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As a generalization of the compositional rule of inference (CRI) algorithm and the fully

implicational algorithm, the di®erently implicational algorithm of fuzzy inference not only

inherit the advantages of the fully implicational algorithm, but also has stronger practicability.
Then, the variable di®erently implicational algorithm was proposed to make the current dif-

ferently implicational algorithms compose a united whole. In this paper, the variable di®erently

implicational algorithm is further researched focusing on the fuzzy modus tollens (FMT)

problem. The di®erently implicational principle for FMT is improved. Moreover, the uni¯ed
solutions of the variable di®erently implicational algorithm for FMT are accomplished for R-

and S-implications. Following that, as an important index of fuzzy inference, the continuity of

this algorithm is analyzed for main R- and S-implications, in which excellent performance is
obtained. Finally, its optimal solutions as well as inference examples are provided for several

speci¯c R- and S-implications.

Keywords: Fuzzy inference; fuzzy modus tollens; fuzzy implication; compositional rule of in-

ference; fully implicational algorithm.

1. Introduction

Fuzzy inference is an advanced computing framework based on the concepts of fuzzy

set, fuzzy if-then rule, approximate inference, which has signi¯cant application value
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in fuzzy control, pattern recognition, machine learning, a®ective computing and so

on.1–3 It has two fundamental problems, which are called fuzzy modus ponens (FMP)

and fuzzy modus tollens (FMT) which are expressed as follows:

FMP : from A ! B and A�; compute B�; ð1Þ
FMT : from A ! B and B�; compute A�: ð2Þ

Here, A;A� 2 FðUÞ, B;B� 2 FðV Þ, in which FðUÞ;FðV Þ respectively denotes the

set of fuzzy subsets of U ;V . The compositional rule of inference (CRI) algorithm

proposed by Zadeh is the classical and widely used algorithm.4,5 As its modi¯cation,

the fully implicational algorithm was proposed by Wang in 1999.6,7 Its optimal

solution is the smallest B� 2 FðV Þ (or the largest A� 2 FðUÞ) making

ðAðuÞ ! BðvÞÞ ! ðA�ðuÞ ! B�ðvÞÞ � � ð3Þ

hold for any u 2 U ; v 2 V (in which � 2 ð0; 1�, and ! is a fuzzy implication). It is

veri¯ed that the fully implicational algorithm has many wonderful merits, which lie

in its strict logic basis, reversibility properties, the ability of pointwise optimization

and so on.8–11 However, it is not perfect from the view of some kind of fuzzy system

owing to its weak response ability and practicability.12–14

Aiming at such problem, in Ref. 15, the fully implicational algorithm was gen-

eralized to the di®erently implicational algorithm. Its solution is the smallest B� 2
FðV Þ (or the largest A� 2 FðUÞ) letting

ðAðuÞ!1 BðvÞÞ!2 ðA�ðuÞ!2 B
�ðvÞÞ � �; ð4Þ

hold for any u 2 U ; v 2 V (� 2 ð0; 1�). The di®erently implicational algorithm also

takes the CRI algorithm as its special case.15 In Ref. 16, the di®erently implicational

algorithm was discussed for FMP, in which reversibility properties and more general

fuzzy systems were researched, and it was applied to emotion polarity recognition. In

Ref. 17, the di®erently implicational algorithm was investigated for FMP and FMT

from the meaning of fuzzy reasoning as well as fuzzy controller, in which the R-

implications, (0,1)-implications, as well as the expansion, reduction and other type

operators were respectively employed. Its optimal solutions were obtained with

verifying its reversibility, and the response abilities of corresponding fuzzy controllers

were researched. In Ref. 18, it was found that 190 fuzzy systems via the di®erently

implicational algorithm could be used in practical systems, while 19 fuzzy systems via

the CRI method and two ones via the fully implicational algorithm were practicable.

So the di®erently implicational algorithm has larger e®ective choosing space, which

can achieve more usable fuzzy systems comparing with the fully implicational al-

gorithm and the CRI algorithm. To sum up, the di®erently implicational algorithm

not only inherit the advantages of the fully implicational algorithm, but also has

stronger practicability.

Furthermore, to reveal the inherent essence of current di®erently implicational

algorithms, the variable di®erently implicational algorithm was put forward in
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Ref. 19, which aimed at

ðAðuÞ!1 BðvÞÞ!2 ðA�ðuÞ!2 B
�ðvÞÞ � �ðu; vÞ: ð5Þ

Here, �ðu; vÞ is a variable parameter (�ðu; vÞ 2 ½0; 1�). Focusing on the FMP prob-

lem, the optimal solutions of the variable di®erently implicational algorithm were

analyzed and obtained in Ref. 19. This algorithm makes the current di®erently

implicational algorithms compose a united whole.

As mentioned above, the FMP and FMT problems are two fundamental problems

of fuzzy inference. As a result, it is valuable to research the variable di®erently

implicational algorithm for the FMT problem, which constructs the main aim of

this paper.

For a fuzzy inference method, it is hopeful that small input deviation does not lead

to the huge deviation of the reasoning result. This is called the index of continuity,

which is recognized as an important index for fuzzy reasoning. Here, we will discuss

the continuity of the variable di®erently implicational algorithm for FMT.

This paper is organized as follows. Section 2 is the preliminaries. Section 3 gives

the basic principle, de¯nitions and general results of the variable di®erently impli-

cational algorithm for FMT. Section 4 establishes the uni¯ed forms of the variable

di®erently implicational algorithm for FMT, where !2 takes an R-implication. In

Sec. 5, we research the variable di®erently implicational algorithm for FMT aiming

at the case of S-implications. In Sec. 6, we analyze the continuity of the variable

di®erently implicational algorithm for FMT in which !2 takes an R-implication or

S-implication. Section 7 provides two speci¯c computing examples. Lastly, Sec. 8

draws the conclusions for the whole paper.

2. Preliminaries

There are several de¯nitions of fuzzy implications. But all of these de¯nitions need to

maintain consistency with classical logic. So the basic one as De¯nition 2.1 is

employed, which is also chosen by many papers.2,9,17,19

De¯nition 2.1. A fuzzy implication on ½0; 1� is a function I : ½0; 1�2 ! ½0; 1�
satisfying

(P1) I ð0; 0Þ ¼ I ð0; 1Þ ¼ I ð1; 1Þ ¼ 1; I ð1; 0Þ ¼ 0.

I ða; bÞ can also be denoted as a ! b (a; b 2 ½0; 1�).
In Ref. 20, the following de¯nition is provided.

De¯nition 2.2. Suppose that T , I are two ½0; 1�2 ! ½0; 1� functions. ðT ; I Þ is called
a residual pair or, T and I are residual to each other, if the following residuation

condition holds:

Tða; bÞ � c () b � I ða; cÞ ða; b; c 2 ½0; 1�Þ: ð6Þ
In Refs. 19 and 21, the following proposition is shown.
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Proposition 2.1. If I is a fuzzy implication which satis¯es

(P2) I ða; 1Þ ¼ 1, a 2 ½0; 1�,
(P3) I ða; bÞ � I ða; cÞ if b � c, a; b; c 2 ½0; 1�,
(P4) I ða; bÞ is right-continuous with respect to (w.r.t. for short) b, a; b 2 ½0; 1�,

then the function T : ½0; 1�2 ! ½0; 1� expressed as

Tða; bÞ ¼ inffx 2 ½0; 1� j b � I ða; xÞg; a; b 2 ½0; 1�

is residual to I .

In Ref. 5, the following four de¯nitions are given.

De¯nition 2.3. A function T : ½0; 1�2 ! ½0; 1� is called a t-norm if T is associative,

commutative, increasing and satis¯es Tð1; aÞ ¼ a (a 2 ½0; 1�).
De¯nition 2.4. A function T : ½0; 1�2 ! ½0; 1� is called a t-conorm if T is associative,

commutative, increasing and satis¯es Sð0; aÞ ¼ a (a 2 ½0; 1�).
De¯nition 2.5. A fuzzy negation is a decreasing function N : ½0; 1� ! ½0; 1�
satisfying

Nð0Þ ¼ 1; Nð1Þ ¼ 0:

A fuzzy negation N is said to be strong if NðNðaÞÞ ¼ a holds (a 2 ½0; 1�).
NsðaÞ ¼ 1� a (a 2 ½0; 1�) is said to be the standard negation on ½0; 1�, which is a

strong negation.

De¯nition 2.6. The dual of a t-norm T on ½0; 1� w.r.t. a strong negation N is the

function TN which is expressed as (a; b 2 ½0; 1�)

TN ða; bÞ ¼ NðTðNðaÞ;NðbÞÞÞ:

The dual of a t-conorm S on ½0; 1� w.r.t. a strong negation N is the function SN which

is computed as (a; b 2 ½0; 1�)
SN ða; bÞ ¼ NðSðNðaÞ;N ðbÞÞÞ:

It is noted that TN is a t-conorm and SN is a t-norm.

Nowadays, R-implications and S-implications are two kinds of important fuzzy

implications,22–24 see the following de¯nitions.2

De¯nition 2.7. A function I : ½0; 1�2 ! ½0; 1� is said to be an R-implication, if there

exists a left-continuous t-norm T such that (a; b 2 ½0; 1�)
I ða; bÞ ¼ supfx 2 ½0; 1� jTða; xÞ � bg: ð7Þ

Moreover, if an R-implication is generated from T , then it is represented by IT .

In Refs. 24 and 25, the following lemma is shown.
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Lemma 2.1. Suppose that T is a left-continuous t-norm on ½0; 1�, and that I an R-

implication obtained from (7). Then, ðT ; I Þ is a residual pair, and I satis¯es (P3),

(P4) as well as

(P5) I ða; cÞ � I ðb; cÞ if a � b,

(P6) I ða; bÞ is left-continuous w.r.t. a,
(P7) I ð1; aÞ ¼ a,

(P8) I ða; I ðb; cÞÞ ¼ I ðb; I ða; cÞÞ,
(P9) I ðTða; bÞ; cÞ ¼ I ða; I ðb; cÞÞ,
(P10) a � b () I ða; bÞ ¼ 1,

(P11) a � I ðb; cÞ () b � I ða; cÞ,
(P12) I ðsupx2Xx; aÞ ¼ inf x2XI ðx; aÞ,
(P13) I ða; inf x2XxÞ ¼ inf x2XI ða; xÞ,
where a; b; c 2 ½0; 1� and X � ½0; 1�; X 6¼ �.

In Ref. 24, the following two de¯nitions are provided.

De¯nition 2.8. A function I : ½0; 1�2 ! ½0; 1� is called an S-implication if there exist

a t-conorm S and a strong negation N such that

I ða; bÞ ¼ SðNðaÞ; bÞ; a; b 2 ½0; 1�: ð8Þ
Furthermore, if an S-implication is obtained from S and N , then it is denoted by IS ;N .

Proposition 2.2. Suppose that I is an S-implication denoted from a t-conorm S and

a strong negation N , then I is a fuzzy implication satisfying (P1), (P2), (P3), (P5),

(P7), (P8) as well as

(P14) I ða; bÞ ¼ I ðNðbÞ;N ðaÞÞ; a; b 2 ½0; 1�.
In Ref. 26, the following de¯nition is shown.

De¯nition 2.9. Let Z be any nonempty set, then partial order relation �F on FðZÞ
is de¯ned as:

A�F B () Aðz0Þ � Bðz0Þ ðz0 2 Z ;A;B 2 FðZÞÞ:
Lemma 2.2. hFðZÞ;�Fi is a complete lattice.

In what follows, we denote R1ðu; vÞ ¼ AðuÞ!1 BðvÞ, and a 0 ¼ 1� a (a 2 ½0; 1�)
and A 0ðxÞ ¼ 1�AðxÞ for any fuzzy set A, and ¯nally T 0ða; bÞ ¼ 1� Tða; bÞ for any
mapping T : ½0; 1�2 ! ½0; 1�.

3. Fundamental Properties of the Variable Di®erently

Implicational Algorithm for FMT

Aiming at the FMT problem expressed as (2), we can achieve the following principle

for the variable di®erently implicational algorithm:

Variable di®erently implicational principle for FMT: The conclusion A� of
FMT problem (2) is the largest fuzzy set satisfying (5) in hFðUÞ;�F i.
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It is evident that such di®erently implicational principle for FMT improves the

previous one in Ref. 15. The variable di®erently implicational algorithm for FMT is

also called the �ðu; vÞ-FMT-di®erently implicational algorithm for short.

De¯nition 3.1. Let A 2 FðUÞ, B;B� 2 FðV Þ, if A� (in hFðUÞ;�Fi) makes (5) hold

for any u 2 U ; v 2 V , then A� is called an �ðu; vÞ-FMT-di®erently implicational

solution (�ðu; vÞ-FMT-solution for short).

De¯nition 3.2. Suppose that A 2 FðUÞ, B;B� 2 FðV Þ, and that nonempty set

F�ðu;vÞ is the set of all �ðu; vÞ-FMT-solutions, and ¯nally that C � (in hFðUÞ;�F i) is
the supremum of F�ðu;vÞ. Then, C � is called an �ðu; vÞ-SupT-quasi solution. And, if

C � is the maximum of F�ðu;vÞ, then C � is also called an �ðu; vÞ-MaxT-solution.

The following Proposition 3.1 shows a basic property of �ðu; vÞ-FMT-solution.

Proposition 3.1. Suppose that !2 is a fuzzy implication satisfying (P3) and (P5),

and that C1 is an �ðu; vÞ-FMT-solution, and ¯nally that C2 �F C1 (in which

C1;C2 2 hFðUÞ;�F i). Then, C2 is an �(u,v)-FMT-solution.

Proof. Because C1 is an �ðu; vÞ-FMT-solution, it follows that

R1ðu; vÞ!2 ðC1ðuÞ!2 B
�ðvÞÞ � �ðu; vÞ

holds for any u 2 U ; v 2 V . Since C2�FC1 and !2 satis¯es (P3) and (P5), we have

C2ðuÞ!2 B
�ðvÞ � C1ðuÞ!2 B

�ðvÞ

and

R1ðu; vÞ!2 ðC2ðuÞ!2 B
�ðvÞÞ

� R1ðu; vÞ!2 ðC1ðuÞ!2 B
�ðvÞÞ � �ðu; vÞ

holds for any u 2 U ; v 2 V . Consequently, C2 is also an �ðu; vÞ-FMT-solution.

Remark 3.1. Suppose that !2 satis¯es (P3) and (P5). For (5), once there exists

an �ðu; vÞ-FMT-solution A�, then every fuzzy set C which is smaller than A�

(C 2 FðUÞ), will be an �ðu; vÞ-FMT-solution. Thus, there are many �ðu; vÞ-FMT-

solutions, including

A�ðuÞ � 0ðu 2 UÞ:
This last is a special solution, for which (5) always holds no matter what A!1 B and

B� are adopted. Thus, when the optimal �ðu; vÞ-FMT-solution exists, it should be

the largest one; in other words, it should be the supremum.

Assume that the maximum of

R1ðu; vÞ!2 ðA�ðuÞ!2 B
�ðvÞÞ

for FMT at every point ðu; vÞ is MT ðu; vÞ. It is easy to prove Lemma 3.1.
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Lemma 3.1. Let! be a fuzzy implication satisfying (P3) and (P5), then a ! 1 ¼ 1;

0 ! b ¼ 1ða; b 2 ½0; 1�).
The following Proposition 3.2 provides the maximum value of R1ðu; vÞ!2

ðA�ðuÞ!2 B
�ðvÞÞ.

Proposition 3.2. If !2 is a fuzzy implication satisfying (P3), (P5), then

MT ðu; vÞ ¼ 1 (u 2 U ; v 2 V ).

Proof. It follows from Lemma 3.1 that

R1ðu; vÞ!2 ð0!2 B
�ðvÞÞ ¼ 1

obviously holds for any u 2 U ; v 2 V . Take A�ðuÞ � 0ðu 2 U), then

R1ðu; vÞ!2 ðA�ðuÞ!2 B
�ðvÞÞ ¼ R1ðu; vÞ!2 ð0!2 B

�ðvÞÞ ¼ 1:

Thus, MT ðu; vÞ � 1, which implies Lðu; vÞ ¼ 1 holds for any u 2 U ; v 2 V .

To guarantee (5) holds, we always assume in this subsection that �ðu; vÞ �
MT ðu; vÞ holds for any u 2 U ; v 2 V . Especially, if !2 satis¯es (P3) and (P5), then

MT ðu; vÞ ¼ 1, which means �ðu; vÞ � MT ðu; vÞ ¼ 1 naturally holds for any

u 2 U ; v 2 V .

We know from Lemma 2.2 that hFðUÞ;�F i is a complete lattice. So the

�ðu; vÞ-SupT-quasi solution (i.e., the supremum of F�ðu;vÞ) uniquely exists because

the nonempty set F�ðu;vÞ � FðUÞ.

4. ®(u,v)-FMT-Di®erently Implicational Algorithm for R-Implications

The following Proposition 4.1 analyzes the relationship between the �ðu; vÞ-SupT-
quasi solution and the �ðu; vÞ-MaxT-solution.

Proposition 4.1. If the fuzzy implication!2 satis¯es (P4), (P5) and (P6), then the

�ðu; vÞ-SupT-quasi solution A� is the �ðu; vÞ-MaxT-solution.

Proof. Taking into account that the �ðu; vÞ-SupT-quasi solution A� ¼ supF�ðu;vÞ, it
is enough to verify that A� is the maximum of F�ðu;vÞ. It is obvious that

F�ðu;vÞ ¼ fC � 2 FðUÞ jR1ðu; vÞ!2 ðC �ðuÞ!2 B
�ðvÞÞ

� �ðu; vÞ; u 2 U ; v 2 Vg:

Suppose, on the contrary, that A� 62 F�ðu;vÞ, then there exist fuzzy sets A1;A2; . . .

in F�ðu;vÞ such that

lim
n!1AnðuÞ ¼ A�ðuÞ; u 2 U : ð9Þ

Noting that A1;A2; . . . 2 F�ðu;vÞ, we have (n ¼ 1; 2; . . . ; u 2 U ; v 2 V ):

R1ðu; vÞ!2 ðAnðuÞ!2 B
�ðvÞÞ � �ðu; vÞ: ð10Þ
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Since A� ¼ supF�ðu;vÞ, we obtain A�ðuÞ � AnðuÞ (u 2 U ; n ¼ 1; 2; . . .), and it follows

from (9) that A�ðuÞ is the left limit of

fAnðuÞj n ¼ 1; 2; . . .gðu 2 UÞ:

This implies (noting that !2 satis¯es (P6))

lim
n!1fAnðuÞ!2 B

�ðvÞg ¼ A�ðuÞ!2 B
�ðvÞ: ð11Þ

Because A�ðuÞ � AnðuÞ and !2 satis¯es (P5), we have

A�ðuÞ!2 B
�ðvÞ � AnðuÞ!2 B

�ðvÞ
(u 2 U ; v 2 V ; n ¼ 1; 2; . . .). So we know that A�ðuÞ!2 B

�ðvÞ is the right limit of

fAnðuÞ!2 B
�ðvÞjn ¼ 1; 2; . . .g:

Noting that !2 satis¯es (P4), it follows from (10) and (11) that we obtain

(u 2 U ; v 2 V )

�ðu; vÞ � lim
n!1fR1ðu; vÞ!2 ðAnðuÞ!2 B

�ðvÞÞg
¼ R1ðu; vÞ!2 ðA�ðuÞ!2 B

�ðvÞÞ:
So A� 2 F�ðu;vÞ, a contradiction. Thus, A� 2 F�ðu;vÞ, and thus A� is the maximum

of F�ðu;vÞ.

It follows from Proposition 4.1 and Lemma 2.1 that we can get Theorem 4.1. It

shows the relationship between the �ðu; vÞ-SupT-quasi solution and the

�ðu; vÞ-MaxT-solution for the R-implication.

Theorem 4.1. If !2 is an R-implication, then the �ðu; vÞ-SupT-quasi solution A�

is the �ðu; vÞ-MaxT-solution.

The following Theorem 4.2 provides the �ðu; vÞ-MaxT-solution for the R-impli-

cation.

Theorem 4.2. Suppose that !2 is an R-implication, then the �ðu; vÞ-MaxT-

solution is as follows:

A�ðuÞ ¼ inf
v2V

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�ðvÞg; u 2 U : ð12Þ

Proof. Since the R-implication !2 satis¯es (P8), (P9) and (P10), it follows that

(5) is equivalent to the following formulas (u 2 U ; v 2 V ):

�ðu; vÞ � R1ðu; vÞ!2 ðA�ðuÞ!2 B
�ðvÞÞ;

�ðu; vÞ!2 ðR1ðu; vÞ!2 ðA�ðuÞ!2 B
�ðvÞÞÞ ¼ 1;

Tð�ðu; vÞ;R1ðu; vÞÞ!2 ðA�ðuÞ!2 B
�ðvÞÞ ¼ 1;

A�ðuÞ!2 ðTð�ðu; vÞ;R1ðu; vÞÞ!2 B
�ðvÞÞ ¼ 1;

A�ðuÞ � Tð�ðu; vÞ;R1ðu; vÞÞ!2 B
�ðvÞ:
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Hence, we get from De¯nition 3.2 that the �ðu; vÞ-MaxT-solution is expressed as

follows (noting that T is commutative):

A�ðuÞ ¼ inf
v2V

fTð�ðu; vÞ;R1ðu; vÞÞ!2 B
�ðvÞg

¼ inf
v2V

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�ðvÞg; u 2 U :

The following Theorem 4.3 provides another computing formula for the R-im-

plication.

Theorem 4.3. Suppose that !2 is an R-implication, then the �ðu; vÞ-MaxT-

solution is as follows (u 2 U):

A�ðuÞ ¼ inf
v2V

fR1ðu; vÞ!2 ð�ðu; vÞ!2 B
�ðvÞÞg: ð13Þ

Proof. It follows from Theorem 4.2 that the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼ inf
v2V

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�ðvÞg; u 2 U ;

where T is the mapping residual to !2 . Note that the R-implication !2 satis¯es

(P9), thus we have

A�ðuÞ ¼ inf
v2V

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�ðvÞg

¼ inf
v2V

fR1ðu; vÞ!2 ð�ðu; vÞ!2 B
�ðvÞÞg; u 2 U :

The following fuzzy implications are R-implications, which include Lukasiewicz

implication IL, G€odel implication IG , Goguen implication IGo, I0 implication6,27

(which is also called IFD, see Ref. 23), and Iep; Iy�0:5.
15,28

ILða; bÞ ¼
1; a � b;

a 0 þ b; a > b;

(

IGða; bÞ ¼
1; a � b;

b; a > b;

(

IGoða; bÞ ¼
1; a ¼ 0;

ðb=aÞ ^ 1; a 6¼ 0;

(

I0ða; bÞ ¼
1; a � b;

a 0 _ b; a > b;

(

Iepða; bÞ ¼
1; a � b;

ð2b� abÞ=ða þ b� abÞ; a > b;

(

Iy�0:5ða; bÞ ¼
1; a � b;

1� ð ffiffiffiffiffiffiffiffiffiffiffi
1� b

p � ffiffiffiffiffiffiffiffiffiffiffi
1� a

p Þ2; a > b:

(

It is easy to get Lemma 4.1.
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Lemma 4.1. The mapping corresponding to the R-implications IL; IG ; IGo; I0; Iep;

Iy�0:5 in residual pairs are as follows, respectively.

TLða; bÞ ¼
a þ b� 1; a þ b > 1;

0; a þ b � 1;

(

TGða; bÞ ¼ a ^ b;

TGoða; bÞ ¼ a � b;

T0ða; bÞ ¼
a ^ b; a þ b > 1;

0; a þ b � 1;

(

Tepða; bÞ ¼ ab=ð2� a � bþ abÞ;

Ty�0:5ða; bÞ ¼
1� ðf ða; bÞÞ2; f ða; bÞ � 1;

0; f ða; bÞ > 1;

(
where f ða; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
1� b

p
:

For the R-implications mentioned above, we can achieve Proposition 4.2. It gives

the uni¯ed �ðu; vÞ-MaxT-solution for some speci¯c R-implications.

Proposition 4.2. If !2 2 fIL; IG ; IGo; I0; Iep; Iy�0:5g, and T is the mapping residual

to !2 , then the �ðu; vÞ-MaxT-solution is expressed as (12) or (13).

The following Proposition 4.3 shows the speci¯c �ðu; vÞ-MaxT-solution for these

R-implications.

Proposition 4.3. If the R-implication !2 2 fIL; IG ; IGo; I0; Iep; Iy�0:5g, then the

speci¯c form of �ðu; vÞ-MaxT-solution is as follows, respectively (u 2 U):

(i) If !2 takes IL, then

A�ðuÞ ¼ inf
v2Fu

f2� R1ðu; vÞ � �ðu; vÞ þ B�ðvÞg;

where Fu ¼ fv 2 V j R1ðu; vÞ þ �ðu; vÞ � 1 > B�ðvÞg:
(ii) If !2 takes IG , then

A�ðuÞ ¼ inf
v2Fu

fB�ðvÞg;

where Fu ¼ fv 2 V j R1ðu; vÞ ^ �ðu; vÞ > B�ðvÞg:
(iii) If !2 takes IGo, then

A�ðuÞ ¼ inf
v2Fu

fB�ðvÞ=ðR1ðu; vÞ � �ðu; vÞÞg;

where Fu ¼ fv 2 V j R1ðu; vÞ � �ðu; vÞ > B�ðvÞg.
(iv) If !2 takes I0, then

A�ðuÞ ¼ inf
v2Fu

fðR1ðu; vÞÞ 0 _ ð�ðu; vÞÞ 0 _ B�ðvÞg;

where Fu ¼ fv 2 V j R1ðu; vÞ þ �ðu; vÞ > 1;R1ðu; vÞ ^ �ðu; vÞ > B�ðvÞg.
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(v) If !2 takes Iep, then

A�ðuÞ ¼ inf
v2Fu

2B�ðvÞ � ’epðu; vÞ � B�ðvÞ
’epðu; vÞ þ B�ðvÞ � ’epðu; vÞ � B�ðvÞ

� �
;

where Fu ¼ fv 2 V j ’epðu; vÞ > B�ðvÞg.
(vi) If !2 takes Iy�0:5, then

A�ðuÞ ¼ inf
v2Fu

f1� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B�ðvÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R1ðu; vÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ðu; vÞ

p
Þ2g;

where Fu ¼ fv 2 V j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B�ðvÞp

>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R1ðu; vÞ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �ðu; vÞp g.

Proof. For the R-implication !2 2 fIL; IG ; IGo; I0; Iep; Iy�0:5g, it follows from

Theorem 4.2 that the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼ inf
v2V

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�ðvÞg; u 2 U ;

where T is the t-norm residual to !2 . We only prove the case of IL as an example,

the remainders can be proved similarly.

Let !2 be IL. We know from Lemma 4.1 that TLða; bÞ ¼ a þ b� 1; a þ b > 1

0; a þ b � 1

�
is the

mapping residual to IL. So, we get (u 2 U)

A�ðuÞ ¼ inf
v2V

fILðTLðR1ðu; vÞ; �ðu; vÞÞ;B�ðvÞÞg:

Suppose R1ðu; vÞ þ �ðu; vÞ � 1 holds, then TLðR1ðu; vÞ; �ðu; vÞÞ ¼ 0, and thus

ILðTLðR1ðu; vÞ; �ðu; vÞÞ;B�ðvÞÞ ¼ 1:

Suppose R1ðu; vÞ þ �ðu; vÞ > 1 holds, then

TLðR1ðu; vÞ; �ðu; vÞÞ ¼ R1ðu; vÞ þ �ðu; vÞ � 1:

If R1ðu; vÞ þ �ðu; vÞ � 1 � B�ðvÞ, then
ILðTLðR1ðu; vÞ; �ðu; vÞÞ;B�ðvÞÞ ¼ 1;

otherwise,

ILðTLðR1ðu; vÞ; �ðu; vÞÞ;B�ðvÞÞ
¼ 1� ðR1ðu; vÞ þ �ðu; vÞ � 1Þ þ B�ðvÞ
¼ 2� R1ðu; vÞ � �ðu; vÞ þ B�ðvÞ:

Denote Fu ¼ fv 2 V j R1ðu; vÞ þ �ðu; vÞ > 1; R1ðu; vÞ þ �ðu; vÞ � 1 > B�ðvÞg. It
is easy to know that

R1ðu; vÞ þ �ðu; vÞ � 1 > B�ðvÞ
implies

R1ðu; vÞ þ �ðu; vÞ > 1:
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Thus,

Fu ¼ fv 2 V j R1ðu; vÞ þ �ðu; vÞ � 1 > B�ðvÞg:
So, we obtain

A�ðuÞ ¼ inf
v2V

fILðTLðR1ðu; vÞ; �ðu; vÞÞ;B�ðvÞÞg
¼ ½ inf

v2Fu

fILðTLðR1ðu; vÞ; �ðu; vÞÞ;B�ðvÞÞg�
^ ½ inf

v2V�Fu

fILðTLðR1ðu; vÞ; �ðu; vÞÞ;B�ðvÞÞg�
¼ ½ inf

v2Fu

f2� R1ðu; vÞ � �ðu; vÞ þ B�ðvÞg�
^ ½ inf

v2V�Fu

f1g�; u 2 U :

If V � Fu ¼ �, then inf v2V�Fu
f1g ¼ inf � ¼ 1; otherwise we also have inf v2V�Fu

f1g
¼ 1. Therefore,

A�ðuÞ ¼ inf
v2Fu

f2� R1ðu; vÞ � �ðu; vÞ þ B�ðvÞgðu 2 UÞ:

5. ®(u,v)-FMT-Di®erently Implicational Algorithm for S-Implications

For the case of S-implication, the following Proposition 5.1 gives an equivalent form

for (5).

Proposition 5.1. Let !2 be an S-implication, then (5) is equivalent to the

following:

Sðg1ðu; vÞ;NðA�ðuÞÞÞ � �ðu; vÞ; ð14Þ
where g1ðu; vÞ ¼ SðNðR1ðu; vÞÞ;B�ðvÞÞ.
Proof. For the S-implication !2 , there exist a t-conorm S and a strong negation N

such that a!2 b ¼ SðNðaÞ; bÞ. Then, we get

R1ðu; vÞ !2 ðA�ðuÞ!2 B
�ðvÞÞ

¼ SðNðR1ðu; vÞÞ; SðNðA�ðuÞÞ;B�ðvÞÞÞ
¼ SðSðNðR1ðu; vÞÞ;B�ðvÞÞ;NðA�ðuÞÞÞ
¼ Sðg1ðu; vÞ;NðA�ðuÞÞÞ;

where we let g1ðu; vÞ ¼ SðNðR1ðu; vÞÞ;B�ðvÞÞ. Therefore, (5) is equivalent

to (14).

The following Proposition 5.2 provides a special �ðu; vÞ-MaxT-solution.

Proposition 5.2. Let !2 be an S-implication, and g1ðu; vÞ � �ðu; vÞ, then the

�ðu; vÞ-MaxT-solution is A�ðuÞ ¼ 1; u 2 U :

Proof. There are a t-conorm S and a strong negation N such that a!2 b ¼
SðNðaÞ; bÞ. Noting that g1ðu; vÞ � �ðu; vÞ, we get from the de¯nition of the t-conorm
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that

Sðg1ðu; vÞ;NðA�ðuÞÞÞ � g1ðu; vÞ � �ðu; vÞ:
So any fuzzy set A� in hFðUÞ; �F i can let (14) and (5) hold, and then be an

�ðu; vÞ-FMT-solution. Consequently, the maximum one (i.e., the �ðu; vÞ-MaxT-

solution) is A�ðuÞ ¼ 1; u 2 U :

The basic t-conorms are as follows (a; b 2 ½0; 1�):

(i) Maximum: SM ða; bÞ ¼ maxða; bÞ,
(ii) Probabilistic sum: SPða; bÞ ¼ a þ b� ab,

(iii) Lukasiewicz: SLK ða; bÞ ¼ minða þ b; 1Þ,
(iv) Nilpotent maximum:

SnM ða; bÞ ¼ 1; a þ b � 1;

maxða; bÞ; otherwise;

�

(v) Drastic sum:

SDða; bÞ ¼
1; a; b 2 ð0; 1�;
maxða; bÞ; otherwise:

�

The following Theorem 5.1 obtains the �ðu; vÞ-MaxT-solution for main t-con-

orms.

Theorem 5.1. Let !2 be an S-implication IS ;N , and Fu ¼ fv 2 V j g1ðu; vÞ <
�ðu; vÞg.
(i) If S takes SM , then the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼ inf
v2Fu

fN ð�ðu; vÞÞg; u 2 U :

(ii) If S takes SP , then the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼ inf
v2Fu

N
�ðu; vÞ � g1ðu; vÞ

1� g1ðu; vÞ
� �� �

; u 2 U :

(iii) If S takes SLK , then the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼ inf
v2Fu

fNð�ðu; vÞ � g1ðu; vÞÞg; u 2 U :

(iv) If S takes SnM , then the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼ inf
v2Fu

fNð�ðu; vÞÞ _ Nð1� g1ðu; vÞÞg; u 2 U :

Proof. Here, we only prove the case of (iii) as an example, the remainders can be

proved similarly. Note that N is a strong negation.

To begin with, we shall verify

A�ðuÞ ¼ inf
v2Fu

fNð�ðu; vÞ � g1ðu; vÞÞg; u 2 U ð15Þ

is an �ðu; vÞ-FMT-solution, i.e., B� can make (14) hold, which means that (5) holds.
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If y 62 Fu, then g1ðu; yÞ � �ðu; yÞ, and
SLK ðg1ðu; yÞ;NðA�ðuÞÞÞ � �ðu; yÞ;

i.e., (14) and (5) hold.

If y 2 Fu, then g1ðu; yÞ < �ðu; yÞ, and thus it follows from (15) and the property of

SLK that

SLK ðg1ðu; yÞ;NðA�ðuÞÞÞ
� SLK ðg1ðu; yÞ;NðNð�ðu; yÞ � g1ðu; yÞÞÞÞ
¼ SLK ðg1ðu; yÞ; �ðu; yÞ � g1ðu; yÞÞ
¼ g1ðu; yÞ þ �ðu; yÞ � g1ðu; yÞ
¼ �ðu; yÞ:

Then, (14) and (5) hold. Therefore, A� expressed as (15) is an �ðu; vÞ-FMT-solution,

i.e., A� 2 F�ðu;vÞ.
Furthermore, we shall verify that A� is the maximum of F�ðu;vÞ. Suppose that

C 2 hFðUÞ;�Fi, and that

R1ðu; vÞ!2 ðCðuÞ!2 B
�ðvÞÞ � �ðu; vÞ

holds for any u 2 U ; v 2 V , then it follows from Proposition 5.1 that

SLK ðg1ðu; vÞ;NðC ðuÞÞÞ � �ðu; vÞ ð16Þ

holds for any u 2 U ; v 2 V .

If Fu is empty, then it follows from (15) that A�ðuÞ ¼ 1, and thus A�ðuÞ � C ðuÞ
(u 2 U).

If Fu is not empty, then for any y 2 Fu, we have g1ðu; yÞ < �ðu; yÞ.
(a) If g1ðu; yÞ þ NðCðuÞÞ � 1, then

SLK ðg1ðu; yÞ;NðC ðuÞÞÞ ¼ 1:

Here,

NðC ðuÞÞ � 1� g1ðu; yÞ � �ðu; yÞ � g1ðu; yÞ
and then

CðuÞ � Nð�ðu; yÞ � g1ðu; yÞÞ:
Then, we get from (15) that

CðuÞ � A�ðuÞðu 2 UÞ:
(b) If g1ðu; yÞ þ NðCðuÞÞ < 1, then it follows from (16) that

SLK ðg1ðu; yÞ;NðCðuÞÞÞ ¼ g1ðu; yÞ þNðC ðuÞÞ � �ðu; yÞ:
Hence,

NðCðuÞÞ � �ðu; yÞ � g1ðu; yÞ
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and then

CðuÞ � Nð�ðu; yÞ � g1ðu; yÞÞ;
and thus C ðuÞ � A�ðuÞ (u 2 U).

Therefore, we have C �F A�. These imply that A� is the maximum of F�ðu;vÞ.
Together we obtain that A� is the �ðu; vÞ-MaxT-solution in the light of

De¯nition 3.2.

The following Proposition 5.3 proves the existence of �ðu; vÞ-SupT-quasi solution.
Proposition 5.3. For the �ðu; vÞ-FMT-di®erently implicational algorithm, there

exists a unique fuzzy set C � (in hFðUÞ;�Fi) such that

(C1) C �F C � for any C 2 F�ðu;vÞ, and
(C2) there is D 2 F�ðu;vÞ satisfying Dðu0Þ > C �ðu0Þ � " for any u0 2 U and " > 0,

then C � is the �ðu; vÞ-SupT-quasi solution.
Proof. It follows from Lemma 2.2 that hFðUÞ;�F i is a complete lattice. Since the

nonempty set F�ðu;vÞ � FðUÞ, we get that C � ¼ supF�ðu;vÞ uniquely exists. We shall

seek out the demanded C �.
Because h½0; 1�;�i is a complete lattice and fC ðu0Þj C 2 F�ðu;vÞg � ½0; 1� (u0 2 U),

it follows that

supfCðu0Þj C 2 F�ðu;vÞg,C1ðu0Þ
uniquely exists. From the de¯nition of supremum, we have that Cðu0Þ � C1ðu0Þ for
any C 2 F�ðu;vÞ and that there exists D 2 F�ðu;vÞ such that

Dðu0Þ > C1ðu0Þ � "

for any " > 0. Let u0 respectively takes every element in U , and then we achieve the

value of C1ðu0Þ for any u0 2 U , as a result, there exists a fuzzy set C � such that

C �ðuÞju¼u0
¼ C1ðu0Þ:

Consequently, C � satis¯es (C1).

Moreover, we already know that there exists D1 2 F�ðu;vÞ satisfying

D1ðu0Þ > C �ðu0Þ � "

for any u0 2 U and " > 0. Let u0 respectively takes every element in U , and then

there is a fuzzy set D making

DðuÞju¼u0
¼ D1ðu0Þ

hold, which is evidently what we demand. Therefore, (C2) holds for C �.
Since the partial order relation is according to the pointwise order, it is evident

to ¯nd

C � ¼ supF�ðu;vÞ;

and then C � is the �ðu; vÞ-SupT-quasi solution.
The following Proposition 5.4 gets the �ðu; vÞ-SupT-quasi solution for SD.
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Proposition 5.4. If !2 is an S-implication IS ;N , and S takes SD, then the

�ðu; vÞ-SupT-quasi solution is as follows:

A�ðuÞ ¼ inf
v2Fu

fN ð�ðu; vÞÞg; u 2 U ; ð17Þ

where Fu ¼ fv 2 V j g1ðu; vÞ ¼ 0g.
Proof. Note that N is a strong negation. We shall prove that A� expressed as (17)

satis¯es (C1) and (C2) in Proposition 5.3.

(i) Suppose that C is any fuzzy set in F�ðu;vÞ. Then, C makes (14), i.e.,

SDðg1ðu; vÞ;NðCðuÞÞÞ � �ðu; vÞ ð18Þ
hold for any u 2 U ; v 2 V .

If Fu 6¼ �, then for any y 2 Fu, we have g1ðu; yÞ ¼ 0 and A�ðuÞ ¼ inf v2Fu

fNð�ðu; vÞÞg. Then, it follows from (18) that

SDðg1ðu; yÞ;NðC ðuÞÞÞ ¼ SDð0;NðCðuÞÞÞ
¼ NðCðuÞÞ � �ðu; yÞ ðu 2 UÞ:

Then, CðuÞ � Nð�ðu; yÞÞ, and thus CðuÞ is a lower bound of fNð�ðu; vÞÞ j
v 2 Fug, and thus C ðuÞ � A�ðuÞ (u 2 U).

If Fu ¼ �, then it follows from (17) that A�ðuÞ ¼ 1 � CðuÞ (u 2 U).

Together, we have C �F A� for any C 2 F�ðu;vÞ, i.e., A� satis¯es (C1) in Prop-

osition 5.3.

(ii) For any " > 0, let

DðuÞ ¼
inf
v2Fu

fNð�ðu; vÞÞg; Fu 6¼ �;

1� "="0; Fu ¼ �;

(

where "0 is the integer satisfying "þ 1 < "0 � "þ 2. Thus, Dðu0Þ > A�ðu0Þ � "

for any u0 2 U .

We shall verify that Dðu0Þ makes (14), i.e.,

SDðg1ðu0; vÞ;NðDðu0ÞÞÞ � �ðu0; vÞ ð19Þ
hold for any v 2 V .

If Fu0
6¼ �, then Dðu0Þ ¼ inf v2Fu0

fNð�ðu0; vÞÞg < 1. It can be divided into two

cases. (a) If v 2 Fu0
, then g1ðu0; vÞ ¼ 0, and it follows from the property of SD that

SDðg1ðu0; vÞ;NðDðu0ÞÞÞ ¼ SDð0;NðDðu0ÞÞÞ
¼ NðDðu0ÞÞ ¼ Nð inf

v2Fu0

fNð�ðu0; vÞÞgÞ

� NðNð�ðu0; vÞÞÞ ¼ �ðu0; vÞ;
i.e., (19) holds. (b) If v 62 Fu0

, then g1ðu0; vÞ > 0, and thus we get from the property

of SD that SDðg1ðu0; vÞ;NðDðu0ÞÞÞ ¼ 1 � �ðu0; vÞ. So, we also get that (19) holds.
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If Fu0
¼ �, then Dðu0Þ ¼ 1� "="0 < 1 and g1ðu0; vÞ > 0 for any v 2 V , and it is

similar to validate that (19) holds. Together, we get D 2 F�ðu;vÞ, thus A� satis¯es

(C2) in Proposition 5.3.

Therefore, it follows from Proposition 5.3 that A� expressed as (17) is the

�ðu; vÞ-SupT-quasi solution.
Remark 5.1. If !2 is an S-implication IS ;N , and S takes SD, then the

�ðu; vÞ-MaxT-solution (i.e., the maximum of F�ðu;vÞ) cannot ensure to exist. In

fact, when there exists ðu0; v0Þ such that �ðu0; v0Þ > g1ðu0; v0Þ > 0 and Fu0
¼ �,

then A�ðu0Þ ¼ 1, and thus

SDðg1ðu0; v0Þ;NðA�ðu0ÞÞÞ ¼ SDðg1ðu0; v0Þ; 0Þ
¼ g1ðu0; v0Þ < �ðu0; v0Þ;

i.e., (14) does not hold, so the �ðu; vÞ-SupT-quasi solution A� 62 F�ðu;vÞ, which results

in that there does not exist the maximum of F�ðu;vÞ.

The following Lemma 5.1 shows some speci¯c S-implications.

Lemma 5.1. For the S-implication IS ;N , N takes Ns, then:

(i) If S takes SM , then the S-implication is IKDða; bÞ ¼ ð1� aÞ _ b;

(ii) If S takes SP , then the S-implication is IRC ða; bÞ ¼ 1� a þ ab;

(iii) If S takes SLK , then the S-implication is IL;

(iv) If S takes SnM , then the S-implication is I0;

(v) If S takes SD, then the S-implication is IDPða; bÞ ¼
b; a ¼ 1;

a 0; b ¼ 0;

1; otherwise:

8<
:

It is easy to prove Proposition 5.5 (from Theorem 5.1 and Proposition 5.4). It

shows speci¯c �ðu; vÞ-MaxT-solutions for some S-implications.

Proposition 5.5. Let the S-implication !2 2 fIKD; IRC ; IL; I0; IDPg, then:
(i) Let !2 take IKD, then the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼ inf
v2Fu

f1� �ðu; vÞg; u 2 U ;

where Fu ¼ fv 2 V j ðR1ðu; vÞÞ 0 _ B�ðvÞ < �ðu; vÞg.
(ii) Let !2 take IRC , then the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼ inf
v2Fu

1� �ðu; vÞ
R1ðu; vÞ � R1ðu; vÞ � B�ðvÞ

� �
; u 2 U ;

where Fu ¼ fv 2 V j ðR1ðu; vÞÞ 0 þ R1ðu; vÞ � B�ðvÞ < �ðu; vÞg.
(iii) Let !2 take IL, then the �ðu; vÞ-MaxT-solution is the same as Proposition 4.3

(i).

(iv) Let !2 take I0, then the �ðu; vÞ-MaxT-solution is the same as Proposition 4.3

(iv).
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(v) Let !2 take IDP , then the �ðu; vÞ-SupT-quasi solution is

A�ðuÞ ¼ inf
v2Fu

f1� �ðu; vÞg; u 2 U ;

where Fu ¼ fv 2 V j ðR1ðu; vÞÞ 0 _ B�ðvÞ ¼ 0g.
The contents given above focus on the case of speci¯c S-implications. Further-

more, we shall provide the uni¯ed form of the �ðu; vÞ-MaxT-solutions for S-impli-

cations from another viewpoint.

Theorem 5.2. If !2 is an S-implication IS ;N where S is right-continuous, then the

�ðu; vÞ-MaxT-solution can be computed as follows (u 2 U):

A�ðuÞ ¼ inf
v2V

fNðTðNðB�ðvÞÞ;TðR1ðu; vÞ; �ðu; vÞÞÞÞg; ð20Þ

in which T is the mapping residual to !2 .

Proof. It follows from Propositions 2.1 and 2.2 that the residual pair ðT ; !2 Þ does
exist. We shall verify A� expressed as (20) makes (5) hold for any u 2 U ; v 2 V .

Indeed, it follows from (20) that (u 2 U ; v 2 V )

A�ðuÞ � NðTðNðB�ðvÞÞ;TðR1ðu; vÞ; �ðu; vÞÞÞÞ:
It follows from Proposition 2.2 that the S-implication !2 satis¯es (P14) (w.r.t. the

strong negation N), and ðT ; !2 Þ is a residual pair, so we have (u 2 U ; v 2 V )

TðNðB�ðvÞÞ;TðR1ðu; vÞ; �ðu; vÞÞÞ � NðA�ðuÞÞ;
TðR1ðu; vÞ; �ðu; vÞÞ � NðB�ðvÞÞ!2 NðA�ðuÞÞ;
TðR1ðu; vÞ; �ðu; vÞÞ � A�ðuÞ!2 B

�ðvÞ:
Then, we obtain that (5) holds for any u 2 U ; v 2 V . Thus, A� 2 F�ðu;vÞ.

Next, we shall verify that A� is the maximum of F�ðu;vÞ. Suppose that

C 2 hFðUÞ;�Fi, and that

R1ðu; vÞ!2 ðCðuÞ!2 B
�ðvÞÞ � �ðu; vÞ

holds for any u 2 U ; v 2 V . Considering that ðT ; !2 Þ is a residual pair and that

!2 satis¯es (P14) w.r.t. N , we obtain (u 2 U ; v 2 V )

TðR1ðu; vÞ; �ðu; vÞÞ � CðuÞ!2 B
�ðvÞ;

TðR1ðu; vÞ; �ðu; vÞÞ � NðB�ðvÞÞ!2 NðC ðuÞÞ;
TðNðB�ðvÞÞ;TðR1ðu; vÞ; �ðu; vÞÞÞ � NðCðuÞÞ;
CðuÞ � NðTðNðB�ðvÞÞ;TðR1ðu; vÞ; �ðu; vÞÞÞÞ:

Thus, C ðuÞ is a lower bound of (u 2 U)

fNðTðNðB�ðvÞÞ;TðR1ðu; vÞ; �ðu; vÞÞÞÞj v 2 Vg:
Hence, it follows from (20) that C �F A�. These imply that A� is the maximum of

F�ðu;vÞ.
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Together, we achieve that A� is the �ðu; vÞ-MaxT-solution by virtue of

De¯nition 3.2.

Remark 5.2. Since SM ; SP ; SLK ; SnM are right-continuous, we get from Theorem

5.2 that the �ðu; vÞ-MaxT-solution can be expressed as (20) for related

S-implications, which can also obtain corresponding conclusions for IKD; IRC ; IL; I0
in Proposition 5.5.

Proposition 5.6. If !2 is an S-implication IS ;N where S is right-continuous, and

!2 is also an R-implication, then (u 2 U ; v 2 V )

NðTðNðB�ðvÞÞ;TðR1ðu; vÞ; �ðu; vÞÞÞÞ ¼ TðR1ðu; vÞ; �ðu; vÞÞ!2 B
�ðvÞ; ð21Þ

where T is the mapping residual to !2 .

Proof. Suppose that any x 2 ½0; 1�. From the conditions (that !2 satis¯es)

together with the residuation condition, we know that the following formulas are

equivalent to each other (u 2 U ; v 2 V ):

x � NðTðNðB�ðvÞÞ;TðR1ðu; vÞ; �ðu; vÞÞÞÞ;
TðNðB�ðvÞÞ;TðR1ðu; vÞ; �ðu; vÞÞÞ � NðxÞ;
TðR1ðu; vÞ; �ðu; vÞÞ � NðB�ðvÞÞ!2 NðxÞ;
TðR1ðu; vÞ; �ðu; vÞÞ � x!2 B

�ðvÞ;
x � TðR1ðu; vÞ; �ðu; vÞÞ!2 B

�ðvÞ:

Because x is arbitrary, it follows that (21) holds.

Remark 5.3. When !2 is an S-implication IS ;N where S is right-continuous, and

!2 is also an R-implication, it follows from Proposition 5.6 that the �ðu; vÞ-MaxT-

solutions obtained from Theorems 4.2 and 5.2 are equivalent.

If there exist n rules instead of only one rule, then the FMT problem (2) should be

transformed into:

FMT : from Ai ! Bi and B�; calculate A�: ð22Þ

For such case, the general rule is frequently chosen to be

GRðu; vÞ, _n
i¼1 ðAiðuÞ!1 BiðvÞÞ

(see Refs. 13–15, 19). Therefore, (5) should be changed to:

GRðu; vÞ!2 ðA�ðuÞ!2 B
�ðvÞÞ � �ðu; vÞ: ð23Þ

Suppose that !2 employs an R-implication or S-implication, and that the

�ðu; vÞ-MaxT-solution from (5) is  ðAðuÞ!1 BðvÞÞ, then it is easy to ¯nd that the

�ðu; vÞ-MaxT-solution derived from (23) is  ðGRðu; vÞÞ.
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6. Continuity of the ®(u,v)-FMT-Di®erently Implicational Algorithm

Suppose that d is a distance between fuzzy sets.

De¯nition 6.1. A fuzzy reasoning method for FMT (2) is a mapping

g : FðV Þ ! FðUÞ.
(i) For any " > 0, if there exists � > 0 making dðgðB �

1Þ; gðB �
2ÞÞ < " whenever dðB �

1 ;

B �
2Þ < � for any B �

1 ;B
�
2 2 FðV Þ, then g is said to be uniformly continuous in

metric d;

(ii) For any " > 0, if there exists � > 0making dðgðB�Þ; gðBÞÞ < "whenever dðB�;BÞ <
� for any B� 2 FðV Þ, then g is said to be continuous at B 2 FðV Þ in metric d.

Because the practical problems frequently contain ¯nite elements, we suppose

that U ;V are ¯nite, i.e., U ¼ fu1; u2; . . . ; umg, V ¼ fv1; v2; . . . ; vng. Here we con-

sider the two frequently used metrics, i.e., the uniform metric dUF and Hamming

metric dHM as follows (where A;B 2 FðUÞ):

dUFðA;BÞ ¼ sup
u2U

jAðuÞ � BðuÞj;

dHMðA;BÞ ¼
1

m

X
u2U

jAðuÞ � BðuÞj:

It is easy to prove Lemma 6.1.

Lemma 6.1. ja ^ c � b ^ cj � ja � bj, ja _ c � b _ cj � ja � bj, where a; b; c 2 ½0; 1�.
In Ref. 29, the following Lemma is obtained.

Lemma 6.2. If U ! R mappings f ; g are bounded, in which U is a nonempty set and

R is the set of real number, then for any u 2 U , we have

(i) j supu2U f ðuÞ � supu2U gðuÞ j � supu2U j f ðuÞ � gðuÞj;
(ii) j infu2U f ðuÞ � infu2U gðuÞ j � supu2U j f ðuÞ � gðuÞj.

It is easy to obtain Lemma 6.3.

Lemma 6.3. dHMðA;BÞ � dUFðA;BÞ, in which A;B 2 FðUÞ.
Lemma 6.4. If the �ðu; vÞ-FMT-di®erently implicational algorithm is uniformly

continuous in dUF, then it is also uniformly continuous in dHM.

Proof. Suppose that the �ðu; vÞ-FMT-di®erently implicational algorithm

is uniformly continuous in dUF. Then for any " > 0, there exists � > 0 making

dUFðgðB �
1Þ; gðB �

2ÞÞ < " whenever dUFðB �
1 ;B

�
2Þ < � for any B �

1 ;B
�
2 2 FðV Þ. It follows

from Lemma 6.3 that dHMðgðB �
1Þ; gðB �

2ÞÞ � dUFðgðB �
1Þ; gðB �

2ÞÞ < ". As a result,

the �ðu; vÞ-FMT-di®erently implicational algorithm is also uniformly continuous

in dHM.
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Theorem 6.1. Assume that the R-implication !2 satis¯es

(P15) I is continuous w.r.t. the second variable,

then the �ðu; vÞ-FMT-di®erently implicational algorithm is uniformly continuous in

dUF, and thus continuous in dUF.

Proof. Aiming at any inputs B �
1 ;B

�
2 2 FðV Þ, we shall verify the continuous

property of the �ðu; vÞ-FMT-di®erently implicational algorithm. Note that !2

satis¯es (P15), so !2 is uniformly continuous w.r.t. its second variable on [0,1]. As a

result, for any " > 0, there exists �1 > 0 making

j ðTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
1ðvÞÞ � ðTðR1ðu; vÞ; �ðu; vÞÞ!2 B

�
2ðvÞÞ j < " ð24Þ

hold if jB �
1ðvÞ � B �

2ðvÞj < �1 (v 2 V ).

It follows from Theorem 4.2 that the �ðu; vÞ-MaxT-solutions for B �
1 ;B

�
2 are as

follows respectively:

A�
1ðuÞ ¼ inf

v2V
fTðR1ðu; vÞ; �ðu; vÞÞ!2 B

�
1ðvÞg; u 2 U ;

A�
2ðuÞ ¼ inf

v2V
fTðR1ðu; vÞ; �ðu; vÞÞ!2 B

�
2ðvÞg; u 2 U :

We employ � ¼ �1. Suppose that

dUFðB �
1 ;B

�
2Þ < �:

Then, supv2V jB �
1ðvÞ � B �

2ðvÞj < � and jB �
1ðvÞ � B �

2ðvÞj < � ¼ �1 (v 2 V ). So (24)

holds, and according to Lemmas 6.1 and 6.2, we get

dUF ðA�
1;A

�
2Þ

¼ sup
u2U

jA�
1ðuÞ � A�

2ðuÞj

¼ sup
u2U

j inf
v2V

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
1ðvÞg

� inf
v2V

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
2ðvÞgj

� sup
u2U

sup
v2V

jðTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
1ðvÞÞ

� ðTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
2ðvÞÞj

< sup
u2U

sup
v2V

" ¼ ":

That is, there exists � > 0 such that dUFðA�
1;A

�
2Þ < " if dUFðB �

1 ;B
�
2Þ < �, therefore

the �ðu; vÞ-FMT-di®erently implicational algorithm is uniformly continuous in dUF.

And thus it is also continuous in dUF.

It follows from Theorem 6.1 and Lemma 6.4 that we can obtain Theorem 6.2.

Theorem 6.2. Assume that the R-implication !2 satis¯es (P15), then the

�ðu; vÞ-FMT-di®erently implicational algorithm is uniformly continuous in dHM,

and thus continuous in dHM.
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Theorems 6.1 and 6.2 veri¯es the continuity of the �ðu; vÞ-FMT-di®erently

implicational algorithm for the R-implication satisfying (P15).

For !2 2 fIL; IGo; Iep; Iy�0:5g, !2 satis¯es (P15). So, we can get Proposition 6.1.

It provides the continuous result for some speci¯c R-implications.

Proposition 6.1. If !2 2 fIL; IGo; Iep; Iy�0:5g, then the �ðu; vÞ-FMT-di®erently

implicational algorithm is uniformly continuous in d 2 fdUF; dHMg, and thus

continuous in d 2 fdUF; dHMg.
Moreover, when !2 is only right-continuous w.r.t. the second variable, whether

is the �ðu; vÞ-FMT-di®erently implicational algorithm continuous? Here, we shall

analyze the typical case of !2 2 fI0; IGg.
Proposition 6.2. For any B �

1 ;B
�
2 2 FðV Þ, there exists �0 > 0 such that if

dUFðB �
1 ;B

�
2Þ < �0, then F1u ¼ F2u (u 2 U), in which F1u ¼ fv 2 V jTðR1ðu; vÞ;

�ðu; vÞÞ > B �
1ðvÞg, F2u ¼ fv 2 V jTðR1ðu; vÞ; �ðu; vÞÞ > B �

2ðvÞg.
Proof. For any u 2 U , we shall analyze the relationship between F1u and F2u. We

employ

�1 ¼ min
v2F1u

½TðR1ðu; vÞ; �ðu; vÞÞ � B �
1ðvÞ�:

Obviously, we have

TðR1ðu; vÞ; �ðu; vÞÞ � B �
1ðvÞ � �1 > 0 ðv 2 V Þ: ð25Þ

Suppose that dUFðB �
1 ;B

�
2Þ < �1. Then, supv2V jB �

1ðvÞ � B �
2ðvÞj < �1, and thus we get

B �
1ðvÞ � �1 < B �

2ðvÞ < B �
1ðvÞ þ �1ðv 2 V Þ: ð26Þ

For any v0 2 F1u, we get TðR1ðu; v0Þ; �ðu; v0ÞÞ � B �
1ðv0Þ > 0, and it follows

from (25), (26) that

B �
2ðv0Þ < B �

1ðv0Þ þ �1 � B �
1ðv0Þ þ ½TðR1ðu; v0Þ; �ðu; v0ÞÞ � B �

1ðv0Þ�
¼ TðR1ðu; v0Þ; �ðu; v0ÞÞ;

thus, v0 2 F2u , hence, we get F1u � F2u.

Take

�2 ¼ min
v2F2u

½TðR1ðu; vÞ; �ðu; vÞÞ � B �
2ðvÞ�:

Similarly, we can obtain F2u � F1u if dUFðB �
1 ;B

�
2Þ < �2.

Choose

�0 ¼ minf�1; �2g;
thus F1u � F2u and F2u � F1u if dUFðB �

1 ;B
�
2Þ < �0. Consequently, we achieve that if

dUFðB �
1 ;B

�
2Þ < �0 then F1u ¼ F2u.

Theorem 6.3. If !2 2 fI0; IGg, then the �ðu; vÞ-FMT-di®erently implicational

algorithm is uniformly continuous in dUF, and thus continuous in dUF.
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Proof. We only prove the case of I0, while the case of IG can be similarly veri¯ed.

Suppose that !2 takes I0. It follows from Proposition 6.2 that there exists �0 > 0

such that F1u ¼ F2u if dUFðB �
1 ;B

�
2Þ < �0 (u 2 U). For any " > 0, take

� ¼ minf�0; "g:
Suppose that dUFðB �

1 ;B
�
2Þ < �. Then, we have

F1u ¼ F2u ðu 2 UÞ;
and jB �

1ðvÞ � B �
2ðvÞj < � (v 2 V ). Thus, it follows from Theorem 4.2, Lemmas 6.1

and 6.2 that if F1u 6¼ �, then

dUFðA�
1;A

�
2Þ

¼ sup
u2U

jA�
1ðuÞ � A�

2ðuÞj

¼ sup
u2U

j inf
v2V

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
1ðvÞg

� inf
v2V

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
2ðvÞgj

¼ sup
u2U

j inf
v2F1u

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
1ðvÞg

� inf
v2F2u

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
2ðvÞgj

¼ sup
u2U

j inf
v2F1u

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
1ðvÞg

� inf
v2F1u

fTðR1ðu; vÞ; �ðu; vÞÞ!2 B
�
2ðvÞgj

¼ sup
u2U

j inf
v2F1u

f½1� ðR1ðu; vÞ; �ðu; vÞÞ� _ B �
1ðvÞg

� inf
v2F1u

f½1� ðR1ðu; vÞ; �ðu; vÞÞ� _ B �
2ðvÞgj

� sup
u2U

inf
v2F1u

jf½1� ðR1ðu; vÞ; �ðu; vÞÞ� _ B �
1ðvÞg

� f½1� ðR1ðu; vÞ; �ðu; vÞÞ� _ B �
2ðvÞgj

� sup
u2U

inf
v2F1u

jB �
1ðvÞ � B �

2ðvÞj

< sup
u2U

inf
v2F1u

�

¼ �

� ":

If F1u ¼ �, then we get

dUFðA�
1;A

�
2Þ ¼ sup

u2U
j 1� 1 j ¼ 0 < ":

That is, there always exists � > 0 such that dUFðA�
1;A

�
2Þ < " if dUFðB �

1 ;B
�
2Þ < �,

therefore the �ðu; vÞ-FMT-di®erently implicational algorithm is uniformly continu-

ous in dUF, and then it is continuous in dUF.
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We can get Theorem 6.4 from Theorem 6.3 and Lemma 6.4.

Theorem 6.4. If !2 2 fI0; IGg, then the �ðu; vÞ-FMT-di®erently implicational

algorithm is uniformly continuous in dHM, and thus continuous in dHM.

Proposition 6.2, Theorems 6.3 and 6.4 prove the continuity of the �ðu; vÞ-FMT-

di®erently implicational algorithm in which !2 2 fI0; IGg.
Proposition 6.3. For any B �

1 ;B
�
2 2 FðV Þ, there exists �0 > 0 such that if

dUFðB �
1 ;B

�
2Þ < �0, then G1u ¼ G2u (u 2 U), in which G1u ¼ fv 2 V j ðR1ðu; vÞÞ 0 _

B �
1ðvÞ < �ðu; vÞg, G2u ¼ fv 2 V j ðR1ðu; vÞÞ 0 _ B �

2ðvÞ < �ðu; vÞg.
Proof. Denote

G �
1u ¼ fv 2 V jB �

1ðvÞ < �ðu; vÞg;
G �

2u ¼ fv 2 V jB �
2ðvÞ < �ðu; vÞg;

G ��
u ¼ fv 2 V j ðR1ðu; vÞÞ 0 < �ðu; vÞg:

Then, we get

G1u ¼ G �
1u [G ��

u ; ð27Þ
G2u ¼ G �

2u [G ��
u : ð28Þ

We take

�1 ¼ min
v2G �

1u

½�ðu; vÞ � B �
1ðvÞ�:

Obviously, we have

�ðu; vÞ � B �
1ðvÞ � �1 > 0 ðv 2 V Þ: ð29Þ

Suppose that dUFðB �
1 ;B

�
2Þ < �1. Then, supv2V jB �

1ðvÞ � B �
2ðvÞj < �1, and thus we get

B �
1ðvÞ � �1 < B �

2ðvÞ < B �
1ðvÞ þ �1ðv 2 V Þ: ð30Þ

For any v0 2 G �
1u, we get �ðu; v0Þ � B �

1ðv0Þ > 0, and it follows from (29), (30) that

B �
2ðv0Þ < B �

1ðv0Þ þ �1 � B �
1ðv0Þ þ ½�ðu; v0Þ � B �

1ðv0Þ� ¼ �ðu; v0Þ;
thus v0 2 G �

2u, hence, we get G �
1u � G �

2u.

Take

�2 ¼ min
v2G �

2u

½�ðu; vÞ � B �
2ðvÞ�:

Similarly, we can obtain G �
2u � G �

1u if dUFðB �
1 ;B

�
2Þ < �2.

Choose

�0 ¼ minf�1; �2g:
Therefore, it follows from (27) and (28) that if dUFðB �

1 ;B
�
2Þ < �0, then G �

1u ¼ G �
2u

and thus G1u ¼ G2u.
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Theorem 6.5. If !2 takes IKD, then the �ðu; vÞ-FMT-di®erently implicational

algorithm is uniformly continuous in dUF , and thus continuous in dUF.

Proof. Suppose that !2 employs IKD. We get from Proposition 6.3 that there

exists �0 > 0 making G1u ¼ G2u if dUFðB �
1 ;B

�
2Þ < �0 (u 2 U). For any " > 0, choose

� ¼ minf�0; "g:
Suppose that dUFðB �

1 ;B
�
2Þ < �. Then, we get

G1u ¼ G2u ðu 2 UÞ;
and jB �

1ðvÞ � B �
2ðvÞj < � (v 2 V ). So we get from Proposition 5.5, Lemmas 6.1

and 6.2 that if G1u 6¼ � then

dUFðA�
1;A

�
2Þ

¼ sup
u2U

jA�
1ðuÞ � A�

2ðuÞj

¼ sup
u2U

j inf
v2V

f1� �ðu; vÞg � inf
v2V

f1� �ðu; vÞgj

¼ sup
u2U

j inf
v2G1u

f1� �ðu; vÞg � inf
v2G2u

f1� �ðu; vÞgj

¼ sup
u2U

j inf
v2G1u

f1� �ðu; vÞg � inf
v2G1u

f1� �ðu; vÞgj

� sup
u2U

inf
v2G1u

j½1� �ðu; vÞ� � ½1� �ðu; vÞ�j

¼ sup
u2U

inf
v2G1u

0

¼ 0

< ":

If G1u ¼ �, then we obtain

dUFðA�
1;A

�
2Þ ¼ sup

u2U
j 1� 1 j ¼ 0 < ":

Consequently, there always exists � > 0 letting dUFðA�
1;A

�
2Þ < " if dUFðB �

1 ;B
�
2Þ < �,

therefore the �ðu; vÞ-FMT-di®erently implicational algorithm is uniformly contin-

uous in dUF, and thus it is continuous in dUF.

From Theorem 6.5 and Lemma 6.4, we can prove Theorem 6.6.

Theorem 6.6. If !2 takes IKD, then the �ðu; vÞ-FMT-di®erently implicational

algorithm is uniformly continuous in dHM, and thus continuous in dHM.

Proposition 6.3, Theorems 6.5 and 6.6 verify the continuity of the �ðu; vÞ-FMT-

di®erently implicational algorithm where !2 takes IKD.

Remark 6.1. For all R-implications, the �ðu; vÞ-FMT-di®erently implicational

algorithm (where !2 2 fIL; IG ; IGo; I0; Iep; Iy�0:5g) is uniformly continuous and

continuous in dUF; dHM. In ¯ve typical S-implications, the �ðu; vÞ-FMT-di®erently

implicational algorithm where !2 2 fI0; IL; IKDg is uniformly continuous and

Variable Di®erently Implicational Inference 1259



continuous in dUF; dHM. When !2 2 fIRC ; IDPg, corresponding continuity cannot

be assured. To sum up, the continuity of the �ðu; vÞ-FMT-di®erently implicational

algorithm seems excellent.

7. Examples

Here, we shall provide two speci¯c examples (including a continuous case and a

discrete one) to deal with �ðu; vÞ-FMT-di®erently implicational algorithm, where

IL; I0 are R-implications and also S-implications and IRC is an S-implication.

Example 7.1. Let U ¼ V ¼ ½0; 1�, AðuÞ ¼ ðu þ 1Þ=3, BðvÞ ¼ 1� v, B�ðvÞ ¼ 2=3

and �ðu; vÞ ¼ ð6þ v � uÞ=9 (in which u; v 2 ½0; 1�). Suppose that !2 ¼ IL, !1 ¼
I0 in the �ðu; vÞ-FMT-di®erently implicational algorithm. We now calculate the

�ðu; vÞ-MaxT-solution from Theorem 4.2 (which is more universal than Proposi-

tion 4.3(i)).

R1ðu; vÞ ¼ AðuÞ!1 BðvÞ

¼
2� u

3
_ ð1� vÞ; if u þ 3v > 2;

1; if u þ 3v � 2:

8<
:

It follows from Theorem 4.2 that the �ðu; vÞ-MaxT-solution is as follows (u 2 U):

A�ðuÞ ¼ inf
v2V

fTLðR1ðu; vÞ; �ðu; vÞÞ!2 B
�ðvÞg

¼ inf TL

2� u

3
_ ð1� vÞ; 6þ v � u

9

� �
!2

2

3
v 2 ½0; 1�; u þ 3v > 2

����
� �

^ inf TL 1;
6þ v � u

9

� �
!2

2

3
v 2 ½0; 1�; u þ 3v � 2

����
� �

:

Obviously, u þ 3v > 2 implies 3v > 2� u � 1 and

TL

2� u

3
_ ð1� vÞ; 6þ v � u

9

� �
� 2� u

3
_ ð1� vÞ � 2

3
;

TL

2� u

3
_ ð1� vÞ; 6þ v � u

9

� �
!2

2

3
¼ 1:

Thus, we obtain that

A�ðuÞ ¼ inf TL 1;
6þ v � u

9

� �
!2

2

3

���� v 2 ½0; 1�; u þ 3v � 2

� �

¼ inf
6þ v � u

9
!2

2

3

���� v 2 ½0; 1�; u þ 3v � 2

� �

¼ inf 1� 6þ v � u

9
þ 2

3

���� v 2 ½0; 1�; u þ 3v � 2;
6þ v � u

9
>

2

3

� �
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¼ inf
9� v þ u

9
v 2 ½0; 1�; 2� u

3
� v > u

����
� �

:

We have two cases to be considered:

(a) Suppose that ð2� uÞ=3 > u, i.e., u < 1=2, thus

fv 2 ½0; 1�; ð2� uÞ=3 � v > ug 6¼ �;

taking into account that ð9� v þ uÞ=9 is nonincreasing w.r.t v, we have

A�ðuÞ ¼ 9� 2�u
3 þ u

9
¼ 25þ 4u

27
:

(b) Suppose that ð2� uÞ=3 � u, i.e., u � 1=2, thus

fv 2 ½0; 1�; ð2� uÞ=3 � v > ug ¼ �;

we get A�ðuÞ ¼ inf � ¼ 1.

Together, we obtain that the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼
25þ 4u

27
; u <

1

2
;

1; u � 1

2
:

8>><
>>:

Example 7.2. Let �ðu; vÞ ¼ ðu2 � vÞ=2, and U ¼ fu1g where u1 ¼ 1:2, and

V ¼ fv1; v2; v3; v4g where v1 ¼ 0:0; v2 ¼ 0:2; v3 ¼ 0:4; v4 ¼ 0:6. The rules and inputs

are as follows:

A1 ¼
0:3

u1

; B1 ¼
0:8

v1
þ 0:4

v2
þ 1:0

v3
þ 0:6

v4
;

A2 ¼
0:3

u1

; B2 ¼
0:0

v1
þ 0:7

v2
þ 0:3

v3
þ 0:5

v4
;

A3 ¼
0:6

u1

; B3 ¼
0:7

v1
þ 0:3

v2
þ 0:9

v3
þ 0:2

v4
;

A4 ¼
0:9

u1

; B4 ¼
0:2

v1
þ 0:5

v2
þ 0:8

v3
þ 0:7

v4
;

A5 ¼
0:9

u1

; B5 ¼
0:5

v1
þ 0:9

v2
þ 0:5

v3
þ 0:0

v4
;

B� ¼ 0:3

v1
þ 0:4

v2
þ 0:5

v3
þ 0:8

v4
:

This is an example for fuzzy classi¯cation based on fuzzy expert system, in which

three classes respectively correpond to Aðu1Þ ¼ 0:3;Aðu1Þ ¼ 0:6;Aðu1Þ ¼ 0:9.

Suppose !2 ¼ IL, !1 ¼ IRC in the variable di®erently implicational algorithm

for FMT. From Proposition 4.3, we can obtain the �ðu; vÞ-MaxT-solution is

A�ðuÞ ¼ inf
v2Fu

f2�GRðu; vÞ � �ðu; vÞ þ B�ðvÞg;
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where

Fu ¼ fv 2 V jGRðu; vÞ þ �ðu; vÞ � 1 > B�ðvÞg:

We have:

GRðu1; v1Þ ¼ _ 5
i¼1ðAiðu1Þ!1 Biðv1ÞÞ

¼ ð0:3!1 0:8Þ _ ð0:3!1 0:0Þ _ ð0:6!1 0:7Þ
_ ð0:9!1 0:2Þ _ ð0:9!1 0:5Þ

¼ 0:94 _ 0:7 _ 0:82 _ 0:28 _ 0:55 ¼ 0:94:

Similarly, we can get

GRðu1; v2Þ ¼ 0:82 _ 0:91 _ 0:58 _ 0:55 _ 0:91 ¼ 0:91:

GRðu1; v3Þ ¼ 1:0 _ 0:79 _ 0:94 _ 0:82 _ 0:55 ¼ 1:0:

GRðu1; v4Þ ¼ 0:88 _ 0:85 _ 0:52 _ 0:73 _ 0:1 ¼ 0:88:

For u1 ¼ 1:2, it is easy to ¯nd Fu1
¼ fv1; v2; v3g. As a result, we obtain the

�ðu; vÞ-MaxT-solution as follows:

A�ðu1Þ ¼ inf
v2Fu1

f2�GRðu1; vÞ � �ðu1; vÞ þ B�ðvÞg;

¼ ½2�GRðu1; v1Þ � �ðu1; v1Þ þ B�ðv1Þ� _ . . .

_ ½2�GRðu1; v3Þ � �ðu1; v3Þ þ B�ðv3Þ�
¼ ½2� 0:94� �ð1:2; 0:0Þ þ 0:3�

_ ½2� 0:91� �ð1:2; 0:2Þ þ 0:4�
_ ½2� 1:0� �ð1:2; 0:4Þ þ 0:5�

¼ 0:64 _ 0:87 _ 0:98 ¼ 0:98:

Because 0.98 is nearest to 0.9, the third class is what we need.

8. Conclusions

In this paper, the variable di®erently implicational algorithm is investigated for the

FMT problem. First of all, fundamental properties of the variable di®erently

implicational algorithm for FMT are researched. Especially, new di®erently impli-

cational principle for FMT is proposed, which improves the previous one in Ref. 15.

Then, uni¯ed forms of variable di®erently implicational algorithm are achieved for

FMT, in which !2 respectively employs the R-implication and S-implication.

Furthermore, the optimal solutions of variable di®erently implicational algorithm for

FMT are provided for six R-implications and ¯ve S-implications. After that, as for

the important index of continuity, this algorithm is uniformly continuous and con-

tinuous for all R-implications and most of S-implication, and then its continuity

seems excellent. Finally, two speci¯c computing examples (including a continuous
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case and a discrete one) of variable di®erently implicational algorithm for FMT

are shown.

Furthermore, some other properties of the variable di®erently implicational al-

gorithm (e.g., robustness, stability30,31), and how to reasonably design corresponding

fuzzy system,32,33 and how to apply it to decision making,34–36 will be our next work

emphases.
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