2−(2v−1)
4 = 1+v

8 ∧
3−2v

4 = 1+v
8 , where

1+v
8 < 3−2v

4 since 1 > v ≥ 1/2.

(iii) Suppose 0 ≤ v < 1/2, then 1 ∈ {u ∈ [0, 1] | 1 + u > 2v}, and {u ∈
[0, 1] | 1 + u ≤ 2v} = ∅, thus we have B∗(v) = 1+v

8 ∧ (inf ∅) = 1+v
8 . Together we

achieve B∗(v) = 1+v
8 , v ∈ V.

Example 3.11. Let U, V,A,B,A∗, α be the same as in Example 3.10. Assume
that→2= IGo, →1= IGo in the DFI-restriction inference algorithm for FMP, which
degenerates into the full implication restriction inference algorithm for FMP (taking
IGo). We now compute the supremum of DFI-solutions of FMP.

A(u)→1 B(v) = IGo(A(u), B(v)) =

{ 1+2v
2+u

, if 2+u
4

> 1+2v
4

1, if 2+u
4
≤ 1+2v

4

=

{ 1+2v
2+u

, if 1 + u > 2v

1, if 1 + u ≤ 2v
.

Here (11) obviously holds. Then we get from Proposition 3.8 (iii) that the supre-
mum of DFI-solutions of FMP is as follows (v ∈ V ):

B∗(v) = inf
u∈U
{A∗(u)× (A(u)→1 B(v))× α}

= inf
u∈[0,1]

{A∗(u)× (A(u)→1 B(v))× α | 1 + u > 2v}

∧ inf
u∈[0,1]

{A∗(u)× (A(u)→1 B(v))× α | 1 + u ≤ 2v}

= inf
u∈[0,1]

{2− u
4
×

1 + 2v

2 + u

∣∣∣ 1 + u > 2v
}
∧ inf

u∈[0,1]

{2− u
4

∣∣∣ 1 + u ≤ 2v
}

= inf
u∈[0,1]

{ (2− u)(1 + 2v)

4(2 + u)

∣∣∣ 1 + u > 2v
}
∧ inf

u∈[0,1]

{2− u
4

∣∣∣ 1 + u ≤ 2v
}
.

(i) Suppose v = 1, then {u ∈ [0, 1] | 1+u > 2v} = ∅, and 1 ∈ {u ∈ [0, 1] | 1+u ≤
2v}. Since 2−u

4 is decreasing w.r.t. u, we have

B∗(v) = (inf ∅) ∧ 1

4
= 1 ∧ 1

4
=

1

4
=

1 + 2v

12
.

(ii) Suppose 1 > v ≥ 1/2, then 1 ∈ {u ∈ [0, 1] | 1 + u > 2v}. Noting that 2−u
4 ,

(2−u)(1+2v)
4(2+u) are decreasing w.r.t. u, we get

B∗(v) =
1 + 2v

12
∧ 2− (2v − 1)

4
=

1 + 2v

12
∧ 3− 2v

4
=

1 + 2v

12
,

where 1+2v
12 < 3−2v

4 since 1 > v ≥ 1/2.

(iii) Suppose 0 ≤ v < 1/2, then 1 ∈ {u ∈ [0, 1] | 1 + u > 2v}, and {u ∈
[0, 1] | 1 + u ≤ 2v} = ∅, thus we have

B∗(v) =
1 + 2v

12
∧ (inf ∅) =

1 + 2v

12
∧ 1 =

1 + 2v

12
.
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DFI-restriction inference Full implication restriction

algorithm for FMP inference algorithm for FMP

Specific ones 100 kinds 10 kinds

Actual specific ones 81 kinds 9 kinds

Table 2. Specific Fuzzy Inference Algorithms for FMP

Together we obtain B∗(v) = 1+2v
12 , v ∈ V.

Remark 3.12. For the same U, V,A,B,A∗, α in Example 3.10 and Example 3.11,
because

0 ≤ v < 1 ⇒ 1 + v

8
>

1 + 2v

12
,

v = 1 ⇒ 1 + v

8
=

1 + 2v

12
,

the supremum of DFI-solutions of FMP (from the DFI-restriction inference algo-
rithm) in Example 3.10 is larger than the one (from the full implication restric-
tion inference algorithm) in Example 3.11. From the viewpoint of DFI-restriction
inference principle for FMP (which seeks the largest B∗ satisfying (8)), the DFI-
restriction inference algorithm for FMP in Examples 3.10 lets the inference closer,
then it is more reasonable than the full implication restriction inference algorithm
for FMP in Examples 3.11.

Remark 3.13. For the set of fuzzy implications {IL, IG, IGo, IFD, IGR, IY , IR, IY a,
IEP , IRR}, it follows from the DFI-restriction inference algorithm that we can get

10 ∗ 10 = 100

kinds of specific fuzzy inference algorithms for FMP, where →2,→1 respectively
employ these 10 fuzzy implications. Furthermore, there are

8 ∗ 10 + 1 = 81

kinds of actual specific algorithms for FMP (derived from the DFI-restriction infer-
ence algorithm), because the expression is independent of→1 for the case→2= IGR,
and the expressions are the same for the cases→2= IG and→2= IFD (according to
Table 1). But, from the full implication restriction inference algorithm, it is easy to
find that there are only 10 kinds of specific algorithms for FMP (including 9 kinds
of actual specific algorithms for FMP), which is shown as Table 2. As a result, the
DFI-restriction inference algorithm can provide more and better specific algorithms
for FMP (than the full implication restriction inference algorithm), so it is better
than the full implication restriction inference algorithm.

4. The DFI-restriction Inference Algorithm for FMT

For the FMT problem (2), aiming at the double fuzzy implications-based re-
striction inference algorithm, we can get the following restriction inference principle
(which similarly improves the full implication restriction inference principle w.r.t.
(6) for FMT in [23]):
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DFI-restriction Inference Principle for FMT: The conclusion A∗ of FMT
problem (2) is the smallest fuzzy set satisfying (8) in < F (U),≤F>.

Definition 4.1. Let A ∈ F (U), B,B∗ ∈ F (V ), if A∗ (in < F (U),≤F>) makes
(8) hold for any u ∈ U and v ∈ V , then A∗ is called a DFI-restriction inference
solution of FMT (DFI-solution of FMT for short).

Similar to Theorem 3.2 and Proposition 3.3, we can get Theorem 4.2 and Propo-
sition 4.3.

Theorem 4.2. Assume that A ∈ F (U), B,B∗ ∈ F (V ), α ∈ (0, 1]. Then there
exists an A∗ ∈ F (U) as a DFI-solution of FMT iff the following inequality holds
for any u ∈ U, v ∈ V :

(A(u)→1 B(v))→2 (1→2 B
∗(v)) < α. (15)

Proposition 4.3. Suppose that C1 is a DFI-solution of FMT, and that C1 ≤F C2

(in which C1, C2 ∈< F (U),≤F>). Then C2 is a DFI-solution of FMT.

Remark 4.4. Suppose that (15) holds. For a DFI-solution of FMT C∗1 , every fuzzy
set C∗2 which is larger than C∗1 , will be a DFI-solution of FMT (see Proposition 4.3,
where C∗1 , C

∗
2 ∈< F (U),≤F>). This implies that there are many DFI-solutions of

FMT, including C∗3 (u) ≡ 1 (u ∈ U). The last C∗3 is a special solution, since (8)
always holds no matter what A →1 B and B∗ are adopted. As a result, when the
optimal DFI-solution of FMT exists, it should be the smallest one; in other words,
it should be the infimum of all solutions.

Example 4.5. From Theorem 4.2, we know that if→2∈ {IL, IG, IGo, IFD, IGR, IY ,
IR, IY a, IEP , IRR}, then there exists an A∗ ∈ F (U) which is a DFI-solution of FMT
iff (15) holds for any u ∈ U, v ∈ V .

Theorem 4.6. If →2 is a fuzzy implication satisfying (C4), (C11) and (C12), and
T is the function residual to →2, and A ∈ F (U), B,B∗ ∈ F (V ), α ∈ (0, 1], (15)
holds, then the infimum of DFI-solutions of FMT can be computed as follows:

A∗(u) = sup
v∈V
{T (A(u)→1 B(v), α)→2 B

∗(v)}, u ∈ U. (16)

Proof. Since the fuzzy implication →2 satisfies (C11) and (C12), it follows from
Proposition 2.7 that the residual condition (10) holds.

Let H1 = {u ∈ U | A∗(u) = 1} and H2 = {u ∈ U | A∗(u) < 1}. Assume that
C ∈ F (U), and that C(u) = 1 for u ∈ H1, and that C(u) > A∗(u) for u ∈ H2. We
shall show that C is a DFI-solution of FMT, that is, the following inequality holds
for any u ∈ U, v ∈ V :

(A(u)→1 B(v))→2 (C(u)→2 B
∗(v)) < α. (17)

If u ∈ H1, then it follows from (15) that C(u) = 1 satisfies (17) for any v ∈ V .
If u ∈ H2, then it follows from (16) and C(u) > A∗(u) that

C(u) > T (A(u)→1 B(v), α)→2 B
∗(v) (18)
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holds for any v ∈ V . Suppose, on the contrary, that (17) does not hold. Then there
exist u0 ∈ U and v0 ∈ V such that (A(u0) →1 B(v0)) →2 (C(u0) →2 B

∗(v0)) ≥
α holds (obviously u0 ∈ H2). Thus it follows from residual condition (10) that
T (A(u0)→1 B(v0), α) ≤ C(u0)→2 B

∗(v0) holds, and considering that→2 satisfies
(C4), we have C(u0) ≤ T (A(u0) →1 B(v0), α) →2 B

∗(v0), which contradicts (18).
Therefore (17) holds for any u ∈ U, v ∈ V . As a result, C is a DFI-solution of FMT.

Next, we shall check that A∗ determined by (16) is the infimum of DFI-solutions
of FMT. Assume that D ∈ F (U), and that there exists u0 ∈ U such that D(u0) <
A∗(u0). We shall prove that D is not a DFI-solution of FMT. In fact, it follows
from (16) that there exists v0 ∈ V such that

D(u0) < T (A(u0)→1 B(v0), α)→2 B
∗(v0)

holds. Since →2 satisfies (C4), it follows that T (A(u0) →1 B(v0), α) ≤ D(u0) →2

B∗(v0), and we have from the residual condition (10) that α ≤ (A(u0)→1 B(v0))→2

(D(u0)→2 B
∗(v0)). Thus D is not a DFI-solution of FMT.

To sum up, A∗ determined by (16) is the infimum of DFI-solutions of FMT. �

Example 4.7. It is easy to get that IL, IG, IGo, IFD, IY a, IEP are fuzzy implica-
tions satisfying (C4), (C11) and (C12). From Theorem 4.6, we obtain that if
→2∈ {IL, IG, IGo, IFD, IY a, IEP } and (15) holds, then the infimum of DFI-solutions
of FMT is A∗(u) = supv∈V {T (A(u)→1 B(v), α)→2 B

∗(v)}, u ∈ U .

Proposition 4.8. Suppose that →2 is a fuzzy implication satisfying (C4), (C6),
(C11) and (C12), and that A ∈ F (U), B,B∗ ∈ F (V ), α ∈ (0, 1], (15) holds, then
the infimum of DFI-solutions of FMT is A∗(u) = supv∈V {(A(u) →1 B(v)) →2

(α→2 B
∗(v))}, u ∈ U .

Proof. Suppose that T is the function residual to →2. Since →2 satisfies (C6),
we have from Theorem 4.6 that the infimum of DFI-solutions of FMT is A∗(u) =
supv∈V {T (A(u) →1 B(v), α) →2 B

∗(v)} = supv∈V {(A(u) →1 B(v)) →2 (α →2

B∗(v))}, u ∈ U . �

Proposition 4.9. If →2 is an R-implication derived from left-continuous t-norm
T , and A ∈ F (U), B,B∗ ∈ F (V ), α ∈ (0, 1], (15) holds, then the infimum of DFI-
solutions of FMT is A∗(u) = supv∈V {α→2 [(A(u)→1 B(v))→2 B

∗(v)]}, u ∈ U .

Proof. Since →2 is an R-implication derived from left-continuous t-norm T , it fol-
lows that →2 is a fuzzy implication satisfying (C4), (C5), (C6), (C11) and (C12)
(see Remark 2.8). Thus we get by Proposition 4.8 that the infimum of DFI-solutions
of FMT is A∗(u) = supv∈V {(A(u) →1 B(v)) →2 (α →2 B

∗(v))} = supv∈V {α →2

[(A(u)→1 B(v))→2 B
∗(v)]}, u ∈ U . �

Example 4.10. Note that IL, IG, IGo, IFD, IY a, IEP are R-implications derived
from left-continuous t-norm. Thus it follows from Proposition 4.9 that if →2∈
{IL, IG, IGo,
IFD, IY a, IEP } and (15) holds, then the infimum of DFI-solutions of FMT is A∗(u) =
supv∈V {α→2 [(A(u)→1 B(v))→2 B

∗(v)]}, u ∈ U .
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Theorem 4.11. If →2 is a fuzzy implication satisfying (C11) and (C12), and the
following condition:

(C13) I(a, b) = I(b′, a′) (a, b ∈ [0, 1]),
and T is the function residual to →2, and A ∈ F (U), B,B∗ ∈ F (V ), α ∈ (0, 1],
(15) holds, then the infimum of DFI-solutions of FMT can be computed as follows:

A∗(u) = sup
v∈V
{T ′((B∗(v))′, T (A(u)→1 B(v), α))}, u ∈ U, (19)

where T ′(a, b) = 1− T (a, b) (a, b ∈ [0, 1]).

Proof. Since the fuzzy implication →2 satisfies (C11) and (C12), we get that the
residual condition (10) holds.

Let H1 = {u ∈ U | A∗(u) = 1} and H2 = {u ∈ U | A∗(u) < 1}. Assume that
C ∈ F (U), and that C(u) = 1 for u ∈ H1, and that C(u) > A∗(u) for u ∈ H2. We
shall show that C is a DFI-solution of FMT, that is, the following inequality holds
for any u ∈ U, v ∈ V :

(A(u)→1 B(v))→2 (C(u)→2 B
∗(v)) < α. (20)

If u ∈ H1, then it follows from (15) that C(u) = 1 satisfies (20) for any v ∈ V .
If u ∈ H2, then it follows from (19) and C(u) > A∗(u) that

C(u) > T ′((B∗(v))′, T (A(u)→1 B(v), α)) (21)

holds for any v ∈ V . Suppose, on the contrary, that (20) does not hold. Then
there exist u0 ∈ U and v0 ∈ V such that (A(u0) →1 B(v0)) →2 (C(u0) →2

B∗(v0)) ≥ α holds (obviously u0 ∈ H2). Since →2 satisfies (C13), we get that
(A(u0) →1 B(v0)) →2 [(B∗(v0))′ →2 (C(u0))′] ≥ α, and it follows from resid-
ual condition (10) that T (A(u0) →1 B(v0), α) ≤ (B∗(v0))′ →2 (C(u0))′, and
T ((B∗(v0))′, T (A(u0)→1 B(v0), α)) ≤ (C(u0))′, thus

C(u0) ≤ T ′((B∗(v0))′, T (A(u0)→1 B(v0), α)),

which contradicts (21). Therefore (20) holds for any u ∈ U, v ∈ V . As a result, C
is a DFI-solution of FMT.

Next, we shall check that A∗ determined by (19) is the infimum of DFI-solutions
of FMT. Assume that D ∈ F (U), and that there exists u0 ∈ U such that D(u0) <
A∗(u0). We shall prove that D is not a DFI-solution of FMT. In fact, it follows
from (19) that there exists v0 ∈ V such that

D(u0) < T ′((B∗(v0))′, T (A(u0)→1 B(v0), α))

holds, thus we have (D(u0))′ > T ((B∗(v0))′, T (A(u0) →1 B(v0), α)). From the
residual condition (10) and the fact that →2 satisfies (C13), we have that

T (A(u0)→1 B(v0), α) ≤ (B∗(v0))′ →2 (D(u0))′ = D(u0)→2 B
∗(v0),

and α ≤ (A(u0)→1 B(v0))→2 (D(u0)→2 B
∗(v0)). Thus, D is not a DFI-solution

of FMT.
To sum up, A∗ determined by (19) is the infimum of DFI-solutions of FMT. �
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Example 4.12. It is easy to obtain that IL, IFD, IGR, IR, IRR are fuzzy implications
satisfying (C11), (C12) and (C13). Thus it follows from Theorem 4.11 that if
→2∈ {IL, IFD, IGR, IR, IRR} and (15) holds, then the infimum of DFI-solutions of
FMT is A∗(u) = supv∈V {T ′((B∗(v))′, T (A(u)→1 B(v), α))}, u ∈ U .

Lemma 4.13. [19] Suppose that I is an R-implication satisfying (C13) derived
from left-continuous t-norm T , then the following formula holds:

(C14) T ′(b′, a) = T ′(a, b′) = I(a, b) (a, b ∈ [0, 1]).

Proposition 4.14. Suppose that →2 is an R-implication satisfying (C13) derived
from left-continuous t-norm T , and A ∈ F (U), B,B∗ ∈ F (V ), α ∈ (0, 1], (15)
holds, then (u ∈ U)

sup
v∈V
{α→2 [(A(u)→1 B(v))→2 B

∗(v)]} = sup
v∈V
{T ′((B∗(v))′, T (A(u)→1 B(v), α))}.

Proof. It follows from Lemma 4.13 that (C14) holds, and we get from Remark 2.8
that→2 satisfies (C6). T obviously is commutative, then it follows from Proposition
4.9 that the infimum of DFI-solutions of FMT is

A∗(u) = sup
v∈V
{α→2 [(A(u)→1 B(v))→2 B

∗(v)]}

= sup
v∈V
{T (α,A(u)→1 B(v))→2 B

∗(v)}

= sup
v∈V
{T (A(u)→1 B(v), α)→2 B

∗(v)}

= sup
v∈V
{T ′((B∗(v))′, T (A(u)→1 B(v), α))}, u ∈ U.

�
Remark 4.15. If→2 is an R-implication satisfying (C13) derived from left-continuous

t-norm, then Theorem 4.11 obviously holds. This moment, Proposition 4.14 demon-
strates that the infimum of DFI-solutions of FMT achieved by Theorem 4.11 is
equivalent to the one from Proposition 4.9.

Remark 4.16. For →2∈ {IG, IL, IFD, IGo, IY a, IEP }, it follows from Theorem
4.6, Proposition 4.8 and Proposition 4.9 that the expressions of infimum of DFI-
solutions of FMT achieved from Example 4.7 is the same as the one from Example
4.10. For →2∈ {IL, IFD} (which is an R-implication satisfying (C13) derived from
left-continuous t-norm), it follows from Proposition 4.14 that the expressions of in-
fimum of DFI-solutions of FMT achieved by Example 4.10 and Example 4.12 (and
also Example 4.7) are consistent.

Proposition 4.17. Suppose that→2∈ {IL, IG, IGo, IFD, IGR, IR, IY a, IEP , IRR} in
(8), and that (15) holds, then the infimum of DFI-solutions of FMT is as follows
respectively (u ∈ U):

(i) If →2 takes IL, then A∗(u) = supv∈V {B∗(v)− (A(u)→1 B(v)) + 2− α};
(ii) If →2 takes IG, then A∗(u) = supv∈V {B∗(v)};
(iii) If →2 takes IGo, then A∗(u) = supv∈V {B∗(v)/[α× (A(u)→1 B(v))]};
(iv) If →2 takes IFD, then A∗(u) = supv∈V {(1 − (A(u) →1 B(v))) ∨ B∗(v)} ∨

(1− α);
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(v) If →2 takes IGR, then A∗(u) = supv∈V {B∗(v)};
(vi) If →2 takes IR, then A∗(u) = supv∈V {α ′/[(A(u)→1 B(v))× (B∗(v))′]};
(vii) If →2 takes IY a, then A∗(u) = supv∈V {1− (

√
1−B∗(v)−

√
1− α−√

1− (A(u)→1 B(v)) )2};
(viii) If →2 takes IEP , then A∗(u) = supv∈V {[2φEP (u, v)−α× φEP (u, v)]/[α+

φEP (u, v)−α×φEP (u, v)]}, where φEP (u, v) = B∗(v)×[2−(A(u)→1 B(v))]/[(A(u)
→1 B(v)) +B∗(v)−B∗(v)× (A(u)→1 B(v))];

(ix) If →2 takes IRR, then A∗(u) = supv∈V {[α ′/((A(u)→1 B(v))× (B∗(v))′)]∨
[(A(u)→1 B(v))′/(B∗(v))′] ∨B∗(v)}.

Proof. If →2∈ {IL, IG, IGo, IFD, IY a, IEP }, then it follows from Example 4.10 that
the infimum of DFI-solutions of FMT isA∗(u) = supv∈V {α→2 [(A(u)→1 B(v))→2

B∗(v)]}, u ∈ U . If →2∈ {IGR, IR, IRR}, suppose that T is the function residual to
→2, then it follows from Example 4.12 that the infimum of DFI-solutions of FMT is
A∗(u) = supv∈V {T ′((B∗(v))′, T (A(u) →1 B(v), α))}, u ∈ U . Then we need to get
the specific expression of A∗(u). We only prove the cases of IFD, IGR as examples,
the remainders can be proved similarly.

(iv) Suppose that →2 takes IFD. It follows from (15) that we have 1 > B∗(v),
A(u)→1 B(v) > B∗(v), [1−(A(u)→1 B(v))]∨B∗(v) < α hold for any u ∈ U, v ∈ V .
Thus, we obtain (u ∈ U):

A∗(u) = sup
v∈V
{α→2 [(A(u)→1 B(v))→2 B

∗(v)]}

= sup
v∈V
{α→2 [(1− (A(u)→1 B(v))) ∨B∗(v)]}

= sup
v∈V
{(1− α) ∨ (1− (A(u)→1 B(v))) ∨B∗(v)}

= sup
v∈V
{(1− (A(u)→1 B(v))) ∨B∗(v)} ∨ (1− α).

(v) Suppose that →2 takes IGR. We get from Example 3.7 that TGR is the
function residual to IGR. It follows from (15) that we get 1 > B∗(v), A(u) →1

B(v) > 0 hold for any u ∈ U, v ∈ V . So we have (u ∈ U):

A∗(u) = sup
v∈V
{T ′GR((B∗(v))′, TGR(A(u)→1 B(v), α))}

= sup
v∈V
{1− TGR((B∗(v))′, A(u)→1 B(v))}

= sup
v∈V
{1− (B∗(v))′} = sup

v∈V
{B∗(v)}.

�
Theorem 4.18. If →2∈ {IL, IG, IGo, IFD, IGR, IR, IY a, IEP , IRR}, A ∈ F (U),
B,B∗ ∈ F (V ), α ∈ (0, 1], (15) holds, then the condition, which the infimum
A∗ of DFI-solutions of FMT is the minimum, is as follows, respectively (for any
u ∈ U, v ∈ V ):

(i) Let→2 take IL, supv∈V {B∗(v)−(A(u)→1 B(v))} > B∗(v)−(A(u)→1 B(v))
holds;

(ii) Let →2 take IG, supv∈V {B∗(v)} > B∗(v) holds;
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(iii) Let →2 take IGo, supv∈V {B∗(v)/(A(u) →1 B(v))} > B∗(v)/(A(u) →1

B(v)) holds;

(iv) Let →2 take IFD, supv∈V {(1− (A(u)→1 B(v)))∨B∗(v)} > [(1− (A(u)→1

B(v))) ∨B∗(v)] ∨ (1− α) holds;

(v) Let →2 take IGR, supv∈V {B∗(v)} > B∗(v) holds;

(vi) Let →2 take IR, supv∈V {α ′/[(A(u)→1 B(v))× (B∗(v))′]} > α ′/[(A(u)→1

B(v))× (B∗(v))′] holds;

(vii) Let →2 take IY a, supv∈V {1 − (
√

1−B∗(v) −
√

1− (A(u)→1 B(v)) −√
1− α )2} > 1− (

√
1−B∗(v)−

√
1− (A(u)→1 B(v))−

√
1− α )2 holds;

(viii) Let →2 take IEP , supv∈V {[2φEP (u, v)− α × φEP (u, v)]/[α + φEP (u, v)−
α × φEP (u, v)]} > [2φEP (u, v) − α × φEP (u, v)]/[α + φEP (u, v) − α × φEP (u, v)]
holds;

(ix) Let →2 take IRR, supv∈V {[α ′/((A(u) →1 B(v)) × (B∗(v))′)] ∨ [(A(u) →1

B(v))′/(B∗(v))′] ∨ B∗(v)} > [α ′/((A(u) →1 B(v)) × (B∗(v))′)] ∨ [(A(u) →1

B(v))′/(B∗(v))′] ∨B∗(v) holds.

Proof. Note that if the infimum A∗ of DFI-solutions of FMT is a DFI-solution of
FMT, then A∗ is the minimum of DFI-solutions of FMT. Thus it is enough to
prove that A∗ is a DFI-solution of FMT (i.e., A∗ should make (8) hold for any
u ∈ U, v ∈ V ). We still prove the cases of IFD, IGR as examples.

(iv) Let →2 take IFD. It follows from Proposition 4.17 that the infimum of
DFI-solutions of FMT is A∗(u) = supv∈V {(1− (A(u)→1 B(v)))∨B∗(v)}∨ (1−α).
It follows from (15) that the following formula holds for any u ∈ U, v ∈ V :

1 > B∗(v), A(u)→1 B(v) > B∗(v), [1− (A(u)→1 B(v))] ∨B∗(v) < α. (22)

By the condition given in (iv), we obtain that A∗(u) > [(1 − (A(u) →1 B(v))) ∨
B∗(v)] ∨ (1− α), so the following formula holds for any u ∈ U, v ∈ V :

A∗(u) > B∗(v), A(u)→1 B(v) > 1−A∗(u), α > 1−A∗(u). (23)

It follows from (22) and (23) that we have:

(A(u)→1 B(v))→2 (A∗(u)→2 B
∗(v))

= (A(u)→1 B(v))→2 [(1−A∗(u)) ∨B∗(v)]

= [1− (A(u)→1 B(v))] ∨ [(1−A∗(u)) ∨B∗(v)]

< α.

Thus A∗ makes (8) hold for any u ∈ U, v ∈ V , and hence it is a DFI-solution of
FMT.

(v) Let →2 take IGR. We get from Proposition 4.17 that the infimum of DFI-
solutions of FMT is A∗(u) = supv∈V {B∗(v)}. It follows from (15) that 1 > B∗(v),
A(u) →1 B(v) > 0 hold for any u ∈ U, v ∈ V . By the condition given in (v), we
obtain that A∗(u) = supv∈V {B∗(v)} > B∗(v) holds for any u ∈ U, v ∈ V . Thus

(A(u)→1 B(v))→2 (A∗(u)→2 B
∗(v)) = (A(u)→1 B(v))→2 0 = 0 < α.

So A∗ is a DFI-solution of FMT. �
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The infimum A∗ →2

supv∈V {T (A(u)→1 B(v), α)→2 B∗(v)}
A fuzzy implication satisfying

(C4), (C11) and (C12)

supv∈V {(A(u)→1 B(v))→2 (α→2 B∗(v))}
A fuzzy implication satisfying

(C4), (C6), (C11) and (C12)

supv∈V {α→2 [(A(u)→1 B(v))→2 B∗(v)]}
An R-implication from

from left-continuous t-norm

supv∈V {T ′((B∗(v))′, T (A(u)→1 B(v), α))}
A fuzzy implication satisfying

(C11), (C12) and (C13)

Table 3. Some Results (I) of the DFI-restriction Inference

Algorithm for FMT

→2 The infimum A∗

IL supv∈V {B∗(v)− (A(u)→1 B(v)) + 2− α}
IG supv∈V {B∗(v)}
IGo supv∈V {B∗(v)/[α× (A(u)→1 B(v))]}
IFD supv∈V {(1− (A(u)→1 B(v))) ∨B∗(v)} ∨ (1− α)

IGR A∗(u) = supv∈V {B∗(v)}
IR supv∈V {α ′/[(A(u)→1 B(v))× (B∗(v))′]}

IY a
supv∈V {1− (

√
1−B∗(v)−

√
1− α−√

1− (A(u)→1 B(v)) )2}

IEP
supv∈V {[2φEP (u, v)− α× φEP (u, v)]/[α+

φEP (u, v)− α× φEP (u, v)]}

IRR
supv∈V {[α ′/((A(u)→1 B(v))× (B∗(v))′)]

∨[(A(u)→1 B(v))′/(B∗(v))′] ∨B∗(v)}

Table 4. Some Results (II) of the DFI-restriction Inference

Algorithm for FMT

Table 3 concludes some results of the algorithm for FMT from Theorem 4.6,
Proposition 4.8, Proposition 4.9 and Theorem 4.11. Moreover, Table 4 and Table 5
shows some results of the algorithm for FMT from Proposition 4.17 and Theorem
4.18.

Example 4.19. Let U = V = [0, 1], A(u) = (4− u)/4, B(v) = (3 + v)/4, B∗(v) =
(1 − v)/4 and α = 1/2, where u ∈ U, v ∈ V . Suppose that →2= IR, →1= IL in
the DFI-restriction inference algorithm for FMT. We now compute the infimum of
DFI-solutions of FMT.

A(u)→1 B(v) = IL(A(u), B(v)) =

{
1− 4−u

4 + 3+v
4 , if 4−u

4 > 3+v
4

1, if 4−u
4 ≤ 3+v

4

=

{ 3+u+v
4 , if u+ v < 1

1, if u+ v ≥ 1
.
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→2 The condition which the infimum A∗ is the minimum

IL
supv∈V {B∗(v)− (A(u)→1 B(v))} >
B∗(v)− (A(u)→1 B(v))

IG A∗(u) > B∗(v)

IGo supv∈V {B∗(v)/(A(u)→1 B(v))} >
B∗(v)/(A(u)→1 B(v))

IFD supv∈V {(1− (A(u)→1 B(v))) ∨B∗(v)} >
[(1− (A(u)→1 B(v))) ∨B∗(v)] ∨ (1− α)

IGR A∗(u) > B∗(v)

IR A∗(u) > α ′/[(A(u)→1 B(v))× (B∗(v))′]

IY a
A∗(u) > 1− (

√
1−B∗(v)−√

1− (A(u)→1 B(v))−
√

1− α )2

IEP
A∗(u) > [2φEP (u, v)− α× φEP (u, v)]/[α+

φEP (u, v)− α× φEP (u, v)]}

IRR
A∗(u) > [α ′/((A(u)→1 B(v))×
(B∗(v))′)] ∨ [(A(u)→1 B(v))′/(B∗(v))′] ∨B∗(v)

Table 5. Some Results (III) of the DFI-restriction Inference

Algorithm for FMT

For (15), we have

(A(u)→1 B(v))→2 (1→2 B
∗(v))

= (A(u)→1 B(v))→2 B
∗(v)

=

{
1− 3+u+v

4
+ 3+u+v

4
× 1−v

4
, if u+ v < 1

1−v
4
, if u+ v ≥ 1

=

{ 7
16
− 3u+3v

16
− v(3+u+v)

16
, if u+ v < 1

1−v
4
, if u+ v ≥ 1

< α,

thus (15) holds. Then it follows from Proposition 4.17 that the infimum of DFI-
solutions of FMT is as follows (u ∈ U):

A∗(u) = sup
v∈V
{α ′/[(A(u)→1 B(v))× (B∗(v))′]}

= sup
v∈V
{α ′/[(A(u)→1 B(v))× (B∗(v))′] | u+ v < 1}

∨ sup
v∈V
{α ′/[(A(u)→1 B(v))× (B∗(v))′] | u+ v ≥ 1}

= sup
v∈[0,1]

{
1

2

/(
3 + u+ v

4
×

3 + v

4

) ∣∣∣∣∣ u+ v < 1

}

∨ sup
v∈[0,1]

{
1

2

/
3 + v

4

∣∣∣∣∣ u+ v ≥ 1

}

= sup
v∈[0,1]

{
8

(3 + u+ v)× (3 + v)

∣∣∣∣∣ u+ v < 1

}
∨ sup

v∈[0,1]

{
2

3 + v

∣∣∣∣∣ u+ v ≥ 1

}
.
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(i) Suppose u = 1, then {v ∈ [0, 1] | u+v < 1} = ∅, and 0 ∈ {v ∈ [0, 1] | u+v ≥
1}. Taking into account that 2

3+v is decreasing w.r.t. v, we get

A∗(u) = (sup∅) ∨ 2

3
= 0 ∨ 2

3
=

2

3
=

8

9 + 3u
.

(ii) Suppose 0 ≤ u < 1, then 0 ∈ {v ∈ [0, 1] | u + v < 1}. Since 8
(3+u+v)×(3+v) ,

2
3+v are decreasing w.r.t. v, we have

A∗(u) =
8

(3 + u)× 3
∨ 2

3 + 1− u
=

8

9 + 3u
∨ 2

4− u
=

8

9 + 3u
,

where 8
9+3u >

2
4−u since 0 ≤ u < 1.

Together we achieve

A∗(u) =
8

9 + 3u
, u ∈ U.

Example 4.20. Let U, V,A,B,B∗, α be the same as in Example 4.19. Suppose
that →2= IR, →1= IR in the DFI-restriction inference algorithm for FMT, which
degenerates into the full implication restriction inference algorithm for FMT (taking
IR). We now compute the infimum of DFI-solutions of FMT.

A(u)→1 B(v) = IR(A(u), B(v)) = 1−4− u
4

+
4− u

4
×3 + v

4
=

12 + u+ v(4− u)

16
.

For (15), we have

(A(u)→1 B(v))→2 (1→2 B
∗(v))

= (A(u)→1 B(v))→2 B
∗(v)

= 1− 12 + u+ v(4− u)

16
+

12 + u+ v(4− u)

16
× 1− v

4

=
7

16
− 3u+ 3v(4− u)

64
− v(12 + u+ v(4− u))

64
< α,

which means (15) holds. It follows from Proposition 4.17 that the infimum of DFI-
solutions of FMT is as follows (u ∈ U):

A∗(u) = sup
v∈V
{α ′/[(A(u)→1 B(v))× (B∗(v))′]}

= sup
v∈[0,1]

{
1

2

/(
12 + u+ v(4− u)

16
× 3 + v

4

)}

= sup
v∈[0,1]

{
32

[12 + u+ v(4− u)]× (3 + v)

}
.

Because 32
[12+u+v(4−u)]×(3+v) is decreasing w.r.t. v, we obtain

A∗(u) =
32

(12 + u)× 3
=

32

36 + 3u
.
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DFI-restriction inference full implication restriction

algorithm for FMT inference algorithm for FMT

Specific ones 81 kinds 9 kinds

Actual specific ones 64 kinds 8 kinds

Table 6. Specific Fuzzy Inference Algorithms for FMT

Remark 4.21. For the same U, V,A,B,B∗, α in Example 4.19 and Example 4.20,
since

0 < u ≤ 1 ⇒ 8

9 + 3u
<

32

36 + 3u
,

u = 0 ⇒ 8

9 + 3u
=

32

36 + 3u
,

the infimum of DFI-solutions of FMT (from the DFI-restriction inference algo-
rithm) in Example 4.19 is smaller than the one (from the full implication restric-
tion inference algorithm) in Example 4.20. From the viewpoint of DFI-restriction
inference principle for FMT (which seeks the smallest A∗ satisfying (8)), the DFI-
restriction inference algorithm for FMT in Example 4.19 makes the inference closer,
then it is better than the full implication restriction inference algorithm for FMT
in Example 4.20.

Remark 4.22. Aiming at the set of fuzzy implications {IL, IG, IGo, IFD, IGR, IR, IY a,

IEP , IRR}, we get from the DFI-restriction inference algorithm that there are

9 ∗ 9 = 81

kinds of specific fuzzy inference algorithms for FMT, in which

7 ∗ 9 + 1 = 64

kinds of actual specific algorithms for FMT exist (noting that the expression is
independent of →1 for the case →2∈ {IG, IGR}, by virtue of Table 4 and Table
5). But, from the full implication restriction inference algorithm, there are only 9
kinds of specific algorithms for FMT (including 8 kinds of actual specific algorithms
for FMT), see Table 6. These imply that the DFI-restriction inference algorithm
can obtain more and better specific algorithms for FMT (comparing with the full
implication restriction inference algorithm), thus it is superior to the full implication
restriction inference algorithm.

5. Conclusions

A new fuzzy inference strategy called the double fuzzy implications-based re-
striction inference algorithm (DFI-restriction inference algorithm for short) is put
forward and investigated. First, new restriction inference principle is presented,
which improves the full implication restriction inference principle; and then the
definitions as well as existing conditions of solutions of the DFI-restriction inference
algorithm are provided. Second, the supremum (or infimum) of related solutions
is achieved, and the condition which the corresponding supremum is the maximum
(or, the corresponding infimum is the minimum) is obtained for the FMP and FMT



Double Fuzzy Implications-based Restriction Inference Algorithm 39

problems, respectively. Third, the optimal solutions of the DFI-restriction infer-
ence algorithm are accomplished for several specific fuzzy implications. Lastly, it is
found that the DFI-restriction inference algorithm is more reasonable than the full
implication restriction inference algorithm, since the former can make the inference
closer, and generate more, better specific inference algorithms. Such works would
be helpful to applications of fuzzy inference as well as fuzzy system.
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