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As a generalization of the compositional rule of inference (CRI) algorithm and the fully
implicational algorithm, the differently implicational algorithm of fuzzy inference not only
inherit the advantages of the fully implicational algorithm, but also has stronger practicability.
Then, the variable differently implicational algorithm was proposed to make the current dif-
ferently implicational algorithms compose a united whole. In this paper, the variable differently
implicational algorithm is further researched focusing on the fuzzy modus tollens (FMT)
problem. The differently implicational principle for FMT is improved. Moreover, the unified
solutions of the variable differently implicational algorithm for FMT are accomplished for R-
and S-implications. Following that, as an important index of fuzzy inference, the continuity of
this algorithm is analyzed for main R- and S-implications, in which excellent performance is
obtained. Finally, its optimal solutions as well as inference examples are provided for several
specific R- and S-implications.

Keywords: Fuzzy inference; fuzzy modus tollens; fuzzy implication; compositional rule of in-
ference; fully implicational algorithm.

1. Introduction

Fuzzy inference is an advanced computing framework based on the concepts of fuzzy
set, fuzzy if-then rule, approximate inference, which has significant application value
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in fuzzy control, pattern recognition, machine learning, affective computing and so
on.' It has two fundamental problems, which are called fuzzy modus ponens (FMP)
and fuzzy modus tollens (FMT) which are expressed as follows:

FMP : from A — B and A*, compute B*, (1)
FMT : from A — B and B*, compute A*. (2)

Here, A, A* € F(U), B,B* € F(V), in which F(U), F(V) respectively denotes the
set of fuzzy subsets of U, V. The compositional rule of inference (CRI) algorithm
proposed by Zadeh is the classical and widely used algorithm.*® As its modification,
the fully implicational algorithm was proposed by Wang in 1999.%7 Its optimal
solution is the smallest B* € F(V) (or the largest A* € F(U)) making

(A(u) = B(v)) = (4(u) = B*(v)) > @ 3)

hold for any v € U, v € V (in which « € (0,1], and — is a fuzzy implication). It is
verified that the fully implicational algorithm has many wonderful merits, which lie
in its strict logic basis, reversibility properties, the ability of pointwise optimization
and so on.® ! However, it is not perfect from the view of some kind of fuzzy system
owing to its weak response ability and practicability.'?

Aiming at such problem, in Ref. 15, the fully implicational algorithm was gen-
eralized to the differently implicational algorithm. Its solution is the smallest B* €

F(V) (or the largest A* € F(U)) letting
(A(u) =1 B(v)) =2 (A"(u) =2 B*(v)) 2 o, (4)

hold for any u € U,v € V (a € (0,1]). The differently implicational algorithm also
takes the CRI algorithm as its special case.'” In Ref. 16, the differently implicational
algorithm was discussed for FMP, in which reversibility properties and more general
fuzzy systems were researched, and it was applied to emotion polarity recognition. In
Ref. 17, the differently implicational algorithm was investigated for FMP and FMT
from the meaning of fuzzy reasoning as well as fuzzy controller, in which the R-
implications, (0,1)-implications, as well as the expansion, reduction and other type
operators were respectively employed. Its optimal solutions were obtained with
verifying its reversibility, and the response abilities of corresponding fuzzy controllers
were researched. In Ref. 18, it was found that 190 fuzzy systems via the differently
implicational algorithm could be used in practical systems, while 19 fuzzy systems via
the CRI method and two ones via the fully implicational algorithm were practicable.
So the differently implicational algorithm has larger effective choosing space, which
can achieve more usable fuzzy systems comparing with the fully implicational al-
gorithm and the CRI algorithm. To sum up, the differently implicational algorithm
not only inherit the advantages of the fully implicational algorithm, but also has
stronger practicability.

Furthermore, to reveal the inherent essence of current differently implicational
algorithms, the variable differently implicational algorithm was put forward in
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Ref. 19, which aimed at
(A(w) =1 B(v)) =2 (A" (u) =2 B*(v)) = a(u, v). (5)

Here, a(u, v) is a variable parameter (a(u, v) € [0,1]). Focusing on the FMP prob-
lem, the optimal solutions of the variable differently implicational algorithm were
analyzed and obtained in Ref. 19. This algorithm makes the current differently
implicational algorithms compose a united whole.

As mentioned above, the FMP and FMT problems are two fundamental problems
of fuzzy inference. As a result, it is valuable to research the variable differently
implicational algorithm for the FMT problem, which constructs the main aim of
this paper.

For a fuzzy inference method, it is hopeful that small input deviation does not lead
to the huge deviation of the reasoning result. This is called the index of continuity,
which is recognized as an important index for fuzzy reasoning. Here, we will discuss
the continuity of the variable differently implicational algorithm for FMT.

This paper is organized as follows. Section 2 is the preliminaries. Section 3 gives
the basic principle, definitions and general results of the variable differently impli-
cational algorithm for FMT. Section 4 establishes the unified forms of the variable
differently implicational algorithm for FMT, where —, takes an R-implication. In
Sec. 5, we research the variable differently implicational algorithm for FMT aiming
at the case of S-implications. In Sec. 6, we analyze the continuity of the variable
differently implicational algorithm for FMT in which —, takes an R-implication or
S-implication. Section 7 provides two specific computing examples. Lastly, Sec. 8
draws the conclusions for the whole paper.

2. Preliminaries

There are several definitions of fuzzy implications. But all of these definitions need to
maintain consistency with classical logic. So the basic one as Definition 2.1 is

employed, which is also chosen by many papers.?*1719

Definition 2.1. A fuzzy implication on [0,1] is a function I:[0,1]> — [0,1]
satisfying

(P1) 1(0,0) = 1(0,1) = I(1,1) = 1, I(1,0) = 0.

I(a, b) can also be denoted as a — b (a, b € [0,1]).

In Ref. 20, the following definition is provided.

Definition 2.2. Suppose that T, I are two [0,1]> — [0, 1] functions. (T, I) is called
a residual pair or, T and I are residual to each other, if the following residuation
condition holds:

T(a,b) < c<=b<I(a,c)(a,b, cel0,1]). (6)

In Refs. 19 and 21, the following proposition is shown.
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Proposition 2.1. If I is a fuzzy implication which satisfies

(P2) I(a,1) =1, a € [0, 1],
(P3) I(a,b) > I(a,c) if b> ¢, a,b,c€[0,1],
(P4) I(a,b) is right-continuous with respect to (w.r.t. for short) b, a,b € [0, 1],

then the function T : [0,1]* — [0, 1] ezpressed as
T(a,b) =inf{z €[0,1] | b< I(a,z)},a,b € [0,1]

is residual to I.
In Ref. 5, the following four definitions are given.

Definition 2.3. A function 7 :[0,1]*> — [0, 1] is called a t-norm if T is associative,
commutative, increasing and satisfies T'(1, a) = a (a € [0, 1]).

Definition 2.4. A function T : [0,1]*> — [0, 1] is called a t-conorm if 7' is associative,
commutative, increasing and satisfies S(0, a) = a (a € [0, 1]).

Definition 2.5. A fuzzy negation is a decreasing function N :[0,1] — [0,1]
satisfying

A fuzzy negation N is said to be strong if N(N(a)) = a holds (a € [0, 1]).

Ny(a) =1—a (a €0,1]) is said to be the standard negation on [0, 1], which is a
strong negation.

Definition 2.6. The dual of a t-norm T on [0, 1] w.r.t. a strong negation N is the
function Ty which is expressed as (a, b € [0,1])

Ty(a,b) = N(T(N(a), N(b))).
The dual of a ¢-conorm S on [0, 1] w.r.t. a strong negation N is the function Sy which
is computed as (a, b € [0,1])

Sy(a, b) = N(S(N(a), N(b))).

It is noted that Ty is a t-conorm and Sy is a t-norm.
Nowadays, R-implications and S-implications are two kinds of important fuzzy

implications,?>>* see the following definitions.>

Definition 2.7. A function I : [0,1]*> — [0, 1] is said to be an R-implication, if there
exists a left-continuous #norm 7T such that (a, b € [0, 1])

I(a,b) = sup{z € [0,1]| T(a,2) < b}. (7)
Moreover, if an R-implication is generated from T, then it is represented by I7.

In Refs. 24 and 25, the following lemma is shown.
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Lemma 2.1. Suppose that T is a left-continuous t-norm on [0,1], and that I an R-
implication obtained from (7). Then, (T,1) is a residual pair, and I satisfies (P3),

(P4) as well as

(P5) I(a,c) > I(b,c) if a < b,

(P6) I(a,b) is left-continuous w.r.t. a,
(P7) I(1,a) = qa,

(P8) I(a,I(b,c)) =1(b,1(a,c)),

(P9) I(T(a,b),c) =1(a,I(b,c)),
(P10) a < b<= I(a,b) =1,

(P11) a < I(b,¢) <= b < I(a, ),
(P12) I(sup,exz, a) = inf,cxI(2, a),
(P13) I(a,inf cxz) = inf . xI(a, ),

where a,b,c € [0,1] and X C [0,1], X # O.
In Ref. 24, the following two definitions are provided.
Definition 2.8. A function I : [0, 1]> — [0,1] is called an S-implication if there exist
a t-conorm S and a strong negation N such that
I(a,b) = S(N(a),b), a,be]0,1]. (8)

Furthermore, if an S-implication is obtained from S and N, then it is denoted by Ig y.

Proposition 2.2. Suppose that I is an S-implication denoted from a t-conorm S and
a strong negation N, then I is a fuzzy implication satisfying (P1), (P2), (P3), (P5),
(PT7), (P8) as well as

(P14) I(a,b) = I(N(b),N(a)), a,be[0,1].

In Ref. 26, the following definition is shown.
Definition 2.9. Let Z be any nonempty set, then partial order relation < on F(Z)

is defined as:

Lemma 2.2. (F(Z),<p) is a complete lattice.

In what follows, we denote Ri(u,v) = A(u) —; B(v), and '’ =1 — a (a € [0,1])
and A’(z) =1 — A(z) for any fuzzy set A, and finally T'(a,b) =1 — T(a, b) for any
mapping T : [0,1]> — [0, 1].

3. Fundamental Properties of the Variable Differently
Implicational Algorithm for FMT

Aiming at the FMT problem expressed as (2), we can achieve the following principle
for the variable differently implicational algorithm:

Variable differently implicational principle for FMT: The conclusion A* of
FMT problem (2) is the largest fuzzy set satisfying (5) in (F(U), <p).
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It is evident that such differently implicational principle for FMT improves the
previous one in Ref. 15. The variable differently implicational algorithm for FMT is
also called the a(u, v)-FMT-differently implicational algorithm for short.

Definition 3.1. Let A € F(U), B, B* € F(V),if A* (in (F(U), <p)) makes (5) hold
for any u € U,v € V, then A* is called an «(u, v)-FMT-differently implicational
solution (a(u, v)-FMT-solution for short).

Definition 3.2. Suppose that A € F(U), B,B* € F(V), and that nonempty set
Fo(u,v) is the set of all a(u, v)-FMT-solutions, and finally that C* (in (F(U), <p)) is
the supremum of ¥, ). Then, C* is called an a(u, v)-SupT-quasi solution. And, if
C* is the maximum of F,(, ), then C* is also called an a(u, v)-MaxT-solution.

The following Proposition 3.1 shows a basic property of a(u, v)-FMT-solution.

Proposition 3.1. Suppose that — is a fuzzy implication satisfying (P3) and (P5),
and that C, is an o(u,v)-FMT-solution, and finally that Co<p C; (in which
Cy, Cy € (F(U),<p)). Then, Cy is an a(u,v)-FMT-solution.

Proof. Because C| is an a(u, v)-FMT-solution, it follows that
Ry(u,v) =4 (C1(u) =2 B*(v)) = o(u, v)
holds for any u € U,v € V. Since C,<pC; and —, satisfies (P3) and (P5), we have
Co(u) =2 B(v) = Cy(u) =2 B*(v)

and
Ry (u,v) =5 (Cy(u) —2 B*(v))
> Ry (u,v) =3 (C1(w) =9 B*(v)) 2 a(u, v)
holds for any u € U,v € V. Consequently, C, is also an a(u, v)-FMT-solution. O

Remark 3.1. Suppose that —, satisfies (P3) and (P5). For (5), once there exists
an «(u, v)-FMT-solution A*, then every fuzzy set C' which is smaller than A*
(C € F(U)), will be an «a(u, v)-FMT-solution. Thus, there are many «(u, v)-FMT-
solutions, including

A (u) =0(u € U).

This last is a special solution, for which (5) always holds no matter what A —; B and
B* are adopted. Thus, when the optimal a(u, v)-FMT-solution exists, it should be
the largest one; in other words, it should be the supremum.

Assume that the maximum of
Ry (u, v) =9 (A" (u) =2 B*(v))

for FMT at every point (u, v) is My(u, v). It is easy to prove Lemma 3.1.
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Lemma 3.1. Let — be a fuzzy implication satisfying (P3) and (P5), thena — 1 =1,
0— b=1(a,be0,1]).

The following Proposition 3.2 provides the maximum value of R;(u,v)—
(A*(u) =2 B*(v)).
Proposition 3.2. If —, is a fuzzy implication satisfying (P3), (P5), then
Mp(u,v)=1(ue Uyve V).
Proof. It follows from Lemma 3.1 that

Ry(u,v) =5 (0—3 B*(v)) =1
obviously holds for any v € U,v € V. Take A*(u) = 0(u € U), then
Ry (u,v) =3 (A" (u) =2 B*(v)) = Ry(u,v) =2 (0—3 B*(v)) = 1.

Thus, M¢(u,v) > 1, which implies L(u, v) = 1 holds for any v € U,v e V. O

To guarantee (5) holds, we always assume in this subsection that a(u,v) <
M (u,v) holds for any w € U,v € V. Especially, if —, satisfies (P3) and (P5), then
Mr(u,v) =1, which means «(u,v) < Mzp(u,v) =1 naturally holds for any
ue Uve V.

We know from Lemma 2.2 that (F(U),<p) is a complete lattice. So the

a(u, v)-SupT-quasi solution (i.e., the supremum of F,,,)) uniquely exists because
the nonempty set F () C F(U).

4. a(u,v)-FMT-Differently Implicational Algorithm for R-Implications

The following Proposition 4.1 analyzes the relationship between the a(u, v)-SupT-
quasi solution and the a(u, v)-MaxT-solution.

Proposition 4.1. If the fuzzy implication —o satisfies (P4), (P5) and (P6), then the
a(u, v)-Sup T-quasi solution A* is the a(u, v)-MazT-solution.

Proof. Taking into account that the a(u, v)-SupT-quasi solution A* = sup F (), it
is enough to verify that A* is the maximum of F (). It is obvious that
Fo(ue ={C" € F(U)| B1(u,v) =5 (C*(u) =2 B*(v))
> au,v),u e U,ve V}.
Suppose, on the contrary, that A* ¢ F(, ), then there exist fuzzy sets A;, A,,. ..
in Fy(,,) such that
lim 4,(u) = A*(u), ueU. 9)

Noting that Ay, Ay, ... € Foyy), we have (n=1,2,...,u€ U,ve V):
Ry(u,v) =3 (A,(w) =2 B'(v)) = a(u, v). (10)
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Since A* = sup F (1), we obtain A*(u) > A, (u) (u € U,n=1,2,...), and it follows
from (9) that A*(w) is the left limit of

{4,(v)|n=1,2,... }ue U).

This implies (noting that —, satisfies (P6))
Tim {4, () =3 B'(0)} = A"(u) = B' (). ()
Because A*(u) > A,(u) and —, satisfies (P5), we have
A (u) =2 B*(v) < Ay(u) =2 B'(v)
(e U,ve V,n=1,2,...). So we know that A*(u) —, B*(v) is the right limit of
{A,(u) =y B*(v)|n=1,2,...}.

Noting that —, satisfies (P4), it follows from (10) and (11) that we obtain
(ue U,ve V)

A

a(u,v) < lim {R,(u,v) =5 (4,(u) =2 B"(v))}

n—od
= Ry (u,v) = (A" (u) =2 B*(v)).

So A* € F (4,0, a contradiction. Thus, A* € F, ), and thus A* is the maximum
of FO&(UVU)' |

It follows from Proposition 4.1 and Lemma 2.1 that we can get Theorem 4.1. It
shows the relationship between the «(u,v)-SupT-quasi solution and the
a(u, v)-MaxT-solution for the R-implication.

Theorem 4.1. If —, is an R-implication, then the a(u, v)-Sup T-quasi solution A*
is the a(u, v)-MaxT-solution.

The following Theorem 4.2 provides the «(u, v)-MaxT-solution for the R-impli-
cation.

Theorem 4.2. Suppose that —, is an R-implication, then the a(u,v)-MazT-
solution is as follows:

A*(u) = leg‘f/{ T(Ry(u,v),a(u,v)) =9 B*(v)}, ueU. (12)

Proof. Since the R-implication —, satisfies (P8), (P9) and (P10), it follows that

(5) is equivalent to the following formulas (v € U,v € V):
a(u,v) < Ry (u, v) =2 (A"(v) — (v)),
a(u, v) = (R (u, v) = (A" (u ) *(v)))
T(a(u, v), Ry (u, v)) =5 (A" (v) — *(’0))
A (u) =2 (T(a(u, v), By (u,v)) =2 B*(v)) =
A (u) < T(a(u, v), Ri(u, v)) = B*( v).
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Hence, we get from Definition 3.2 that the a(u, v)-MaxT-solution is expressed as
follows (noting that T is commutative):

() = inf{T(alu,0), Ry (w,0)) = B ()}

= 7%enif/{T(Rl(u, v),a(u,v)) —9 B (v)}, wel.
O

The following Theorem 4.3 provides another computing formula for the R-im-
plication.

Theorem 4.3. Suppose that —, is an R-implication, then the o(u,v)-MazT-
solution is as follows (u € U):

A*(u) = inf { By (u, v) = (a(u, v) = B*(v))}- (13)

Proof. It follows from Theorem 4.2 that the a(u, v)-MaxT-solution is
A*(’U,) = Hl]f;{ T(Rl(u7 U)7 a(u, U)) 2 B*(’U)}7 u € Ua
s

where T is the mapping residual to —,. Note that the R-implication —, satisfies
(P9), thus we have

() = i {T(Ry(u, ), (. 0)) = B (0)}

= imIf/{Rl(u7 v) =9 (a(u, v) =9 B*(v))}, weU.
ve O

The following fuzzy implications are R-implications, which include Lukasiewicz
implication I;, Godel implication I;, Goguen implication Ig,, I, implication®?"

(which is also called Ipp, see Ref. 23), and I,,, I, 5.'"*

1, a<b,
IL(a’b):{a’er a>b,
a<b,
{ a>b,
1, a=0,
Ig,(a,b) =
{(b/a Al, a#0,
1, a<b,
:{a Vb, a>0b,
1, a < b,
{(2b—ab /(a+b—ab), a>0b,
{1, a < b,

1-(VI—b—+vI—a)? a>b

It is easy to get Lemma 4.1.
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Lemma 4.1. The mapping corresponding to the R-implications I, I, Ig,, Iy, Iy,
I,_5 in residual pairs are as follows, respectively.

a+b—1, a+b>1,
TL(a7b):

0, a+b<1,
Ta(a,b) = aNb,
TGo(a7 b) =axhb,

aANb, a+b>1,

TO(a7b):{0 a—l—b<1

T.(a,b) = ab/(2 —a— b+ ab),

1—(f(a,b))? ab) <1
T, o5(a, b):{ (f(a,8), flab) <

where f(a,b) =vV1—a+VvV1—b
0, fla,b) > 1,

For the R-implications mentioned above, we can achieve Proposition 4.2. It gives
the unified a(u, v)-MaxT-solution for some specific R-implications.

Proposition 4.2. If —, € {I}, I, I¢y Iy, Loy, Iy 5}, and T is the mapping residual
to —4, then the a(u, v)-MaxT-solution is expressed as (12) or (13).
The following Proposition 4.3 shows the specific a(u, v)-MaxT-solution for these

R-implications.
Proposition 4.3. If the R-implication —y € {Iy,Ig, Igy, 1y, Iy, I, 5}, then the
specific form of a(u, v)-MaxT-solution is as follows, respectively (u € U):

(i) If — takes Iy, then

A (u) = inﬁf {2 = Ry(u,v) — a(u,v) + B*(v)},
veR,
where F, = {ve V| Ri(u,v) + a(u,v) — 1> B*(v)}.
(ii) If —, takes Ig, then
4(u) = inf {B"(0)},

veF,

where F, = {v e V| Ry(u,v) A a(u,v) > B*(v)}.
(i) If —4 takes Ig,, then

A*(u) = inf {B*(v)/(Ry(u,v) X a(u,v))},

veF,

where F, = {v e V| Ry(u,v) X a(u,v) > B*(v)}.
(iv) If —, takes I, then

A*(w) = inf {(Ry(,0))' V (o 0))"V B (1)},

where F, = {v e V| Ry(u,v) + a(u,v) > 1, Ri(u, v) A a(u, v) > B*(v)}.
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(v) If —4 takes I, then

p?

A*(u) = inf

veF,

{ 2B*(’U) - Qoep(ua U) X B*(’U) }

Pep(t, ) + B*(v) = ¢ (u, v) x B (v) |
where F,, = {v e V| ¢ (u,v) > B*(v)}.

(vi) If —, takes I, then

A%(u) = inf {1 - (VI= B(0) - VI~ Ry(u,0) - /I alu, 0))2),

veF,

where F, = {v € V| \/1— B*(v) > /1 — Ry (u,v) + /1 — a(u,v) }.

Proof. For the R-implication —, € {Iy,I¢, I, 1o, Iy, I, 05}, it follows from
Theorem 4.2 that the «(u, v)-MaxT-solution is

A°(w) = i { T(Ry (1, 0),2(u,0)) = B'()}, we U,
where T is the t-norm residual to —4,. We only prove the case of I} as an example,
the remainders can be proved similarly.

a+b—-1, a+b>1.

Let —, be I;. We know from Lemma 4.1 that T;(a, b) = {0 wipe s the
mapping residual to I;. So, we get (u € U) 7 -

A*(u) = 32£{IL(TL(R1(’LL, 'U)v a(u, U))7 B*(U))}

Suppose R;(u,v) + a(u,v) < 1 holds, then T7(R;(u,v), a(u,v)) =0, and thus
I (T (Ry(u, v), a(u, v)), B*(v)) = 1.
Suppose R;(u, v) + a(u,v) > 1 holds, then
Tr(R:(u,v), a(u,v)) = Ry(u,v) + a(u, v) — 1.
If Ry(u,v)+ a(u,v) —1 < B*(v), then
Ip(T1(Ry(u, v), (u, ), B*(v)) = 1;

otherwise,
IL(TL(Rl(ua U)? oz(u, ’U)), B*(’U))
=1—(Ri(u,v) + a(u,v) — 1) + B*(v)
=2 — Ri(u,v) — afu, v) + B*(v).
Denote F,, = {v e V| Ri(u,v) + a(u,v) > 1, Ri(u,v) + a(u,v) —1 > B*(v)}. It
is easy to know that
Ry (u,v) + a(u,v) — 1 > B*(v)

implies

Ry (u,v) + o(u, v) > 1.
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Thus,
F,={ve V| Ri(u,v) + a(u,v) — 1> B*(v)}.
So, we obtain
A°(w) = il {T(T5(Ry (u,0), 0w, v), B ()}
= [inf {1u( To(Ra (u,v). a(u. ), B (6)}]
At T (T(Ba(u, v), ou, v)), B (v))}]
= [mf {2 = Ry(u,v) — a(u,v) + B*(v)}]

veF,

A [U€111/17fF1L{1}], uwe U.

If V- F,=0@,theninf,y_p {1} = inf @ = 1; otherwise we also have inf ,cy_p {1}
= 1. Therefore,

A*(u) = 1nf {2 — Ry(u,v) — a(u,v) + B*(v)}(u € U).

veF,
O
5. a(u,v)-FMT-Differently Implicational Algorithm for S-Implications
For the case of S-implication, the following Proposition 5.1 gives an equivalent form
for (5).
Proposition 5.1. Let —, be an S-implication, then (5) is equivalent to the
following:
S(g1(u, v), N(A™(u)) = a(u, v), (14)
where g1 (u, v) = S(N(Ry(u,v)), B*(v)).
Proof. For the S-implication — 4, there exist a t-conorm S and a strong negation N
such that a —5 b = S(N(a), b). Then, we get
Ry (u, v) =5 (A"(u) =2 B*(v))
= S(N(Ry(u, v)), S(N(A*(u)), B*(v)))
= S(S(N (R (u,v)), B*(v)), N(A"(u)))
= 5(g1(u, v), N(A"(u)),
where we let g¢;(u,v) = S(N(R;(u,v)),B*(v)). Therefore, (5) is equivalent
o (14). O
The following Proposition 5.2 provides a special a(u, v)-MaxT-solution.

Proposition 5.2. Let —, be an S-implication, and g;(u,v) > a(u,v), then the
a(u, v)-MazT-solution is A*(u) =1,u e U.

Proof. There are a t-conorm S and a strong negation N such that a—, b=
S(N(a),b). Noting that g; (u, v) > a(u, v), we get from the definition of the ¢-conorm
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that
S(gl(u7 1)), N(A*(’LL))) > !]1(U, 1)) > a(uv U)'

So any fuzzy set A* in (F(U), <p) can let (14) and (5) hold, and then be an
a(u, v)-FMT-solution. Consequently, the maximum one (i.e., the a(u,v)-MaxT-
solution) is A*(u) = 1,u € U. m|

The basic t-conorms are as follows (a, b € [0, 1)):
(i) Maximum: Sy,(a, b) = max(a, b),
(i) Probabilistic sum: Sp(a, b) = a+ b — ab,

)

)

(iii) Lukasiewicz: Stg(a,b) = min(a+ b, 1),
(iv) Nilpotent maximum:

1, a+b>1,

S b) =
(0, D) {max(a, b), otherwise,

(v) Drastic sum:

1, a,be (0,1],
max(a, b), otherwise.

Sp(a,b) = {

The following Theorem 5.1 obtains the o(u,v)-MaxT-solution for main #-con-
orms.

Theorem 5.1. Let —, be an S-implication Igy, and F, ={ve V|g(u,v) <
alu,v)}.
(i) If S takes Sy, then the a(u, v)-MaxT-solution is
A*(w) = inf {N(a(uv)},u€ U.
ver,

(i) If S takes Sp, then the a(u, v)-MaxT-solution is
: a(“? U) — gl(ua U)
A*(u) = inf ¢ N .
(u) vlenFu{ ( 1—g1(u,v) , uel
(iii) If S takes Spg, then the a(u, v)-MaxT-solution is
A*(u) = inﬁf {N(a(u,v) — g1(uw,0v)}, wuweT.
ver,

(iv) If S takes S,y, then the a(u, v)-MazT-solution is
A*(u) = inf {N(a(u,v)) VN1 = gi(u,0))}, uel.
VELy,
Proof. Here, we only prove the case of (iii) as an example, the remainders can be

proved similarly. Note that N is a strong negation.
To begin with, we shall verify

A'(w) = inf {N(a(u,v) = (. 0)}, we U (15)

is an a(u, v)-FMT-solution, i.e., B* can make (14) hold, which means that (5) holds.
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If y ¢ F,, then g;(u,y) > a(u,y), and
S1k(91(u, y), N(A*(u))) = afu, y),

i.e., (14) and (5) hold.
Ify € F,, then ¢, (u, y) < a(u, y), and thus it follows from (15) and the property of
SLK that

Six(g1(u, y), N(A*(v)))
> S1x(91(w, y), N(N(e(u, y) — g1(w, 9))))
= Six(g1(w, y), a(u, y) — g1(w, y))
= g1(w, y) + o(w, y) — 91 (u, y)
= a(u,y).

Then, (14) and (5) hold. Therefore, A* expressed as (15) is an a(u, v)-FMT-solution,
i.e., A* S Fa(u,v)'

Furthermore, we shall verify that A* is the maximum of F,,,). Suppose that
C € (F(U),<p), and that

Ry (u, v) =2 (C(u) =2 B*(v)) = a(u, v)
holds for any v € U,v € V, then it follows from Proposition 5.1 that
Six(91(u, v), N(C(u))) = au,v) (16)

holds for any u € U,ve V.

If F, is empty, then it follows from (15) that A*(u) = 1, and thus A*(u) > C(u)
(we U).

If F, is not empty, then for any y € F,, we have g, (u,y) < a(u, y).

(a) If g1(u, y) + N(C(u)) > 1, then
Sei(91(u, y), N(C(u))) = 1.
Here,
N(C(w)) 21— gi1(uv,9) > a(u, y) — g1(u, y)
and then
C(u) < N(e(u, y) = 91(u, 9))-
Then, we get from (15) that
C(u) < A*(u)(u € U).
(b) If g1 (u,y) + N(C(u)) < 1, then it follows from (16) that
Srx(g1(u, ), N(C(u)) = g1(u, y) + N(C(u)) > alu, y).
Hence,

N(C(u) = a(u, y) — g1(u, )
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and then
C(’LL) < N(Oz(’lj/7 y) - gl(u7 y))a
and thus C(u) < A*(u) (u € U).
Therefore, we have C'<p A*. These imply that A* is the maximum of F ).

Together we obtain that A* is the «(u,v)-MaxT-solution in the light of
Definition 3.2. O

The following Proposition 5.3 proves the existence of a(u, v)-SupT-quasi solution.

Proposition 5.3. For the a(u,v)-FMT-differently implicational algorithm, there
exists a unique fuzzy set C* (in (F(U), <p)) such that

(Cl) C<pC* forany C € Fy,), and
(C2) there is D € o, satisfying D(ug) > C*(ug) — € for any uy € U and € > 0,
then C* is the a(u, v)-SupT-quasi solution.

Proof. It follows from Lemma 2.2 that (F(U),<p) is a complete lattice. Since the
nonempty set Fy,,) C F(U), we get that C* = sup F,(,,,) uniquely exists. We shall
seek out the demanded C*.

Because ([0, 1], <) is a complete lattice and { C(ug)| C € F oy} C [0,1] (ug € U),
it follows that

sup{ C(up)| C € Fo(un} = Ci(ug)
uniquely exists. From the definition of supremum, we have that C(ug) < C(ug) for
any C € F,(,,) and that there exists D € F,,,,) such that
D(ug) > Cy(ug) — ¢
for any € > 0. Let u, respectively takes every element in U, and then we achieve the
value of C)(ug) for any uy € U, as a result, there exists a fuzzy set C* such that

C* ()] =y = Ci((ng).

Consequently, C* satisfies (C1).
Moreover, we already know that there exists D; € Fy,,) satisfying

Dy (ug) > C*(ug) — €

for any uy € U and € > 0. Let uy respectively takes every element in U, and then
there is a fuzzy set D making

D(u)|u:u0 = Dl(“’O)

hold, which is evidently what we demand. Therefore, (C2) holds for C*.
Since the partial order relation is according to the pointwise order, it is evident
to find

cr = sup Fa(u,v)v
and then C* is the a(u, v)-SupT-quasi solution. O

The following Proposition 5.4 gets the a(u, v)-SupT-quasi solution for Sp.
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Proposition 5.4. If —, is an S-implication Igy, and S takes Sp, then the
a(u, v)-Sup T-quasi solution is as follows:

A'(w) = inf (N(a(u, )}, we U, (17)

where F, = {v e V|g;(u,v) =0}.

Proof. Note that N is a strong negation. We shall prove that A* expressed as (17)
satisfies (C1) and (C2) in Proposition 5.3.

(i) Suppose that C' is any fuzzy set in F,(,,). Then, C makes (14), i.e.,
SD(gl(U'a U)» N(C(’LL))) 2 a(u, U) (18)

hold for any u e U,ve V.
If F, # O, then for any y € F,, we have g;(u,y) =0 and A*(u) = inf,cp,
{N(a(u,v))}. Then, it follows from (18) that

Sp(91(u; y), N(C(u)) = Sp(0, N(C(u)))
= N(C(u) = a(u,y) (ue V).

Then, C(u) < N(a(u,y)), and thus C(u) is a lower bound of {N(a(u,v)) |
v € F,}, and thus C(u) < A*(u) (u € U).
If F, = O, then it follows from (17) that A*(u) =1 > C(u) (u € U).
Together, we have C' <p A* for any C € F,(,,), i.e., A* satisfies (C1) in Prop-
osition 5.3.

(ii) For any € > 0, let

D(u) = vienﬁf‘u{N(a(% U))}7 Fu 7’5 @,
1= 8/507 Fu - @,

where ¢ is the integer satisfying e + 1 < gy < & + 2. Thus, D(ug) > A*(ug) — €
for any uy € U.
We shall verify that D(ug) makes (14), i.e.,

Sp(g1(ug, v), N(D(up))) = (o, v) (19)
hold for any v € V.

If F,, # O, then D(uy) = infvepuo{N(a(uo, v))} < 1. It can be divided into two
cases. (a) If v € F, , then g,(ug,v) = 0, and it follows from the property of Sp, that

Sp(91(ug, v), N(D(ug))) = Sp(0, N(D(u)))
= N(D(u)) = N( inf {N(a(u, v))})

> N(N(a(u, v))) = a(uy, v),

ie., (19) holds. (b) If v ¢ F, , then g;(ug, v) > 0, and thus we get from the property
of Sp that Sp(g1(ug, v), N(D(ug))) =1 > a(ugy, v). So, we also get that (19) holds.
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If F,, =@, then D(uy) =1—¢/gy <1 and g;(ug,v) > 0 for any v € V, and it is
similar to validate that (19) holds. Together, we get D € F ), thus A* satisfies
(C2) in Proposition 5.3.

Therefore, it follows from Proposition 5.3 that A* expressed as (17) is the
a(u, v)-SupT-quasi solution. O

Remark 5.1. If —, is an S-implication Igy, and S takes Sp, then the
a(u, v)-MaxT-solution (i.e., the maximum of F,,,) cannot ensure to exist. In
fact, when there exists (g, vp) such that o(ug, vy) > g1(ug, vp) >0 and F, = O,
then A*(ug) = 1, and thus

SD(gl(u()a 7]0)7 N(A*(UO))) = SD(g1(U()7 U0)7 0)
= g1(ug, vo) < (g, vp),
i.e., (14) does not hold, so the a(u, v)-SupT-quasi solution A* ¢ I ,(,, ., which results
in that there does not exist the maximum of I (,,y)-
The following Lemma 5.1 shows some specific S-implications.
Lemma 5.1. For the S-implication Ig y, N takes N, then:
(i) If S takes Sy, then the S-implication is Igp(a,b) = (1 — a) V b;
(i1) If S takes Sp, then the S-implication is Ipc(a,b) =1 — a+ ab;
(iii) If S takes Sy, then the S-implication is Iy;
(iv) If S takes Sy, then the S-implication is Iy; b, a=1,
(v) If S takes Sp, then the S-implication is Ipp(a,b) =< a’, b=0,
1, otherwise.
It is easy to prove Proposition 5.5 (from Theorem 5.1 and Proposition 5.4). It
shows specific a(u, v)-MaxT-solutions for some S-implications.

Proposition 5.5. Let the S-implication —4 € {Igp, Irc, I1, Iy, Ipp}, then:
(i) Let —4 take Ixp, then the a(u, v)-MaxT-solution is

A (u) = inﬁf {1-a(u,v)}, uwel,
ver,
where F, = {v e V|(Ry(u,v))" V B*(v) < a(u, v)}.
(ii) Let —o take Ipc, then the a(u, v)-MazT-solution is

1— a(u,v)
A*(u) = inf ’
(u) = inf {Rl(u, v) — Ry (u, v) x B*(v)}’
where F, = {v e V|(Ry(u,v)) + Ry(u,v) x B*(v) < a(u,v)}.
(iii) Let —o take Iy, then the a(u,v)-MazT-solution is the same as Proposition 4.3
(4)-
(iv) Let —, take I, then the a(u, v)-MaxzT-solution is the same as Proposition 4.3

().

ue U,
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(v) Let — take Ipp, then the a(u, v)-SupT-quasi solution is
A*(u) = inkf {1-a(u,v)}, uwel,
VELYy,

where F, = {v e V| (R,(u,v)) vV B*(v) = 0}.

The contents given above focus on the case of specific S-implications. Further-
more, we shall provide the unified form of the a(u, v)-MaxT-solutions for S-impli-
cations from another viewpoint.

Theorem 5.2. If —, is an S-implication Ig y where S is right-continuous, then the
a(u, v)-MazT-solution can be computed as follows (u € U):

A*(u) = f{N(T(N(B" (), T(B1(u, v), a(u, v))))}, (20)

in which T is the mapping residual to — .

Proof. It follows from Propositions 2.1 and 2.2 that the residual pair (T, —5) does
exist. We shall verify A* expressed as (20) makes (5) hold for any u € U,ve V.
Indeed, it follows from (20) that (v € U,v € V)

A*(u) < N(T(N(B*(v)), T(R;(u, v),a(u, v)))).

It follows from Proposition 2.2 that the S-implication —, satisfies (P14) (w.r.t. the
strong negation N), and (T, —, ) is a residual pair, so we have (v € U,v e V)

T(N(B*(’U)), T(Rl(ua ’U), a(uﬂ v))) < N(A*(u))a
T(Ry(u,v), a(u, v)) < N(B*(v)) =2 N(A"(u)),
T(Ri(u,v),a(u,v)) < A*(u) =4 B*(v).
Then, we obtain that (5) holds for any u € U,v € V. Thus, A* € Fy,).
Next, we shall verify that A* is the maximum of F,(,. Suppose that
C € (F(U),<p), and that
Ry (u,v) =2 (C(u) =2 B*(v)) 2 a(u, v)
holds for any u € U,v € V. Cousidering that (T, —,) is a residual pair and that
—, satisfies (P14) w.r.t. N, we obtain (v € U,v € V)
T(Rl(uv ’U), a(ua 1))) < C(u) 2 B*(U)a
T (R (u,v), a(u, v)) < N(B*(v)) =2 N(C(u))
T(N(B*(’U))’ T(Rl(u? U)> a(u, ’U))) < N(C(U)),
C(u) < N(T(N(B*(v)), T(R1(u,v), au, v))))
Thus, C(u) is a lower bound of (u € U)
{N(T(N(B(v)), T(Ry(u, v), a(u, v))))| v e V}.

Hence, it follows from (20) that C'<p A*. These imply that A* is the maximum of
F

alu,v)*
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Together, we achieve that A* is the a(u,v)-MaxT-solution by virtue of
Definition 3.2. O

Remark 5.2. Since Sy, Sp, Srx, S,u are right-continuous, we get from Theorem
5.2 that the a(u,v)-MaxT-solution can be expressed as (20) for related
S-implications, which can also obtain corresponding conclusions for Ixp, Ipc, I1, I
in Proposition 5.5.

Proposition 5.6. If —4 is an S-implication Ig y where S is right-continuous, and
—y 1s also an R-implication, then (v € U,v € V)

N(T(N(B*(v)), T(Ry(u, v), a(u, v)))) = T(Ri(u,v), (u,v)) =2 B (v),  (21)
where T is the mapping residual to — .

Proof. Suppose that any z € [0,1]. From the conditions (that —, satisfies)
together with the residuation condition, we know that the following formulas are
equivalent to each other (v € U,v e V):

z < N( T(N(B*(v) , T(Ry(u, v), a(u, )))),
(

N(z),

T(Ry (u, v) (B*( ) =2 N(z),

1
( )
T(R:(u,v), a(u, v)
(
Because z is arbitrary, it follows that (21) holds. m|

Remark 5.3. When —, is an S-implication Ig y where S is right-continuous, and
—, is also an R-implication, it follows from Proposition 5.6 that the a(u, v)-MaxT-
solutions obtained from Theorems 4.2 and 5.2 are equivalent.

If there exist n rules instead of only one rule, then the FMT problem (2) should be
transformed into:

FMT: from A; — B; and B*, calculate A*. (22)

For such case, the general rule is frequently chosen to be
GR(u,v) £ Vil (4,(u) =1 By(v))
(see Refs. 1315, 19). Therefore, (5) should be changed to:
GR(u,v) =9 (A*(u) =4 B*(v)) > a(u, v). (23)

Suppose that —, employs an R-implication or S-implication, and that the
a(u, v)-MaxT-solution from (5) is ¢(A(u) —, B(v)), then it is easy to find that the
a(u, v)-MaxT-solution derived from (23) is ¥( GR(u, v)).
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6. Continuity of the a(u,v)-FMT-Differently Implicational Algorithm
Suppose that d is a distance between fuzzy sets.

Definition 6.1. A fuzzy reasoning method for FMT (2) is a mapping
g: F(V)— F(U).

(i) For any € > 0, if there exists § > 0 making d(g(B7), g(B3)) < € whenever d(B7,
B3) < 6 for any B, B5 € F(V), then g is said to be uniformly continuous in
metric d;

(ii) Foranye > 0, if there exists 6 > 0 making d(g(B*), g(B)) < & whenever d(B*, B) <
6 for any B* € F(V), then g is said to be continuous at B € F(V) in metric d.

Because the practical problems frequently contain finite elements, we suppose
that U, V are finite, i.e., U = {uy, ug,..., Uy}, V ={vy,vs,...,0,}. Here we con-
sider the two frequently used metrics, i.e., the uniform metric dyr and Hamming
metric dypy; as follows (where A, B € F(U)):

dUF(Aa B) = sup |A(u) - B(u)lv

uEU

din(A, B) ZIA u)l-

ueU

It is easy to prove Lemma 6.1.
Lemma 6.1. [aAc—bAc|<|a—1b|,laVec—0bV | <|a—b|, where a,b, c € [0,1].
In Ref. 29, the following Lemma is obtained.

Lemma 6.2. If U — R mappings f, g are bounded, in which U is a nonempty set and
R is the set of real number, then for any v € U, we have

(1) |supuer f(u) = supuer 9(u) | < supuey | f(uw) = g(w)l;
(i) [infuey f(u) —infuey g(u) | <supuey|f(u) = g(uw)]-

It is easy to obtain Lemma 6.3.
Lemma 6.3. dyy (A, B) < dyp(A4, B), in which A, B € F(U).

Lemma 6.4. If the a(u,v)-FMT-differently implicational algorithm is uniformly
continuous in dyp, then it is also uniformly continuous in diy;.

Proof. Suppose that the a(u,v)-FMT-differently implicational algorithm
is uniformly continuous in dyp. Then for any € > 0, there exists 6 > 0 making
dur(9(BY), 9(B3)) < € whenever dyp(Bf, B5) < 6 for any Bj, B5 € F(V). It follows
from Lemma 6.3 that dm(9(B7), 9(B3)) < dur(g(Bi),9(B3)) <e. As a result,
the a(u, v)-FMT-differently implicational algorithm is also uniformly continuous
in dgyp- O
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Theorem 6.1. Assume that the R-implication —4 satisfies

(P15) I is continuous w.r.t. the second variable,
then the a(u, v)-FMT-differently implicational algorithm is uniformly continuous in
dyr, and thus continuous in dyp.

Proof. Aiming at any inputs Bj,Bj; € F(V), we shall verify the continuous
property of the a(u,v)-FMT-differently implicational algorithm. Note that —,
satisfies (P15), so — is uniformly continuous w.r.t. its second variable on [0,1]. As a
result, for any € > 0, there exists §; > 0 making

| (T(Ri(u, v),a(u, v)) =2 Bi(v)) = (T(Ry1(u, ), a(u, v)) =2 By (v)) | <& (24)
hold if | Bi(v) — B3(v)| < 61 (v € V).
It follows from Theorem 4.2 that the a(u,v)-MaxT-solutions for B{, B3 are as
follows respectively:

Ai(u) = 32£{T(R1(u, v),a(u,v)) —5 Bi(v)}, we U,

A3(u) = inf{ T(Ry(u,v), a(u,v)) = B3(v)}, ue U.

veV

We employ § = 6;. Suppose that
dur(B1, B3) < 6.

Then, sup,cy|Bi(v) — B5(v)| < 6 and |Bj(v) — B5(v)| <6 =46, (ve V). So (24)
holds, and according to Lemmas 6.1 and 6.2, we get

dUF(Aiv A;)
=sup[4i(u) — As(u)|

ucU

= sup| in‘f/{ T(R,(u,v),a(u,v)) —, Bi(v)}

uelU V€

— inf {T(Ry(u, v), a(u, v) = B3(v)}]

< supsup [(T'(R,(u, v), a(u, v)) —2 Bi(v))
ucU veV

— (T(B1(u, v), a(u, v)) =2 B3(v))|

< supsupe = €.
ucU veV

That is, there exists 6 > 0 such that dyp(A7, A3) < ¢ if dyp(B7, B3) < 6, therefore
the a(u, v)-FMT-differently implicational algorithm is uniformly continuous in dyp.
And thus it is also continuous in dyp. O

It follows from Theorem 6.1 and Lemma 6.4 that we can obtain Theorem 6.2.

Theorem 6.2. Assume that the R-implication —, satisfies (P15), then the
a(u, v)-FMT-differently implicational algorithm is uniformly continuous in dyyg,
and thus continuous in dyy;.
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Theorems 6.1 and 6.2 verifies the continuity of the «(u,v)-FMT-differently
implicational algorithm for the R-implication satisfying (P15).

For —4 € {I},Igy, I.p, I, o5}, —2 satisfies (P15). So, we can get Proposition 6.1.

It provides the continuous result for some specific R-implications.

Proposition 6.1. If —, € {I},1g,, 1., 1, (5}, then the a(u,v)-FMT-differently
implicational algorithm is uniformly continuous in d € {dyp, dm}, and thus
continuous in d € {dyp, dp }-

Moreover, when —, is only right-continuous w.r.t. the second variable, whether
is the a(u, v)-FMT-differently implicational algorithm continuous? Here, we shall
analyze the typical case of —, € {I, I¢}.

Proposition 6.2. For any Bi,B; € F(V), there exists 6y >0 such that if
dyp(Bji, B3) < by, then Fi, = Fy, (u€ U), in which Fi, ={ve V| T(R(u,v),
a(u,v)) > Bi(v)}, Fo, ={ve V| T(R(u,v),a(u,v)) > B5(v)}.
Proof. For any u € U, we shall analyze the relationship between F;, and F,,. We
employ

6y = min [T(R(u, v), o(u, v)) — Bi(v)].

veFy,
Obviously, we have
T(Ri(u,v),a(u,v)) — Bi(v) > 6, >0 (ve V). (25)
Suppose that dyp(B7i, B5) < 6;. Then, sup,cy|Bi(v) — B3 (v)| < §;, and thus we get
Bi(v) — 6, < B5(v) < Bi(v) + 61(ve V). (26)
For any vy € Fy,, we get T(R;(u,vy),a(u,vy)) — Bi(vy) >0, and it follows
from (25), (26) that
B3 (vg) < Bi(w) + 61 < Bi(vg) + [T(R1(u, v), w, vy)) — Bi(vp)]
= T(Ry(u,v), au, v)),
thus, vy € Fy,, hence, we get Fy, C Fy,.
Take
69 = min [T (R, (u, v), a(u, v)) — B3(v)].

vEFy,

Similarly, we can obtain Fy, C Fy, if dyp(B7, B3) < 65.
Choose

60 = mil’l{517 62},

thus Fy, C Fy, and Fy, C Fy, if dyp(B7, B3) < §,. Consequently, we achieve that if
dup(B1, B3) < 6y then Fy, = Fy,. O

Theorem 6.3. If —, € {I,Ig}, then the a(u,v)-FMT-differently implicational
algorithm is uniformly continuous in dyp, and thus continuous in dyp.
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Proof. We only prove the case of I, while the case of I can be similarly verified.
Suppose that —, takes [;. It follows from Proposition 6.2 that there exists 6, > 0
such that Fy, = Fy, if dyp(B7, B3) < 6y (u € U). For any € > 0, take

6 = min{éy, e}.
Suppose that dyp(Bj, B5) < 6. Then, we have
Flu:F2u (UEU)7

and |Bj(v) — B5(v)| < é (v € V). Thus, it follows from Theorem 4.2, Lemmas 6.1
and 6.2 that if F;, # O, then

dUF(AL A;)
=sup[4i(u) — A3(u)|

uelU

= sup | inf { T(Ry (u, v), a(u, v)) =2 Bi(v)}

uelU V€

— W T(Ry (s, ), (s, 1)) = B3 ()}
= sup| inf {T(Ry(u,0), 0w )) — Bi(0))

uelU veF1,
— inf {T(Ry(w0).alu,v) =, B3 (1)}
= sup | inf {T(R,(u, v),a(u, v)) =, By (v)}
uelU V&£
~ inf {T(Ry(w0).alu,v) =, B3 (0)}]
= sup| inf {[1 — (By(u,v),a(u,v))] V Bi(v)}
uelU V&L
= Jnf {[1 = (By(u, v), a(u, 0))] v B3 ()}
< sup Jof {1 — (B, ), au, v))] v Bi(v)}

— {[1  (Ry(w,0), 0, v))] V B3(0))]
< sup inf |Bi(v) ~ Bi()

ue U V&1

< sup inf 6
ue U v€F,

=6
<e.

If F1, = O, then we get
dUF(AT,As):sup |1*1| =0<e.

ueU
That is, there always exists 6 > 0 such that dyp(A7], A3) < ¢ if dyp(B{, B3) <&,
therefore the a(u, v)-FMT-differently implicational algorithm is uniformly continu-
ous in dyp, and then it is continuous in dyp. O
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We can get Theorem 6.4 from Theorem 6.3 and Lemma 6.4.

Theorem 6.4. If —, € {[;, 1o}, then the a(u,v)-FMT-differently implicational
algorithm is uniformly continuous in diyy, and thus continuous in dyy;-

Proposition 6.2, Theorems 6.3 and 6.4 prove the continuity of the a(u, v)-FMT-
differently implicational algorithm in which —, € {I, I¢}.

Proposition 6.3. For any Bj,B; € F(V), there exists 6y >0 such that if
dyp(Bji, B3) < by, then Gy, = G, (u € U), in which Gy, ={ve V| (R(u,v))' V
Bi(0) < a(u,0)}, Go = {0 € V|(Ry(u,))' v B3(v) < alu, v)}.

Proof. Denote
Gi,={ve V|Bi{(v) < a(u,v)},
Gy = {v € V|B3(v) < a(u,v)},
Gy = {ve V|(Ri(wv)) < alu,v)}.

Then, we get
G, =G, UG, (27)
Gy = G5, UG (28)
We take
oy = Urggri[a(u, v) — Bi(v)].
Obviously, we have
alu,v) — Bi(v) > 6, >0 (ve V). (29)

Suppose that dyp(B7, B3) < ;. Then, sup,cy|Bji(v) — B5(v)| < §;, and thus we get

Bi(v) — 6; < B3(v) < Bi(v)+6,(ve V). (30)

For any vy € G7,, we get a(u,vy) — Bi(vy) > 0, and it follows from (29), (30) that
Bs(wy) < Bi(v) + 61 < Bi(vy) + [er(u, vg) — Bi(vy)] = (1w, vo),

thus vy € G5, hence, we get G7, C G3,.
Take

85 = min [a(u, v) — B5(v)].

veG;,

Similarly, we can obtain G5, C G7, if dyp(B], B3) < 0,.
Choose

(50 = min{él, (52}

Therefore, it follows from (27) and (28) that if dyp(B7, B3) < é,, then G}, = G5,
and thus Glu = GQu' O
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Theorem 6.5. If —, takes Ixp, then the a(u,v)-FMT-differently implicational
algorithm is uniformly continuous in dyp, and thus continuous in dyy.

Proof. Suppose that —, employs Irp. We get from Proposition 6.3 that there
exists 8y > 0 making Gy, = Gy, if dyp(Bi, B3) < 6y (u € U). For any € > 0, choose

6 = min{éy, e}.
Suppose that dyp(Bj, B5) < 6. Then, we get
Glu = G?u (’U, S U),

and |Bj(v) — B3(v)] <6 (ve V). So we get from Proposition 5.5, Lemmas 6.1
and 6.2 that if Gy, # O then

dUF(Aiv A;)
= sup A7 (u) — As(u)
uelU

= sup| 1nf{1 —a(u,v)} — inf{l — a(u,v)}

welU veV

=sup]| inf {1 —a(u,v)} — inf {1 — a(u,v)}|

uelU VEGL, vE Gy,

=sup| inf {1 —a(u,v)} — mf {1 —afu,v)}

ueU VEGL,

<sup inf |[1 —a(u,v)]—[1— a(u, v)]|
ueU v€C

=sup inf 0
ue U vEGy

=0
< E.

If G, = @, then we obtain
dUF(AT,AS) = sup |1—1| =0 <E.

uelU
Consequently, there always exists 6 > 0 letting dyr(A7, A3) < ¢ if dyp(B7{, B;) < 6,
therefore the a(u,v)-FMT-differently implicational algorithm is uniformly contin-
uous in dyp, and thus it is continuous in dyp. O

From Theorem 6.5 and Lemma 6.4, we can prove Theorem 6.6.

Theorem 6.6. If —, takes Ixp, then the a(u,v)-FMT-differently implicational
algorithm is uniformly continuous in diyy, and thus continuous in dgy;.

Proposition 6.3, Theorems 6.5 and 6.6 verify the continuity of the «(u, v)-FMT-
differently implicational algorithm where —, takes Ixp.

Remark 6.1. For all R-implications, the a(u,v)-FMT-differently implicational
algorithm (where —, € {I, I¢, Iy, Iy, Loy, Iy—g5}) is uniformly continuous and
continuous in dyp, diy. In five typical S-implications, the a(u, v)-FMT-differently

implicational algorithm where —, € {I, I}, Ixp} is uniformly continuous and
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continuous in dyp, dyy. When —o € {I¢, Ipp}, corresponding continuity cannot
be assured. To sum up, the continuity of the a(u, v)-FMT-differently implicational
algorithm seems excellent.

7. Examples

Here, we shall provide two specific examples (including a continuous case and a
discrete one) to deal with «a(u, v)-FMT-differently implicational algorithm, where
I;, I, are R-implications and also S-implications and Iy, is an S-implication.

Example 7.1. Let U=V =[0,1], A(u) = (v+1)/3, Blv)=1—v, B*(v) =2/3
and a(u,v) = (6 +v—u)/9 (in which u,v € [0,1]). Suppose that —, =1}, —; =
I, in the a(u,v)-FMT-differently implicational algorithm. We now calculate the
a(u, v)-MaxT-solution from Theorem 4.2 (which is more universal than Proposi-
tion 4.3(1)).
Ry(u,v) = A(u) =1 B(v)
2—u
= 3
1, if u+3v< 2

V(1—-w), if u+3v>2,

It follows from Theorem 4.2 that the «(u, v)-MaxT-solution is as follows (u € U):
() = i {T3(Ry (1, v), () =3 B (1))

2 — - 2
= inf{TL( 3u\/(1—v),6+gu)ﬂ23

. 6+v—u 2
/\lnf{TL<1,9> —9 g

Obviously, u + 3v > 2 implies 3v > 2 — v > 1 and

2 6+v— 2 — 2
TL< 3“v(1—v), +; ")g 3“v(1—v)§§,

2 — (9 — 2
TL( 3%(1_@),M)H2§:1.

ve[O,l],u+3v>2}

veE [0,1],u+3v§2}.

9

Thus, we obtain that

. 6+v—u 2
1nf{TL(1,T) —>2§

6+v— 2
1nf{u—> ve[O,l],u+3v<2}

A*(u) vE [0,1],u+3v<2}

9 23

6+v—u 2
inf{l-—————+=
m{ 9 +3

€ (0,1}, <2, —m >~
ve[0,1],u+3v 9 3

6+v—u 2}
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. {9—1}+u
= inf{X———
9

We have two cases to be considered:

2 _
vE[O,l],Tu2v>u}.

(a) Suppose that (2 — u)/3 > u, i.e., u < 1/2, thus
{ve[0,1],(2-u)/3>v>u} #0,
taking into account that (9 — v + u)/9 is nonincreasing w.r.t v, we have

9—%+u_25+4u
9 o7

(b) Suppose that (2 — u)/3 < u, i.e., u > 1/2, thus
{vel0,1], 2-uw)/3>v>u} =0,

A (u) =

we get A*(u) =inf @ = 1.
Together, we obtain that the a(u, v)-MaxT-solution is

25 4+ 4u <1
27 ¢

57
1, u > l
2

Example 7.2. Let «a(u,v) = (v®> —v)/2, and U ={u;} where u; =1.2, and
V = {wy, vy, v3, vy} where v; = 0.0, v, = 0.2, v3 = 0.4, v, = 0.6. The rules and inputs
are as follows:

0.3 0.8 04 1.0 0.6
Ay=—, Bi=—+—+—+—,
Uy (%1 (%] 'U3 Uy
0.3 00 07 03 05
Ay=—, By=—+—+—+—,
Uy U1 Vg U3 Uy
0.6 07 03 09 0.2
Ay=—, By=—+—+—+—,
Uy U1 V2 U3 Uy
0.9 02 05 08 0.7
Aj= =, B=—"rtp"fp—4—,
Uy U1 ) U3 Uy
0.9 05 09 05 0.0
As=——, By=——t—t——t—,
Uy (%1 Vo (% Uy
. 03 04 05 0.8
B= —+—+—+—.

U1 Vg U3 Uy

This is an example for fuzzy classification based on fuzzy expert system, in which
three classes respectively correpond to A(u;) = 0.3, A(u;) = 0.6, A(w;) = 0.9.
Suppose —4 = I;, —; = Ipc in the variable differently implicational algorithm
for FMT. From Proposition 4.3, we can obtain the a(u, v)-MaxT-solution is

A*(u) = 1}1&%{2 — GR(u,v) — a(u,v) + B*(v)},
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where
F,={ve V|GR(u,v) + a(u,v) =1 > B*(v)}.
We have:

GR(uy,v;) = Vi1 (A;(uy) =1 By(vy))
— (0.3—,0.8)V (0.3—10.0) V (0.6 —1 0.7)
V(0.9 —,0.2) V (0.9—,0.5)
=0.94Vv0.7v0.82Vv0.28Vv0.55=0.94.

Similarly, we can get

GR(uy, vy) = 0.82V 0.91 V 0.58 v 0.55 v 0.91 = 0.91.
GR(u;,v3) = 1.0V 0.79 vV 0.94 v 0.82 V 0.55 = 1.0.
GR(uy,v,) = 0.88V0.85 v 0.52 V 0.73 Vv 0.1 = 0.88.

For u; = 1.2, it is easy to find F, = {v;,vs,v3}. As a result, we obtain the
a(u, v)-MaxT-solution as follows:

A*(ul) = UiEnE {2 - GR(“I? ’U) - OZ(U,I, 1)) + B*(U)},

= [2 — GR(uq,vy) — a(ug, vy) + B (v)] V...
V [2 = GR(uy, v3) — a(ur, v3) + B (v3)]
= [2-0.94 — a(1.2,0.0) +0.3]
V2 - 0.91 — a(1.2,0.2) + 0.4]
V2 - 1.0 a(1.2,0.4) +0.5]
=0.64V0.87V 0.98 = 0.98.

Because 0.98 is nearest to 0.9, the third class is what we need.

8. Conclusions

In this paper, the variable differently implicational algorithm is investigated for the
FMT problem. First of all, fundamental properties of the variable differently
implicational algorithm for FMT are researched. Especially, new differently impli-
cational principle for FMT is proposed, which improves the previous one in Ref. 15.
Then, unified forms of variable differently implicational algorithm are achieved for
FMT, in which —, respectively employs the R-implication and S-implication.
Furthermore, the optimal solutions of variable differently implicational algorithm for
FMT are provided for six R-implications and five S-implications. After that, as for
the important index of continuity, this algorithm is uniformly continuous and con-
tinuous for all R-implications and most of S-implication, and then its continuity
seems excellent. Finally, two specific computing examples (including a continuous
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case and a discrete one) of variable differently implicational algorithm for FMT
are shown.
Furthermore, some other properties of the variable differently implicational al-

gorithm (e.g., robustness, stability*>*!), and how to reasonably design corresponding

32,33 34-36

fuzzy system, and how to apply it to decision making, will be our next work

emphases.
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