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The fuzzy systems based on the universal triple I method are investigated, and then their

response functions are analyzed. First, the conclusions show that 100 fuzzy systems via the

universal triple I method are approximately interpolation functions, which can be used in

practical systems, and that 90 ones are approximately ¯tted functions, which may be usable.
Second, as its special cases, the Compositional Rule of Inference (CRI) method and the triple I

method are discussed, with the results that 19 fuzzy systems via the CRI method and 2 ones via

the triple I method are practicable. Therefore, the universal triple I method has larger e®ective

choosing space, which can obtain more usable fuzzy systems than the others. Lastly, it is found
that the ¯rst implication and second implication, respectively, embody the function of rule base

and reasoning mechanism, further demonstrating the reasonability of the universal triple I

method.
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1. Introduction

Nowadays fuzzy reasoning and fuzzy system play an important role in fuzzy control,

decision making, arti¯cial intelligence, image processing, natural language processing

and a®ective computing.1{4 Every fuzzy system based on the CRI method5{7 can be

regarded as an interpolation method,8,9 which is a kind of approximation to a certain

response function. Currently, a fuzzy system used in the practical system is usually

constructed via the CRI method and a certain implication operator (de¯ned as a

mapping ½0; 1�2 ! ½0; 1�).
To improve the CRI method, Wang put forward the triple I method of fuzzy

reasoning in 1999.10 The main idea of the triple I method is as follows:

For known A 2 FðXÞ, B 2 FðY Þ, and A� 2 FðXÞ (or B� 2 FðY Þ), seeks the

smallest B� 2 FðY Þ (or the largest A� 2 FðXÞ) such that

ðAðxÞ ! BðyÞÞ ! ðA�ðxÞ ! B�ðyÞÞ ð1Þ

takes the maximum for any x 2 X ; y 2 Y , where FðXÞ;FðY Þ are respectively the

sets of all fuzzy subsets on the input universe X and output universe Y , while! is an

implication operator.

Following that, many scholars carried through a series of researches related to the

triple I method, including the triple I method,11,12 the �-triple I method,13,14 the

restriction theory of triple I method,15,16 the reverse triple I method,17,18 reversibility

property10,13 and logic basis of related triple I method19,20 and so on. Such results

show that the triple I method possesses many advantages such as its logic basis,

excellent reversibility property, and the property of pointwise optimization, thus the

triple I method is better than the CRI method from the viewpoint of logic.

On the other hand, from the viewpoint of fuzzy system (which includes fuzzier,

fuzzy reasoning method, and defuzzier), the triple I method is further analyzed.

In general, if a fuzzy system is only of step response ability (but not universal

approximator21), then it can hardly be utilized in any practical systems. Therefore, it

is vitally signi¯cant to analyze the response function of a fuzzy system. The fuzzy

systems employing singleton fuzzier, centroid defuzzier and the triple I method or

CRI method for fuzzy reasoning have been discussed. In Ref. 22, two fuzzy systems

can be used in 51 fuzzy systems based on the triple I method, while in Refs. 23, 12

fuzzy systems can be utilized in 23 fuzzy systems based on the CRI method. By direct

comparisons, the fuzzy systems via the triple I method are inferior to the ones via the

CRI method.24 Based on implication operator Rp with parameter p, the fuzzy sys-

tems via the triple I method are of step response ability and then not practicable.25 In

Ref. 26, two fuzzy systems are practicable in 11 fuzzy systems via the triple I method,

while four fuzzy systems are usable in 11 ones via the CRI method, which are con-

structed by the same 11 implication operators.

Therefore, there are very few usable fuzzy systems based on the triple I method;

and the triple I method is not as good as the CRI method from the viewpoint of fuzzy

system, weakening the value of triple I method as an improvement of the CRI
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method. Such inferior response ability and practicability will hold back the further

development of the triple I method to a great extent.

To solve this problem, an important way is presented to improve the triple I

method. The CRI method can be seen as a special case of the triple I method only if

three implication operators in (1) are di®erent.24 In detail, the CRI method (which is

expressed as B�ðyÞ ¼ supx2XfA�ðxÞ ^ ðAðxÞ ! BðyÞÞg; y 2 Y ) can be regarded as

the triple I method where formula (1) is changed into

ðAðxÞ ! BðyÞÞ!2ðA�ðxÞ!2B
�ðyÞÞ;

where !2 takes the Mamdani operator RM .

Enlightened by this idea, we can let the latter two implication operators be same

and the ¯rst one unlimited, that is, generalize (1) to:

ðAðxÞ!1BðyÞÞ!2ðA�ðxÞ!2B
�ðyÞÞ; ð2Þ

where!1 and !2 (respectively called the ¯rst implication and second implication in

the sequel) can take di®erent implication operators, and the triple I method derived

from (2) is called the di®erently implicational universal triple I method of (1, 2, 2)

type (the universal triple I method for short). In Ref. 27, we have already proposed

and discussed the universal triple I method with some preliminary results. In this

paper, we shall systematically investigate the fuzzy systems based on the universal

triple I method and their response functions.

The rest of this paper is organized as follows. In Sec. 2, some de¯nitions and

results of implication operators together with residual pairs are recalled; moreover,

for the solutions of universal triple I method, the related conclusions are introduced.

In Secs. 3 and 4, the single-input single-output (SISO) and double-input single-

output (DISO) fuzzy systems via the universal triple I algorithm are constructed

respectively, and then the response functions of corresponding fuzzy systems are

obtained. Section 5 draws the conclusion.

2. Preliminaries

2.1. Some related implication operators

From Ref. 28 the de¯nition of residual pair is shown as De¯nition 2.1, which can help

establish uni¯ed forms of the universal triple I method.

De¯nition 2.1. Let ! and � be two ½0; 1�2 ! ½0; 1� mappings, ð!;�Þ is called a

residual pair or, ! and � are residual to each other, if

a � b � c iff b � a ! c

holds for any a; b; c 2 ½0; 1�, in which i® denotes \if and only if".

From Ref. 27, (C1){(C3) are the conditions for an implication operator to con-

struct residual pair (see the following theorem).
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Theorem 2.1. Let !: ½0; 1�2 ! ½0; 1� be an implication operator satisfying

(C1) a ! b is nondecreasing w.r.t. b (a; b 2 ½0; 1�),
(C2) a ! b is right-continuous w.r.t. b (a 2 ½0; 1�, b 2 ½0; 1Þ),
(C3) fy 2 ½0; 1�ja ! y ¼ 1g 6¼ � (a 2 ½0; 1�),
and de¯ne �! : ½0; 1�2 ! ½0; 1� as follows

a�!b ¼ ^fy 2 ½0; 1�jb � a ! yg; a; b 2 ½0; 1�;
then ð!;�!Þ is a residual pair; and a ! b ¼ _fy 2 ½0; 1�j a�!y � bgðwhere ^;_
denotes in¯mum and supremum; respectivelyÞ.

In this paper, we mainly consider 10 familiar implication operators. They are

Mamdani operator RM , Zadeh operator RZ , Lukasiewicz operator RL, G€odel oper-

ator RG , Goguen operator RGo, R0 operator (from Refs. 10 and 29), and Rep, Rdp��

(� 2 ½0; 1�), Ry�0:5 (from Refs. 27 and 30), together with revised Reichenbach oper-

ator R10 (from Ref. 31) as the following (where x 0 denotes 1� x).

RM ða; bÞ ¼ a ^ b; RZ ða; bÞ ¼ a 0 _ ða ^ bÞ;

RLða; bÞ ¼
1; a � b;

a 0 þ b; a > b;

(
RGða; bÞ ¼

1; a � b;

b; a > b;

�

RGoða; bÞ ¼
1; a ¼ 0;

ðb=aÞ ^ 1; a 6¼ 0;

(
R0ða; bÞ ¼

1; a � b;

a 0 _ b; a > b;

(

Repða; bÞ ¼
1; a � b;

ð2b� abÞ=ða þ b� abÞ; a > b;

(

Rdp��ða; bÞ ¼
1; a � b;

b�=a; � � a > b;

b; a > b; a > �;

8><
>: ð� 2 ð0; 1ÞÞ;

Ry�0:5ða; bÞ ¼
1; a � b;

1� ð ffiffiffiffiffiffiffiffiffiffiffi
1� b

p � ffiffiffiffiffiffiffiffiffiffiffi
1� a

p Þ2; a > b;

(

R10ða; bÞ ¼
1; a � b;

a 0 þ ab; a > b:

(

2.2. The solutions of universal triple I method

In Ref. 27, we have already accomplished some works of the universal triple I method

of fuzzy reasoning, and here we brie°y sketch in some related de¯nitions and results

(from Ref. 27) in this subsection.

De¯nition 2.2. Suppose that A;A� 2 FðXÞ, B 2 FðY Þ, and that nonempty set E is

the set of B� which makes (2) get its maximum for any x 2 X ; y 2 Y in

< FðY Þ;�F >, and ¯nally that D� is the in¯mum of E. If D� is the minimum of

E, then D� is called a MinP-solution.
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Remark 2.1. De¯nition 2.2 gives the de¯nition of optimal solution of the universal

triple I method. It is noted that < FðY Þ;�F > is a complete lattice where the partial

order relation �F on FðY Þ is de¯ned as: A1�FA2 i® A1ðyÞ � A2ðyÞ for 8y 2 Y

(where A1;A2 2 FðY Þ).
Theorem 2.2. Suppose that !2 is an implication operator satisfying (C1){(C4)

a � b i® a ! b ¼ 1ða; b 2 ½0; 1�Þ; and that � is its residual mapping; then the MinP-

solution can be expressed as

B�ðyÞ ¼ sup
x2X

fA�ðxÞ � ðAðxÞ!1BðyÞÞg; y 2 Y :

From Theorem 2.2, when the implication operator !2 (in the universal triple I

method) satis¯es (C1){(C4), then the residual pair ð!2;�Þ can be generated, and

uni¯ed form of the universal triple I method can be established to allow di®erent

implication operators to be employed in the same manner.

In the implication operators mentioned above,RL;RG ;RGo;R0;Rep;Rdp��;Ry�0:5;

R10 satisfy (C1){(C4), thus Theorem 2.2 holds for these implication operators.

Proposition 2.1. The operations corresponding to RG ;RGo;RL;R0;R10;Rep;

Rdp��;Ry�0:5 in residual pairs are as follows; respectively.

a�Gb ¼ a ^ b; a�Gob ¼ a � b; a�Lb ¼
a þ b� 1; a þ b > 1;

0; a þ b � 1;

�

a�0b ¼
a ^ b; a þ b > 1;

0; a þ b � 1;

�
a�10b ¼

½ða þ b� 1Þ=a� ^ a; a þ b > 1;

0; a þ b � 1;

(

a�epb ¼ ab=½2� ða þ b� abÞ�; a�dp��b ¼ ab=maxða; b; �Þð� 2 ½0; 1�Þ;

a�y�0:5b ¼
1� ðgða; bÞÞ2; gða; bÞ � 1;

0; gða; bÞ > 1;

(
ðgða; bÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1� a
p þ ffiffiffiffiffiffiffiffiffiffiffi

1� b
p Þ:

Proposition 2.2. (i) If !2 is RZ ; then the MinP-solution can be expressed as

B�ðyÞ ¼ supx2Ey
fA�ðxÞ ^ ðAðxÞ!1BðyÞÞg ðy 2 Y Þ;

where Ey ¼ fx 2 X j ðA�ðxÞÞ 0 _ 0:5 < ðAðxÞ!1BðyÞÞg.
(ii) If !2 is RM , then the MinP-solution can be expressed as

B�ðyÞ ¼ supx2XfA�ðxÞ ^ ðAðxÞ!1BðyÞÞg; y 2 Y : ð3Þ
Remark 2.2. Notice that the solution of the CRI method is computed as

B�ðyÞ ¼ supx2XfA�ðxÞ ^ ðAðxÞ ! BðyÞÞg ðy 2 Y Þ; ð4Þ
where ! is an implication operator.32,33 Thus, from Proposition 2.2(ii), it is easy to

know that when !2 is RM (and !1 in formula (3) takes ! in (4)), the universal

triple I method degenerates into the CRI method.

Remark 2.3. When!1 ¼ !2 in (2), it is obvious that the universal triple I method

degenerates into the triple I method.
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The fuzzy partition is an important structure for fuzzy system, where its de¯ni-

tion is as follows.

De¯nition 2.3. Let Z be any nonempty set and C ¼ fCigð1�i�nÞ a family of normal

fuzzy sets on Z , where the peak-point of Ci is zi (i.e., the unique point satisfying

CiðziÞ ¼ 1 in Z). C is called a fuzzy partition of Z if ð8z 2 ZÞðPn
i¼1 CiðzÞ ¼ 1Þ holds,

and Ci is de¯ned as a base element in C. Thus C is also called a group of base

elements of Z .

Remark 2.4. It is obvious that De¯nition 2.3 implies ð8i; jÞði 6¼ j ) zi 6¼ zjÞ and

that C has Kronecker property (i.e., CiðzjÞ ¼ � ij where �ij ¼ 1 if i ¼ j, � ij ¼ 0

if i 6¼ j).

3. SISO Fuzzy Systems Based on the Universal Triple I Method

and their Response Functions

Based on the universal triple I method, in this section we shall construct the corre-

sponding SISO fuzzy systems, and then analyze their response functions.

3.1. Construction of the SISO fuzzy systems via the universal

triple I method

Here we shall establish the SISO fuzzy systems via the universal triple I method.

Let X and Y be the input universe and output universe, respectively. Denote

A ¼ fAigð1�i�nÞ; B ¼ fBigð1�i�nÞ;

where Ai 2 FðXÞ, Bi 2 FðY Þ in which FðXÞ;FðY Þ are the sets of all fuzzy subsets

on X ;Y , respectively. A;B are regarded as linguistic variables, thus the fuzzy rea-

soning rules can be expressed as follows:

If x is Ai; then y is Bi; i ¼ 1; . . . ; n; ð5Þ

where x 2 X , y 2 Y are called base variables.

Similar to Refs. 8, 22 and 23, the reasoning relation of the ith inference rule can be

regarded as a fuzzy relation from X to Y (i ¼ 1; . . . ; n), denoting by AiðxÞ!1BiðyÞ
(where !1 is an implication operator). And such n rules can be connected by \OR"

relation, thus the whole reasoning rule should be

�1ðx; yÞ, _n
i¼1 ðAiðxÞ!1BiðyÞÞ:

Given A� 2 FðXÞ, the reasoning conclusion B� 2 FðY Þ can be gotten by the

universal triple I method of fuzzy reasoning. Therefore, formula (2) should be turned

into the following formula:

�1ðx; yÞ!2ðA�ðxÞ!2B
�ðyÞÞ: ð6Þ

448 Y. Tang & F. Ren
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We have given some MinP-solutions derived from (2) (e.g., !2 2 fRM ;RZg),
then it is similar to get the MinP-solutions derived from (6). We only analyze the

case !2 ¼ R0 as an example. For (2), by Theorem 2.2 we can easily get that the

MinP-solution is

B�ðyÞ ¼ sup
x2Ey

fA�ðxÞ ^ ðAðxÞ!1BðyÞÞg;

where Ey ¼ fx 2 X jðA�ðxÞÞ 0 < AðxÞ!1BðyÞg. If we compare (2) with (6), it is easy

to ¯nd that ðAðxÞ!1BðyÞÞ is displaced by �1ðx; yÞ, which is the unique di®erence.

Thus, the solving process is not changed basically, we can similarly achieve that the

MinP-solution from (6) is

B�ðyÞ ¼ sup
x2Ey

fA�ðxÞ ^ �1ðx; yÞg;

where Ey ¼ fx 2 X jðA�ðxÞÞ 0 < �1ðx; yÞg.
Now we shall construct the SISO fuzzy system via the universal triple I method as

the following three steps:

(i) Since the input value of a fuzzy system should be a crisp number x� 2 X , to use

the universal triple I method of fuzzy reasoning, x� should be changed into a fuzzy set

by de¯ning a singleton8,22,23

A�ðxÞ ¼ 1; x ¼ x�

0; x 6¼ x�

�
,A�

x� ;

which is called fuzzier.

(ii) Then, from A�, we get the reasoning conclusion B� by the universal triple I

method.

(iii) Because B� is a fuzzy set, it should be transformed into a crisp value y� as the
output value, which is called defuzzier. Usually the centroid defuzzier22{26 is in

common use, that is

y� ¼
R
Y
yB�ðyÞdyR

Y
B�ðyÞdy :

However, the centroid defuzzier makes no sense when B�ðyÞ � 0. In Ref. 30, several

defuzziers, including the centroid defuzzier, the center average defuzzier and

the defuzzier of average from the maximum were provided. The last one (that is,

the defuzzier of average from the maximum) which employs

hgtðB�Þ ¼ y 2 Y jB�ðyÞ ¼ sup
y2Y

B�ðyÞg
� �

; y� ¼
R
hgtðY Þ ydyR
hgtðY Þdy

;

(noting hgtðY Þ ¼ Y here), is partly similar to the centroid defuzzier. As a result, we

mainly utilize the centroid defuzzier; and when B�ðyÞ � 0, we adopt the defuzzier of

average from the maximum. This method (taking two defuzziers) has been proved to

be valid.26,27

To sum up, there is an output y� ¼ Fðx�Þ for each input x�. Thus, the SISO fuzzy

system via the universal triple I method is constructed.
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In order to investigate response functions of fuzzy systems, suppose that A ¼
fAigð1�i�nÞ and B ¼ fBigð1�i�nÞ are respectively fuzzy partitions ofX andY (in which

Ai; Bi are integrable functions); moreover, assume that X and Y are all real number

intervals, e.g., X ¼ ½a; b� and Y ¼ ½c; d� where a < x1 < x2 < 	 	 	 < xn < b and c <

y1 < y2 < 	 	 	 < yn < d, in which xi; yi are respectively peak-points of Ai;Bi and cor-

responding distributions (for fa; x1; x2; . . . ; xn; bg, fc; y1; y2; . . . ; yn; dg) are basically

uniform.

Let h1 ¼ y1 � c, hi ¼ yi � yi�1 (i ¼ 2; 3; . . . ; n) and h ¼ max1�i�nfhig. Since A

and B are all fuzzy partitions, they have Kronecker property: AiðxjÞ ¼ �ij ¼ BiðyjÞ.
By the de¯nition of de¯nite integral, we achieve for the centroid defuzzier:

y� ¼
R
Y
yB�ðyÞdyR

Y
B�ðyÞdy 


Pn
i¼1 yiB

�ðyiÞhiPn
i¼1 B�ðyiÞhi

: ð7Þ

Similarly, we get for the defuzzier of average from the maximum:

y� ¼
R
hgtðY Þ ydyR
hgtðY Þdy



Pn

i¼1 yihiPn
i¼1 hi

,c0:

3.2. Response functions of SISO fuzzy systems via the universal

triple I method

For the constructed SISO fuzzy systems via the universal triple I method, here we

shall investigate their response functions.

For the MinP-solution B�, its equivalent form in the SISO fuzzy system is going to

be investigated (see Theorem 3.1).

Theorem 3.1. (i) Let !2 2 fRG ;RGo;RM ;Rep;Ry�0:5;Rdp��g; then the MinP-

solution B�ðyÞ ¼ �1ðx�; yÞ in a SISO fuzzy system via the universal triple I method.

(ii) Let !2 2 fR0;RL;RZ ;R10g; then the MinP-solution B�ðyÞ ¼ �1ðx�; yÞ when

x� 2 Ey and B�ðyÞ ¼ 0 when x� 2 X � Ey in a SISO fuzzy system via the universal

triple I method.

Proof. (i) Suppose !2 2 fRG ;RGo;RM ;Repg. We only prove the case of RG as an

example. It follows from Theorem 2.2 that the MinP-solution can be expressed as

B�ðyÞ ¼ sup
x2X

fA�ðxÞ ^ �1ðx; yÞg;

where �1ðx; yÞ ¼ _n
i¼1ðAiðxÞ!1BiðyÞÞ. As for input x�, we get a singleton

A�
x� ¼

1; x ¼ x�

0; x 6¼ x�

�
. Thus it is evident to get B�ðyÞ ¼ �1ðx�; yÞ.

Suppose !2 2 fRy�0:5;Rdp��g, We only prove the case of Ry�0:5 as an example. It

is similar to get the MinP-solution

B�ðyÞ ¼ sup
x2X

fA�ðxÞ�y�0:5�1ðx; yÞg
¼ sup

x2Ey

f1� ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A�ðxÞp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �1ðx; yÞ
p Þ2g; y 2 Y ;
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where Ey ¼ fx 2X j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�A�ðxÞp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �1ðx;yÞ
p � 1g, �1ðx;yÞ ¼ _n

i¼1ðAiðxÞ!1BiðyÞÞ.
As for input x�, we get a singleton A�

x� . It is easy to get x� 2Ey. Note that �y�0:5 is a

t-norm, then 1�y�0:5b¼ b and 0�y�0:5b¼ 0 hold for any b2 ½0;1�. Thus
A�ðxÞ�y�0:5�1ðx;yÞ ¼ 1�y�0:5�1ðx�;yÞ ¼ �1ðx�;yÞ

when x ¼ x�; and

A�ðxÞ�y�0:5�1ðx; yÞ ¼ 0�y�0:5�1ðx; yÞ ¼ 0

when x 2 X � fx�g. Hence B�ðyÞ ¼ supx2XfA�ðxÞ�y�0:5�1ðx; yÞg ¼ �1ðx�; yÞ.
(ii) We only prove the case of !2 ¼ R0 as an example. It follows from

Theorem 2.2 that the MinP-solution can be expressed as

B�ðyÞ ¼ sup
x2Ey

fA�ðxÞ ^ �1ðx; yÞg;

where Ey ¼ fx 2 X jðA�ðxÞÞ 0 < �1ðx; yÞg and �1ðx; yÞ ¼ _n
i¼1ðAiðxÞ!1BiðyÞÞ. As for

input x�, we get a singleton A�
x� . If x

� 2 Ey, then we have Ey ¼ fx�g by the structure

of Ey, and thus B�ðyÞ ¼ �1ðx�; yÞ. If x� 2 X � Ey, then Ey ¼ �;, and thus

B�ðyÞ ¼ 0.

Based on the conditions where !1 satis¯es as well as the characteristics of fuzzy

partition (according to De¯nition 2.3 and Remark 2.4), we can prove Lemma 3.1,

which provides the basis for the following theorems. In fact, to analyze the response

function of fuzzy system via the universal triple I method, we ¯nd that (C5){(C8) in

Lemma 3.1 are respectively important conditions for !1 to determine the response

function to a large extent.

Lemma 3.1. In a SISO fuzzy system via the universal triple I method;

(i) if !1 satis¯es one of the following conditions ða 2 ½0; 1�Þ:
(C5) a ! 1 ¼ 1 or a ! 0 ¼ 1;

(C6) a ! 1 ¼ ð1þ aÞ=2 and a ! 0 � 1=2, or a ! 0 ¼ ð1þ aÞ=2 and a ! 1 �
1=2; then �1ðx�; yjÞ > 0 for any x� 2 Xðj ¼ 1; . . . ; nÞ;

(ii) if !1 ¼ RZ ; then �1ðx�; yjÞ > 0 for any x� 2 Xðj ¼ 1; . . . ; nÞ;
(iii) if !1 satis¯es one of the following conditions (a 2 ½0; 1�)

(C7) a ! 1 ¼ a and a ! 0 ¼ 0;

(C8) a ! 1 ¼ 0 and a ! 0 2 fa; 1� ag;
then there exists yj such that �1ðx�; yjÞ > 0 for any x� 2 X (j 2 f1; . . . ; ng).

Theorems 3.2{3.4 provide the response functions of SISO fuzzy systems via the

universal triple I method, which are derived from the equivalent form of MinP-

solution and the condition that !1 satis¯es.

Theorem 3.2. Suppose that the MinP-solution is B�ðyÞ ¼ �1ðx�; yÞ; and that !1

satis¯es (C7) in a SISO fuzzy system via the universal triple I method. Then there

exists a group of base functions A� ¼ fA�
i gð1�i�nÞ such that the SISO fuzzy system is
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approximately a univariate piecewise interpolation function taking A�
i as its base

functions ði.e.; FðxÞ ¼Pn
i¼1 A

�
i ðxÞyiÞ; and A� is a fuzzy partition on X . Especially;

if fyigð1�i�nÞ is an equidistant partition; then A� degenerates into Aði.e.; FðxÞ ¼Pn
i¼1 AiðxÞyiÞ.

Proof. As for B�ðyÞ ¼ �1ðx�; yÞ ¼ _n
i¼1ðAiðx�Þ!1BiðyÞÞ, since !1 satis¯es (C7)

and BkðyiÞ ¼ �ki, it follows from (7) that we obtain:

y� ¼
R
Y
yB�ðyÞdyR

Y
B�ðyÞdy 


Pn
i¼1 yiB

�ðyiÞhiPn
i¼1 B�ðyiÞhi

¼
Pn

i¼1 hi½_n
k¼1ðAkðx�Þ!1BkðyiÞÞ�yiPn

i¼1 hi½_n
k¼1ðAkðx�Þ!1BkðyiÞÞ�

¼
Pn

i¼1 hiAiðx�ÞyiPn
i¼1 hiAiðx�Þ

; ð8Þ

where there exists yi such that B�ðyiÞ ¼ �1ðx�; yiÞ > 0 (i 2 f1; . . . ; ng) by Lemma 3.1

(iii), so
Pn

i¼1 B
�ðyiÞhi > 0 and then (8) makes sense.

Denote

A�
i ðx�Þ,hiAiðx�Þ

Xn
i¼1

hiAiðx�Þ
" #,

;

then we have y� 
Pn
i¼1 A

�
i ðx�Þyi. Let A�,fA�

i gð1�i�nÞ, FðxÞ,
Pn

i¼1 A
�
i ðxÞyi. Con-

sidering AkðxiÞ ¼ �ki, it follows that

FðxiÞ ¼
Xn
k¼1

A�
kðxiÞyk ¼

Xn
k¼1

hkAkðxiÞyk
" #, Xn

k¼1

hkAkðxiÞ
" #

¼ yi

for i ¼ 1; . . . ; n, then FðxÞ is a univariate piecewise interpolation function which

regards A�
i as its base functions.

Furthermore,

Xn
i¼1

A�
i ðxÞ ¼

Xn
i¼1

hiAiðxÞ
Xn
i¼1

hiAiðxÞ
 !," #

¼ 1

holds for any x 2 X , so A� is a fuzzy partition on X .

At last, if fyigð1�i�nÞ is an equidistant partition (i.e., ð8iÞðhi ¼ hÞ), then it is

evident that A�
i ¼ Ai, A

� ¼ A, and hence FðxÞ ¼Pn
i¼1 AiðxÞyi .

Remark 3.1. In Theorem 3.2 (and also what follows), there exists an important

word \approximately" for several times. Here we shall interpret the meaning of

\approximately". For the case of centroid defuzzier, it is easy to ¯nd that the key of

\approximately" lies in (see (7) and (8))R
Y
yB�ðyÞdyR

Y
B�ðyÞdy 


Pn
i¼1 yiB

�ðyiÞhiPn
i¼1 B�ðyiÞhi

:

It follows from the de¯nition of de¯nite integral that we can get the following

interpretations (noting that the distribution for fc; y1; y2; . . . ; yn; dg is basically

uniform): (i) if n is larger, then
Pn

i¼1 yiB
�ðyiÞhi=

Pn
i¼1 B

�ðyiÞhi is more approximate
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to
R
Y
yB�ðyÞdy=R

Y
B�ðyÞdy; (ii) for any " > 0, there exists a natural number N such

that for any n > N we haveR
Y
yB�ðyÞdyR

Y
B�ðyÞdy �

Pn
i¼1 yiB

�ðyiÞhiPn
i¼1 B�ðyiÞhi

����
���� < ":

It is noted that n is determined by users according to the actual demand. For the case

of defuzzier of average from the maximum, we can get similar interpretations.

Theorem 3.3. Suppose that the MinP-solution is B�ðyÞ ¼ �1ðx�; yÞ; and that !1

satis¯es (C6) or (C8); or !1 ¼ RZ in a SISO fuzzy system via the universal triple I

method. Then there exists a group of base functions A� ¼ fA�
i gð1�i�nÞ such that the

SISO fuzzy system is approximately a univariate piecewise ¯tted function regarding

A�
i as its base functions ði.e.; FðxÞ ¼Pn

i¼1 A
�
i ðxÞyiÞ.

Proof. We only prove the case that !1 satis¯es a ! 1 ¼ ð1þ aÞ=2 and a ! 0 �
1=2 as an example. As for B�ðyÞ ¼ �1ðx�; yÞ ¼ _n

i¼1ðAiðx�Þ!1BiðyÞÞ, since

BkðyiÞ ¼ �ki, it follows from (7) that we obtain:

y� 

Pn

i¼1 yiB
�ðyiÞhiPn

i¼1 B�ðyiÞhi
¼
Pn

i¼1 hi½_n
k¼1ðAkðx�Þ!1BkðyiÞÞ�yiPn

i¼1 hi½_n
k¼1ðAkðx�Þ!1BkðyiÞÞ�

¼
Pn

i¼1 hi½ð1þ Aiðx�ÞÞ=2�yiPn
i¼1 hi½ð1þ Aiðx�ÞÞ=2�

; ð9Þ

whereB�ðyiÞ ¼ �1ðx�; yiÞ > 0 (i ¼ 1; . . . ; n) from Lemma 3.1(i), so
Pn

i¼1 B
�ðyiÞhi > 0

and then (9) makes sense.

Denote

Ciðx�Þ, ð1þ Aiðx�ÞÞ=2; A�
i ðx�Þ, hiCiðx�Þ

Xn
i¼1

hiCiðx�Þ
", #

;

thus y� 
Pn
i¼1 A

�
i ðx�Þyi. Let A�,fA�

i gð1�i�nÞ, FðxÞ,Pn
i¼1 A

�
i ðxÞyi . Considering

AjðxiÞ ¼ �ji , we get (i ¼ 1; . . . ; n):

FðxiÞ ¼
Pn

j¼1 hj ½ð1þ AjðxiÞÞ=2�yjPn
j¼1 hj ½ð1þ AjðxiÞÞ=2�

¼
Pn

j¼1 hjð1þ AjðxiÞÞyjPn
j¼1 hjð1þ AjðxiÞÞ

¼ hiyi þ
Pn

j¼1 hjyj
hi þ

Pn
j¼1 hj

:

Obviously, it cannot make FðxiÞ ¼ yi always hold for every i, thus FðxÞ is a uni-

variate piecewise ¯tted function which regards A�
i as its base functions.

Theorem 3.4. (i) Suppose that the MinP-solution is B�ðyÞ ¼ �1ðx�; yÞ; and that !1

satis¯es (C5) in a SISO fuzzy system via the universal triple I method. Then the SISO

fuzzy system is approximately a step response function ði.e.; FðxÞ ¼ c0Þ.
(ii) Suppose that the MinP-solution is B�ðyÞ ¼ aða 2 ½0; 1�Þ in a SISO fuzzy system

via the universal triple I method; then the SISO fuzzy system is approximately a step

response function ði.e.; FðxÞ ¼ c0Þ.

Fuzzy Systems Based on Universal Triple I Method 453

In
t. 

J.
 I

nf
o.

 T
ec

h.
 D

ec
. M

ak
. 2

01
7.

16
:4

43
-4

71
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

E
FE

I 
U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
11

/0
2/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



Proof. (i) As for B�ðyÞ ¼ �1ðx�; yÞ ¼ _n
i¼1ðAiðx�Þ!1BiðyÞÞ; since !1 satis¯es (C5)

and BkðyiÞ ¼ �ki; it follows from (7) that we have:

y� 

Pn

i¼1 yiB
�ðyiÞhiPn

i¼1 B�ðyiÞhi
¼
Pn

i¼1 hi ½_n
k¼1ðAkðx�Þ!1BkðyiÞÞ�yiPn

i¼1 hi½_n
k¼1ðAkðx�Þ!1BkðyiÞÞ�

¼
Pn

i¼1 hiyiPn
i¼1 hi

¼ c0;

ð10Þ
where B�ðyiÞ ¼ �1ðx�; yiÞ > 0 (i ¼ 1; . . . ; n) from Lemma 3.1(i), thus

Pn
i¼1 B

�ðyiÞhi
> 0 and then (10) makes sense. Thus the response function FðxÞ ¼ c0.

(ii) It can be divided into two cases.

(a) Suppose a ¼ 0. Then B�ðyÞ ¼ 0 and the centroid defuzzier makes on sense, so we

utilize the defuzzier of average from the maximum. Thus y� 
 c0 and the re-

sponse function can be expressed as FðxÞ ¼ c0.

(b) Suppose a > 0, considering BkðyiÞ ¼ �ki , it follows from (7) that we can easily

get y� 
Pn
i¼1 yihi=

Pn
i¼1 hi ¼ c0:

Therefore, the response function can be expressed as FðxÞ ¼ c0.

Remark 3.2. The previous researches on response functions of fuzzy sys-

tems,22,23,25{27 are commonly derived from some speci¯c implication operators.

However, Theorems 3.2{3.4 in this paper, are from the equivalent form of MinP-

solutions in fuzzy systems, which provide a new research idea. By such a new idea, it

is easier for us to grasp the essence of response functions.

If !2 employs speci¯c implication operator in the SISO fuzzy systems via the

universal triple I method, then we can get Corollaries 3.1{3.3. Here Corollaries 3.1

and 3.2 can be proved by virtue of Theorems 3.1{3.4. Then it follows from Corol-

laries 3.1 and 3.2 that Corollary 3.3 can be obtained.

Corollary 3.1. Suppose that !2 2 fRG ;RGo;RM ;Rep;Ry�0:5;Rdp��g in a SISO

fuzzy system via the universal triple I method.

(i) Let !1 satisfy ðC5Þ; then the SISO fuzzy system is approximately a step re-

sponse function.

(ii) Let !1 satisfy ðC7Þ; then the conclusion is the same as Theorem 3.2.

(iii) Let !1 satisfy ðC6Þ or ðC8Þ; or !1 ¼ RZ ; then the conclusion is the same as

Theorem 3.3.

Corollary 3.2. Suppose that !2 2 fR0;RL;RZ ;R10g in a SISO fuzzy system via the

universal triple I method.

(i) Let !1 satisfy ðC5Þ; then the SISO fuzzy system is approximately a step

response function.

(ii) Let !1 satisfy ðC7Þ; then there are two cases to be considered: (a) Suppose

x� 2 Ey; then the conclusion is the same as Theorem 3.2. (b) Suppose x� 2
X � Ey; then the SISO fuzzy system is approximately a step response function.
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(iii) Let !1 satisfy (C6) or (C8); or !1 ¼ RZ ; then there are two cases to be

considered: (a) Suppose x� 2 Ey; then the conclusion is the same as Theo-

rem 3.3. (b) Suppose x� 2 X � Ey; then the SISO fuzzy system is approximately a

step response function.

Corollary 3.3. If !2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g and

!1 satis¯es (C5 0) a ! 1 ¼ 1ða 2 ½0; 1�Þ; then the SISO fuzzy system via the universal

triple I method is approximately a step response function (i.e.; FðxÞ ¼ c0).

Remark 3.3. In Ref. 27, the following implication operators are also investigated.

RKDða; bÞ ¼ a 0 _ b; RLaða; bÞ ¼ a � b; RY ða; bÞ ¼ ba;

RRða; bÞ ¼ a 0 þ ab; RGRða; bÞ ¼
1; a � b;

0; a > b;

(

R16ða; bÞ ¼
1; a � b;

a 0=b 0; a > b;

(
R17ða; bÞ ¼

1; a � b;

a 0; a > b:

(

Moreover, from Theorem 6.3 of Ref. 27, when !2 2 fRKD;RLa;RY ;RR;RGR;R16;

R17g, the SISO fuzzy system via the universal triple I method is approximately a

step response function, which can hardly be used in practical systems. Therefore,

in Secs. 3 and 4, we do not consider these implication operators as the second

implication !2 (in the universal triple I method).

Remark 3.4. From Theorems 6.1 and 6.2 of Ref. 27, the response functions of the

SISO fuzzy systems via the universal triple I method were discussed. It is easy to get

that Corollaries 3.1(ii)(iv), 3.2(ii)(iv), and 3.3 in this paper, include the conclusions

of Theorems 6.1 and 6.2 of Ref. 27. What is more, these corollaries are induced by

Theorems 3.2{3.4, thus the related conclusions in this paper are superior to the ones

in Ref. 27.

Remark 3.5. RG ;RL;R0;RGo;RGR;RKD;RR;RY ;Rep;Ry�0:5;Rdp��;R10;R16;R17

obviously satisfy (C5). Besides, it is not di±cult to get that the following implication

operators (from Ref. 22) also satisfy (C5).

R18ða; bÞ ¼
b; a � b;

0; a > b;

(
R19ða; bÞ ¼ 1� ab; R20ða; bÞ ¼ ða ^ ð1� aÞÞ _ b:

Therefore, if !2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g, and !1 2
fRG ; RL;R0;RGo;RGR;RKD;RR;RY ;Rep;Ry�0:5;Rdp��;R10;R16;R17; . . . ;R20g, then
the response function is a step response function (from Corollaries 3.1(i) and 3.2(i)),

whichmeans that suchSISO fuzzy systemvia the universal triple Imethod canhardly be

used in practical systems.
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Remark 3.6. (i) (C7) obviously holds for RM ;RLa and the following implication

operators (from Ref. 23).

R21ða; bÞ ¼
0; a þ b � 1;

a; else;

(
R22ða; bÞ ¼

0; a þ b � 1;

a ^ b; else;

(

R23ða; bÞ ¼
0; b < 1;

a; else;

(
R24ða; bÞ ¼

0; a þ b � 1;

ða þ b� 1Þ=b; else;

(

R25ða; bÞ ¼
0; b ¼ 0;

a1=b; else;

(
R26ða; bÞ ¼

0; b ¼ 0;

a; else;

(

R27ða; bÞ ¼ ab=½1þ ð1� aÞð1� bÞ�; R28ða; bÞ ¼ ðap þ bp � 1Þ1=p _ 0ðp > 0Þ:

If!2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g, and!1 2 fRM ;RLa;R21;

R22; . . . ;R28g, then !1 satis¯es (C7). Thus the SISO fuzzy system via the universal

triple I method is approximately an interpolation function (which may demand

x� 2 Ey) according to Corollaries 3.1(ii) and 3.2(ii). Hence it can be universal

approximator and then usable in practice.

(ii) (C6) obviously holds for R29;R30;R31;R32 (as follows), and (C8) evidently

holds for R33;R34;R35;R36 (as follows), in which new implication operators are from

Ref. 22.

R29ða; bÞ ¼ ða þ bÞ=2; R30ða; bÞ ¼ ð1þ aÞ=2� ab;

R31ða; bÞ ¼ ð1� aÞ=2þ ab; R32ða; bÞ ¼ ð1þ a � bÞ=2;
R33ða; bÞ ¼ að1� bÞ; R34ða; bÞ ¼ 0 _ ða � bÞ;
R35ða; bÞ ¼ ða � abÞ=ð1þ b� abÞ; R36ða; bÞ ¼ ð1� aÞð1� b� abÞ _ 0:

If !2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g and !1 2 fR29;R30; . . . ;

R36;RZg, then !1 satis¯es (C6) or (C8), or !1 ¼ RZ , thus the SISO fuzzy system

via the universal triple I method is approximately a ¯tted function (which may

demand x� 2 Ey) according to Corollaries 3.1(iii)(iv), 3.2(iii)(iv), and then it may be

usable in practical systems.

To sum up, when !2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g and

!1 2 fRM ;RLa;RZ ;R21;R22; . . . ;R36g, the corresponding fuzzy system can be

practicable. Thus, 190 usable SISO fuzzy systems via the universal triple I method

are obtained in this paper.

Note that the universal triple I method degenerates into the CRI method if !2 ¼
RM (by Remark 2.2), then we can get the response functions of related SISO fuzzy

systems via the CRI method from Corollary 3.1, Remarks 3.5 and 3.6. In detail,

the SISO fuzzy system via the CRI method is approximately a step response func-

tion when!1 2 fRG ;RL;R0;RGo;RGR;RKD;RR;RY ;Rep;Ry�0:5;Rdp��;R10;R16;R17

; . . . ; R20g, which can hardly be used in practical systems. Moreover, the SISO fuzzy

system via the CRI method is approximately an interpolation function or a ¯tted
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function when !1 2 fRM ;RLa;RZ ;R21;R22; . . . ;R36g, which implies that such fuzzy

system can be usable in practical systems.

Remark 3.7. From Ref. 23, the SISO fuzzy system via the CRI method is

approximately an interpolation function if !2 fR21;R22; . . . ;R28g, and a ¯tted

function if !2 fR29;R31g, thus such 10 SISO fuzzy systems via the CRI method are

usable. It is easy to ¯nd that these results of Ref. 23 are the same as the related ones

in this paper. Moreover, besides these implication operators, we draw the conclusions

that the SISO fuzzy systems via the CRI method employing RM ;RLa;RZ ;R30;R32;

R33; . . . ;R36 are also usable. Thus, in this paper, we provide more usable fuzzy

systems via the CRI method (than Ref. 23).

If !1 ¼ !2, the universal triple I method degenerates into the triple I method,

then we can get Corollary 3.4.

Corollary 3.4. In the SISO fuzzy system via the triple I method,

(i) if !2 fR0;RL;R10;RG ;RGo;Rep;Ry�0:5;Rdp��g; then the SISO fuzzy system is

approximately a step response function;

(ii) if ! takes RM ; then the SISO fuzzy system is approximately a univariate

piecewise interpolation function;

(iii) if ! takes RZ ; then the SISO fuzzy system is approximately a univariate

piecewise ¯tted function for the case of x� 2 Ey; and a step response function for

the case of x� 2 X � Ey.

Remark 3.8. From Ref. 22, only two fuzzy systems are usable (where RM or RZ is

employed) in 51 SISO fuzzy systems via the triple I method. Such conclusions are the

same as the related ones in Corollary 3.4 in this paper.

4. DISO Fuzzy Systems Based on the Universal Triple I Method

and Their Response Functions

In the previous researches related to the fuzzy systems via the CRI method or triple I

method, it is common todiscuss SISO fuzzy systems andDISO fuzzy systems.Therefore,

we shall investigate the DISO fuzzy systems based on universal triple I method.

4.1. Construction of the DISO fuzzy systems via the universal

triple I method

The DISO fuzzy systems via the universal triple I method shall be constructed.

Let X and Y be the universe of inputs x and y, respectively, and Z the universe of

output z. Denote

A ¼ fAigð1�i�nÞ; B ¼ fBigð1�i�nÞ; and C ¼ fCigð1�i�nÞ;

where Ai 2 FðXÞ, Bi 2 FðY Þ, Ci 2 FðZÞ in which FðXÞ;FðY Þ;FðZÞ are the sets of
all fuzzy subsets on X ;Y ;Z , respectively. We regard A;B;C as linguistic variables,
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then the fuzzy reasoning rules can be expressed as follows:

If x is Ai and y is Bi; then z is Ci; i ¼ 1; . . . ; n; ð11Þ
where x 2 X ; y 2 Y ; z 2 Z are called base variables.

Similar to Refs. 8, 22 and 23 and the case of SISO fuzzy system, the reasoning

relation of ith inference rule can be changed into ðAiðxÞ ^ BiðyÞÞ!1CiðzÞ, and we get

the whole reasoning rule

�1ðx; y; zÞ, _n
i¼1 ððAiðxÞ ^ BiðyÞÞ!1CiðzÞÞ:

Given A� 2 FðXÞ;B� 2 FðY Þ, the reasoning conclusion C � 2 FðZÞ can be

obtained by the universal triple I method of fuzzy reasoning. Therefore, (2) should be

changed into:

�1ðx; y; zÞ!2ððA�ðxÞ ^ B�ðyÞÞ!2C
�ðzÞÞ: ð12Þ

It is similar to the case of SISO fuzzy system, we can get the MinP-solutions

derived from (12). We also analyze the case !2 ¼ R0 as an example. For (2), the

MinP-solution is

B�ðyÞ ¼ sup
x2Ey

fA�ðxÞ ^ ðAðxÞ!1BðyÞÞg;

where Ey ¼ fx 2 X jðA�ðxÞÞ 0
< AðxÞ!1BðyÞg. If we compare (2) with (12), it is easy

to get that ðAðxÞ!1BðyÞÞ, A�ðxÞ and B�ðyÞ are respectively displaced by �1ðx; y; zÞ,
ðA�ðxÞ ^ B�ðyÞÞ and C �ðzÞ. Thus, we can similarly obtain that the MinP-solution

from (12) is

C �ðzÞ ¼ sup
ðx;yÞ2Ez

fðA�ðxÞ ^ B�ðyÞÞ ^ �1ðx; y; zÞg;

where Ez ¼ fðx; yÞ 2 X � Y jðA�ðxÞ ^ B�ðyÞÞ 0 < �1ðx; y; zÞg.
Now we shall construct the DISO fuzzy system via the universal triple I method as

the following three steps:

(i) For a DISO fuzzy system, the input value is a crisp quantity ðx�; y�Þ 2 X � Y .

So we should treat ðx�; y�Þ by fuzzier (still using singleton fuzzier), and get

A�
x� ,

1; x ¼ x�

0; x 6¼ x�

�
and B �

y� ,
1; y ¼ y�

0; y 6¼ y�

�
:

(ii) Then we achieve C � by the universal triple I method of fuzzy reasoning (from

the inputs A�
x� and B �

y�).

(iii) Similar to Sec. 3.1, we mainly adopt the centroid defuzzier, i.e.,

z� ¼
R
Z
zC �ðzÞdzR

Z
C �ðzÞdz ;

andwhenC �ðzÞ � 0,weutilize the defuzzier of average from themaximum(which

takes hgtðC �Þ ¼ fz 2 Z jC �ðzÞ ¼ supz2ZC �ðzÞg and then z� ¼ R
hgtðZÞ zdz=R

hgtðZÞdz, where hgtðZÞ ¼ Z here).
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To sum up, there is an output z� ¼ Gðx�; y�Þ for each input ðx�; y�Þ. Then a DISO

fuzzy system via the universal triple I method is constructed.

To discuss the response functions of DISO fuzzy systems, supposeA ¼ fAigð1�i�nÞ,
B ¼ fBigð1�i�nÞ andC ¼ fCigð1�i�nÞ are respectively the fuzzy partitions onX ,Y and

Z (where Ai;Bi;Ci are integrable functions). We assume that X , Y and Z are all real

number intervals, e.g., X ¼ ½a; b�, Y ¼ ½c; d� and Z ¼ ½e; f � in which a < x1 <

x2 < 	 	 	 < xn < b, c < y1 < y2 < 	 	 	 < yn < d and e < z1 < z2 < 	 	 	 < zn < f , where

xi; yi; zi are respectively peak-points ofAi;Bi;Ci and corresponding distributions (for

fa; x1; x2; . . . ; xn; bg; fc; y1; y2; . . . ; yn; dg; fe; z1; z2; . . . ; zn; f g;) are basically uniform.

Let h1 ¼ z1 � e, hi ¼ zi � zi�1 (i ¼ 2; 3; . . . ; n) and h ¼ max1�i�nfhig. Since A, B
and C are all fuzzy partitions, they have Kronecker property: AiðxjÞ ¼ BiðyjÞ ¼
CiðzjÞ ¼ � ij . By the de¯nition of de¯nite integral, we obtain for the centroid

defuzzier:

z� ¼
R
Z
zC �ðzÞdzR

Z
C �ðzÞdz 


Pn
i¼1 ziC

�ðziÞhiPn
i¼1 C �ðziÞhi

: ð13Þ

Similarly, we get for the defuzzier of average from the maximum:

z� ¼
R
hgtðZÞ zdzR
hgtðZÞdz



Pn

i¼1 zihiPn
i¼1 hi

,d0:

4.2. Response functions of DISO fuzzy systems via the universal

triple I method

In this subsection, for the established DISO fuzzy systems via the universal triple

I method, their response functions shall be analyzed.

The equivalent form of MinP-solution C � in the DISO fuzzy system is going to be

researched (see Theorem 4.1).

Theorem 4.1. (i) Let !2 2 fRG ;RGo;RM ;Rep;Ry�0:5;Rdp��g; then C �ðzÞ ¼
�1ðx�; y�; zÞ in a DISO fuzzy system via the universal triple I method.

(ii) Let !2 2 fR0;RL;RZ ;R10g; then C �ðzÞ ¼ �1ðx�; y�; zÞ when ðx�; y�Þ 2 Ez ;

and C �ðzÞ ¼ 0 when ðx�; y�Þ 62 Ez in a DISO fuzzy system via the universal triple I

method.

Proof. (i) Suppose !2 2 fRG ;RGo;RM ;Repg. We only prove the case of RG as an

example. It is similar to Theorem 3.1(i) that the MinP-solution can be expressed as

C �ðzÞ ¼ sup
ðx;yÞ2X�Y

fA�ðxÞ ^ B�ðyÞ ^ �1ðx; y; zÞg;

where �1ðx; y; zÞ ¼ _n
i¼1ððAiðxÞ ^ BiðyÞÞ!1CiðzÞÞ. As for input ðx�; y�Þ, we get

A�
x� ¼

1; x ¼ x�

0; x 6¼ x�

�
and B �

y� ¼
1; y ¼ y�

0; y 6¼ y�

�
:

Thus it is evident to get C �ðzÞ ¼ �1ðx�; y�; zÞ.
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Suppose !2 2 fRy�0:5;Rdp��g, we only prove the case of Ry�0:5 as an example. It

is similar to get that the MinP-solution can be expressed as

C �ðzÞ ¼ sup
ðx;yÞ2X�Y

fðA�ðxÞ ^ B�ðyÞÞ�y�0:5�1ðx; y; zÞg

¼ sup
ðx;yÞ2Ez

f1� ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðA�ðxÞ ^ B�ðyÞÞp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �1ðx; y; zÞ
p Þ2g;

where

Ez ¼ fðx; yÞ 2 X � Y j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðA�ðxÞ ^ B�ðyÞÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �1ðx; y; zÞ

p
� 1g;

�1ðx; y; zÞ ¼ _n
i¼1ððAiðxÞ ^ BiðyÞÞ!1CiðzÞÞ. As for input ðx�; y�Þ, we get A�

x� and

B �
y� . It is easy to get ðx�; y�Þ 2 Ez . Note that �y�0:5 is a t-norm, then 1�y�0:5 b ¼ b

and 0�y�0:5b ¼ 0 hold for any b 2 ½0; 1�. Therefore,

ðA�ðxÞ ^ B�ðyÞÞ�y�0:5�1ðx; y; zÞ ¼ 1�y�0:5�1ðx�; y�; zÞ ¼ �1ðx�; y�; zÞ

when ðx; yÞ ¼ ðx�; y�Þ; and
ðA�ðxÞ ^ B�ðyÞÞ�y�0:5�1ðx; y; zÞ ¼ 0�y�0:5 �1ðx; y; zÞ ¼ 0

when ðx; yÞ 2 X � Y � fðx�; y�Þg. Hence

C �ðzÞ ¼ sup
ðx;yÞ2X�Y

fðA�ðxÞ ^ B�ðyÞÞ�y�0:5 �1ðx; y; zÞg ¼ �1ðx�; y�; zÞ:

(ii) We only prove the case of!2 ¼ R0 as an example. It is similar to Theorem 3.1(ii)

that we have the MinP-solution

C �ðzÞ ¼ sup
ðx;yÞ2Ez

fA�ðxÞ ^ B�ðyÞ ^ �1ðx; y; zÞg

where Ez ¼ fðx; yÞ 2 X � Y j ðA�ðxÞ ^ B�ðyÞÞ 0 < �1ðx; y; zÞg and �1ðx; y; zÞ ¼ _n
i¼1

ððAiðxÞ ^BiðyÞÞ!1CiðzÞÞ. As for input ðx�; y�Þ, we get A�
x� and B �

y� . If ðx�; y�Þ 2 Ez ,

then we obtain Ez ¼ fðx�; y�Þg by the structure of Ez , and thus C �ðzÞ ¼ �1ðx�; y�; zÞ.
If ðx�; y�Þ 62 Ez , then Ez ¼ � and hence C �ðzÞ ¼ 0.

In the light of the conditions where !1 satis¯es together with the characteristics

of fuzzy partition, Lemma 4.1 can be obtained. It is found that (C5){(C8) in Lemma

4.1 are respectively signi¯cant conditions for !1 to research the response function of

the DISO fuzzy system constructed by the universal triple I method.

Lemma 4.1. In a DISO fuzzy system via the universal triple I method,

(i) if !1 satis¯es (C5) or (C6), then �1ðx�; y�; zjÞ > 0 holds for any ðx�; y�Þ 2
X �Y (j ¼ 1; . . . ; n);

(ii) if!1 ¼ RZ , then �1ðx�; y�; zjÞ > 0 holds for any ðx�; y�Þ 2 X � Y (j ¼ 1; . . . ; n);

(iii) if!1 satis¯es (C7) or (C8), then there exists zj such that �1ðx�; y�; zjÞ > 0 holds

for any ðx�; y�Þ 2 X �Y (j 2 f1; . . . ; ng).
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The response functions of DISO fuzzy systems via the universal triple I method

are obtained in Theorems 4.2{4.4 (from the equivalent form of MinP-solution and

the condition that !1 satis¯es).

Theorem 4.2. Suppose that the MinP-solution is C �ðzÞ ¼ �1ðx�; y�; zÞ, and that !1

satis¯es (C7) in a DISO fuzzy system via the universal triple I method. Then there

exists a group of base functions � ¼ f’igð1�i�nÞ such that the DISO fuzzy system is

approximately a binary piecewise interpolation function taking ’i as its base

functions (i.e., Gðx; yÞ ¼Pn
i¼1 ’iðx; yÞzi).

Proof. As for C �ðzÞ ¼ �1ðx�; y�; zÞ ¼ _n
i¼1ððAiðx�Þ ^ Biðy�ÞÞ!1CiðzÞÞ, since !1

satis¯es (C7) and CkðziÞ ¼ �ki , it follows from (13) that we obtain:

z� 

Pn

i¼1 ziC
�ðziÞhiPn

i¼1 C �ðziÞhi
¼
Pn

i¼1 zi½_n
k¼1ððAkðx�Þ ^ Bkðy�ÞÞ!1CkðziÞÞ�hiPn

i¼1½_n
k¼1ððAkðx�Þ ^ Bkðy�ÞÞ!1CkðziÞÞ�hi

¼
Pn

i¼1 ziðAiðx�Þ ^ Biðy�ÞÞhiPn
i¼1ðAiðx�Þ ^ Biðy�ÞÞhi

; ð14Þ

where there exists zi such that C �ðziÞ ¼ �1ðx�; y�; ziÞ > 0 (i 2 f1; . . . ; ng) by

Lemma 4.1(iii), so
Pn

i¼1 C
�ðziÞhi > 0 and then (14) makes sense.

Denote

Ciðx�; y�Þ,Aiðx�Þ ^ Biðy�Þ;

’iðx�; y�Þ, hiCiðx�; y�Þ
Xn
i¼1

hiCiðx�; y�Þ
", #

;

then we get z� 
Pn
i¼1 ’iðx�; y�Þzi. Let �, f’igð1�i�nÞ, Gðx; yÞ,Pn

i¼1 ’iðx; yÞzi.
Considering AkðxiÞ ¼ BkðyiÞ ¼ �ki, we get

Gðxi; yiÞ ¼
Xn
k¼1

zkðAkðxiÞ ^ BkðyiÞÞhk
" #, Xn

k¼1

ðAkðxiÞ ^ BkðyiÞÞhk
" #

¼ zihi=hi ¼ zi

for i ¼ 1; . . . ; n, then Gðx; yÞ is a binary piecewise interpolation function which

regards ’i as its base functions.

Similar to Theorems 3.3 and 4.2, we can prove Theorem 4.3, which analyzes the

case that !1 satis¯es (C6) or (C8), or !1 ¼ RZ .

Theorem 4.3. Suppose that the MinP-solution is C �ðzÞ ¼ �1ðx�; y�; zÞ; and that !1

satis¯es (C6) or (C8); or !1 ¼ RZ in a DISO fuzzy system via the universal triple I

method. Then there exists a group of base functions � ¼ f’igð1�i�nÞ such that the

DISO fuzzy system is approximately a binary piecewise ¯tted function regarding ’i as

its base functions ði.e.; Gðx; yÞ ¼Pn
i¼1 ’iðx; yÞziÞ.

It is similar to Theorems 3.4 and 4.2 that Theorem 4.4 can be obtained, which

researches the case corresponding to the step response function.
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Theorem 4.4. (i) Suppose that the MinP-solution is C �ðzÞ ¼ �1ðx�; y�; zÞ; and

that !1 satis¯es (C5) in a DISO fuzzy system via the universal triple I method.

Then the DISO fuzzy system is approximately a step response function ði.e.;
Gðx; yÞ ¼ d0Þ.

(ii) Suppose that the MinP-solution is C �ðzÞ ¼ aða 2 ½0; 1�Þ in a DISO fuzzy system

via the universal triple I method; then the DISO fuzzy system is approximately a step

response function ði.e.;Gðx; yÞ ¼ d0Þ.
Following that, when !2 employs speci¯c implication operator in DISO fuzzy

systems via the universal triple I method, we can similarly achieve Corollaries 4.1

and 4.2.

Corollary 4.1. Suppose that !2 2 fRG ;RGo;RM ;Rep;Ry�0:5;Rdp��g in a DISO

fuzzy system via the universal triple I method.

(i) Let !1 satisfy (C5) (especially !1 2 fRG ;RL; R0; RGo; RGR;RKD;RR;RY ;

Rep;Ry�0:5;Rdp��;R10;R16;R17; . . . ;R20g), then the DISO fuzzy system is

approximately a step response function.

(ii) Let !1 satisfy (C7) (especially !1 2 fRM ;RLa;R21;R22; . . . ;R28g), then the

conclusion is the same as Theorem 4.2.

(iii) Let !1 satisfy (C6) or (C8); or !1 ¼ RZ ðespecially !1 2 fR29;R30; . . . ;R36;

RZgÞ; then the conclusion is the same as Theorem 4.3.

Corollary 4.2. Suppose that !2 2 fR0; RL;RZ ; R10g in a DISO fuzzy system via

the universal triple I method.

(i) Let !1 satisfy (C5) ðespecially !1 2 fRG ; RL;R0;RGo;RGR;RKD;RR;RY ;Rep;

Ry�0:5;Rdp��;R10;R16;R17; . . . ;R20gÞ; then the DISO fuzzy system is

approximately a step response function.

(ii) Let !1 satisfy (C7) (especially !1 2 fRM ;RLa;R21;R22; . . . ;R28gÞ; then there

are two cases to be considered: (a) Suppose ðx�; y�Þ 2 Ez ; then the conclusion is

the same as Theorem 4.2. (b) Suppose ðx�; y�Þ 62 Ez ; then the DISO fuzzy system

is approximately a step response function.

(iii) Let !1 satisfy (C6) or (C8); or !1 ¼ RZ (especially !1 2 fR29; R30; . . . ;R36;

RZgÞ; then there are two cases to be considered: (a) Suppose ðx�; y�Þ 2 Ez ; then

the conclusion is the same as Theorem 4.3. (b) Suppose ðx�; y�Þ 62 Ez ; then the

DISO fuzzy system is approximately a step response function.

Remark 4.1. It is similar to Remark 3.5 that if we take !2 2 fR0; RL; RZ ; R10;

RG ;RGo; RM ;Rep;Ry�0:5;Rdp��g and ! 1 2 fRG ; RL; sR0;RGo;RGR;RKD;RR;RY ;

Rep; Ry�0:5;Rdp��; R10; R16; R17; . . . ;R20g, then the DISO fuzzy system via the

universal triple I method is approximately a step response function, which can hardly

be used in practical systems. It is similar to Remark 3.6 that if !2 2 fR0; RL;RZ ;

R10;RG ; RGo;RM ; Rep;Ry�0:5;Rdp��g and !1 2 fRZ ;RM ;RLa;R21;R22; . . . ;R36g,
the DISO fuzzy system via the universal triple I method is approximately a ¯tted

function or an interpolation function (which may demand ðx�; y�Þ 2 Ez), thus it can
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be usable in practice. As a result, 190 usable DISO fuzzy systems via the universal

triple I method are provided. Moreover, it is easy to ¯nd that the DISO fuzzy system

via the universal triple I method is basically consistent with the SISO fuzzy system

via the universal triple I method from the viewpoint of response function.

Take into account that the universal triple I method degenerates into the CRI

method if !2 ¼ RM , then we can get the response functions of related DISO fuzzy

systems via the CRI method from Corollary 4.1 and Remark 4.1. In detail, the DISO

fuzzy system via the CRI method is approximately a step response function where

!1 2 fRG ;RL;R0;RGo; RGR;RKD;RR;RY ;Rep;Ry�0:5;Rdp��;R10;R16; R17; . . . ;R20g,
which can hardly be used in practice. Moreover, the DISO fuzzy system via the CRI

method is approximately a binary piecewise interpolation function or ¯tted function

where !1 2 fRM ;RLa;RZ ;R21;R22; . . . ;R36g, meaning that such DISO fuzzy system

via the CRI method can be usable in practical systems.

When !1 ¼ !2, the universal triple I method degenerates into the triple I

method, thus we can get Corollary 4.3.

Corollary 4.3. In the DISO fuzzy system via the triple I method,

(i) if !2 fR0;RL;R10;RG ;RGo;Rep;Ry�0:5;Rdp��g; then the corresponding DISO

fuzzy system is approximately a step response function;

(ii) if ! takes RM ; then the DISO fuzzy system is approximately a binary piecewise

interpolation function;

(iii) if ! takes RZ ; then the DISO fuzzy system is approximately a binary piecewise

¯tted function for the case of ðx�; y�Þ 2 Ez ; and a step response function for the

case of ðx�; y�Þ 62 Ez .

Remark 4.2. From Ref. 23, the DISO fuzzy system via the CRI method is

approximately a binary piecewise interpolation function if !2 fR21;R22; . . . ;R28g,
and a binary piecewise ¯tted function if !2 fR29;R31g, hence such 10 DISO fuzzy

systems via the CRI method are practicable, which are consistent with the case of

SISO fuzzy systems via the CRI method. Similar to Remark 3.7, the related

conclusions of the DISO fuzzy systems via the CRI method (in this paper) are the

same as the ones of Ref. 23, and this paper provides more usable DISO fuzzy systems

via the CRI method (e.g., taking RM ;RLa;RZ ;R30;R32;R33; . . . ;R36).

Remark 4.3. From Ref. 22, only two DISO fuzzy systems are usable (where RM or

RZ is employed) in 51 DISO fuzzy systems via the triple I method. Such conclusions

are consistent with the related ones in Corollary 4.3 in this paper.

Remark 4.4. In Ref. 27, only the case of SISO fuzzy system via the universal triple I

method was considered (with a few preliminary conclusions). However, in this paper

we discuss the cases of both SISO and DISO fuzzy systems via the universal triple I

method, and point out that the conclusions (from the viewpoint of response function)

of such two cases are basically consistent.
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Remark 4.5. In Secs. 3 and 4, the fuzzy systems via universal triple I method are

analyzed, where

!2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g ðaltogether 10 operatorsÞ

and

!1 2 fRG ;RL;R0;RGo;RGR;RKD;RR;RY ;Rep;Ry�0:5;Rdp��;

R10;RZ ;RM ;RLa;R16;R17; . . . ;R36g ðaltogether 36 operatorsÞ:
Thus there are altogether 10 � 36 ¼ 360 fuzzy systems via universal triple I method.

It can be divided into three cases (where !2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;

Rep;Ry�0:5;Rdp��g):
(a) When !1 2 fRG ;RL;R0;RGo;RGR;RKD;RR;RY ;Rep;Ry�0:5;Rdp��;R10, R16;

R17; . . . ;R20g, the response function is a step response function, and such 10 �
17 ¼ 170 fuzzy systems can hardly be used.

(b) When !1 2 fRM ;RLa;R21;R22; . . . ;R28g, such 10 � 10 ¼ 100 fuzzy systems are

approximately interpolation functions, and can be usable in practice.

(c) When !1 2 fR29;R30; . . . ;R36;RZg, such 10 � 9 ¼ 90 fuzzy systems are ap-

proximately ¯tted functions, and then may be usable in practical systems.

As a result, 100þ 90 ¼ 190 fuzzy systems via the universal triple I method are

usable.

Remark 4.6. From the results mentioned above, we draw the conclusions that

when !2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g, 190 fuzzy systems

via the universal triple I method are usable, and 19 fuzzy systems via the CRI method

are practicable, and two fuzzy systems via the triple I method are usable. Therefore,

in the scope of!2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g, usable fuzzy
systems via the universal triple I method are more than ones via the CRI method or

triple I method. Thus, the universal triple I method has bigger e®ective choosing

space.

We shall give some examples of DISO fuzzy systems based on the universal triple I

method, where !2 ¼ RL;!1 ¼ RM (which has excellent response ability). And we

take A ¼ fAigð1�i�5Þ;B ¼ fBigð1�i�5Þ, and C ¼ fCigð1�i�5Þ where Ai 2 FðXÞ,
Bi 2 FðY Þ, Ci 2 FðZÞ are triangular fuzzy sets in which X ¼ Y ¼ Z ¼ ½0; 1�. The
peak-points of A1;A2; . . . ;A5 are 0; 0:25; 0:5; 0:75; 1 respectively, and the expressions

of A1;A2; . . . ;A5 are as follows (and the ones of B1;B2; . . . ;B5 together with C1;C2

; . . . ;C5 are similar):

A1ðxÞ ¼
ð0:25� xÞ=0:25; 0 < x � 0:25;

0; else;

�

A2ðxÞ ¼
x=0:25; 0 < x � 0:25;

ð0:5� xÞ=0:25; 0:25 < x � 0:5;

0; else;

8<
:
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A3ðxÞ ¼
ðx � 0:25Þ=0:25; 0:25 < x � 0:5;

ð0:75� xÞ=0:25; 0:5 < x � 0:75;

0; else;

8<
:

A4ðxÞ ¼
ðx � 0:5Þ=0:25; 0:5 < x � 0:75;

ð1� xÞ=0:25; 0:75 < x � 1;

0; else;

8<
:

A5ðxÞ ¼
ðx � 0:75Þ=0:25; 0:75 < x � 1;

0; else:

�

The part rules are as follows:

ðiÞ A2;B5 ! C1; ðiiÞ A2;B4 ! C2; ðiiiÞ A3;B5 ! C1;

ðivÞ A3;B4 ! C2; ðvÞA3;B3 ! C3; ðviÞ A4;B3 ! C3;

ðviiÞ A4;B4 ! C2; . . . :

Then some speci¯c examples can be obtained, which are shown in Table 1. In

detail, the computing process of the ¯rst and second examples in Table 1 are illus-

trated in Examples 4.1 and 4.2.

Example 4.1. Suppose that the input is ðx�; y�Þ ¼ ð0:45; 0:9Þ. Then it is similar to

Theorem 4.1 that we have

C �ðzÞ ¼ �1ðx�; y�; zÞ ¼ _n
i¼1½ðAiðx�Þ ^ Biðy�ÞÞ!1C iðzÞ�

¼ _n
i¼1½ðAið0:45Þ ^ Bið0:9ÞÞ ^ C iðzÞ�

¼ ½ðA2ð0:45Þ ^ B5ð0:9ÞÞ ^ C1ðzÞ� _ ½ðA2ð0:45Þ ^ B4ð0:9ÞÞ ^ C2ðzÞ�
_½ðA3ð0:45Þ ^ B5ð0:9ÞÞ ^ C1ðzÞ� _ ½ðA3ð0:45Þ ^ B4ð0:9ÞÞ ^ C2ðzÞ�

¼ ½0:2 ^ 0:6 ^ C1ðzÞ� _ ½0:2 ^ 0:4 ^ C2ðzÞ�
_½0:8 ^ 0:6 ^ C1ðzÞ� _ ½0:8 ^ 0:4 ^ C2ðzÞ�

¼ ½0:6 ^ C1ðzÞ� _ ½0:4 ^ C2ðzÞ�;
where it relates to the rules (i){(iv), and we get

C �ðzÞ ¼

0:6; 0 < z � 0:1;

ð0:25� zÞ=0:25; 0:1 < z � 0:15;

0:4; 0:15 < z � 0:4;

ð0:5� zÞ=0:25; 0:4 < z � 0:5;

0; else:

8>>>>>><
>>>>>>:

Finally, we obtain by the centroid defuzzier that

z� ¼
R
Z
zC �ðzÞdzR

Z
C �ðzÞdz ¼ 0:04225

0:205
¼ 0:2061:
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Table 1. Some examples of DISO fuzzy systems based on the universal triple I method.

Input ðx�; y�Þ C �ðzÞ Output z�

ð0:45; 0:9Þ

C �ðzÞ ¼

0:6; 0 < z � 0:1;

ð0:25� zÞ=0:25; 0:1 < z � 0:15;

0:4; 0:15 < z � 0:4;

ð0:5� zÞ=0:25; 0:4 < z � 0:5;

0; else:

8>>>>><
>>>>>:

0.2061

ð0:6; 0:7Þ

C �ðzÞ ¼

z=0:25; 0 < z � 0:15;

0:6; 0:15 < z � 0:35;

ð0:5� zÞ=0:25; 0:35 < z � 0:45;

0:2; 0:45 < z � 0:7;

ð0:75� zÞ=0:25; 0:7 < z � 0:75;

0; else:

8>>>>>>><
>>>>>>>:

0.3173

ð0:875; 0:1Þ

C �ðzÞ ¼

ðz � 0:5Þ=0:25; 0:5 < z � 0:6;

0:4; 0:6 < z � 0:85;

ðz � 0:75Þ=0:25; 0:85 < z � 0:875;

0:5; 0:875 < z � 1;

0; else:

8>>>>><
>>>>>:

0.7852

ð0:45; 0:25Þ

C �ðzÞ ¼

ðz � 0:25Þ=0:25; 0:25 < z � 0:3;

0:2; 0:3 < z � 0:55;

ðz � 0:5Þ=0:25; 0:55 < z � 0:7;

0:8; 0:7 < z � 0:8;

ð1� zÞ=0:25; 0:8 < z � 1;

0; else:

8>>>>>>><
>>>>>>>:

0.6897

ð0:35; 0:85Þ

C �ðzÞ ¼

0:4; 0 < z � 0:1;

z=0:25; 0:1 < z � 0:15;

0:6; 0:15 < z � 0:35;

ð0:5� zÞ=0:25; 0:35 < z � 0:5;

0; else:

8>>>>><
>>>>>:

0.2312

ð1:0; 0:2Þ

C �ðzÞ ¼

ðz � 0:5Þ=0:25; 0:5 < z � 0:7;

0:8; 0:7 < z � 0:8;

ð1� zÞ=0:25; 0:8 < z � 0:95;

0:2; 0:95 < z � 1;

0; else:

8>>>>><
>>>>>:

0.7548

ð0:625; 0:6Þ

C �ðzÞ ¼

z=0:25; 0 < z � 0:1;

0:4; 0:1 < z � 0:35;

ðz � 0:25Þ=0:25; 0:35 < z � 0:375;

0:5; 0:375 < z � 0:625;

ð0:75� zÞ=0:25; 0:625 < z � 0:75;

0; else:

8>>>>>>><
>>>>>>>:

0.3870

ð0:65; 0:4Þ

C �ðzÞ ¼

ðz � 0:25Þ=0:25; 0:25 < z � 0:4;

0:6; 0:4 < z � 0:6;

ð0:75� zÞ=0:25; 0:6 < z � 0:65;

0:4; 0:65 < z � 0:9;

ð1� zÞ=0:25; 0:9 < z � 1;

0; else:

8>>>>>>><
>>>>>>>:

0.6048
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Example 4.2. Suppose that the input is ðx�; y�Þ ¼ ð0:6; 0:7Þ. Then we can get

C �ðzÞ ¼ �1ðx�; y�; zÞ ¼ _n
i¼1½ðAiðx�Þ ^ Biðy�ÞÞ!1C iðzÞ�

¼ _n
i¼1½ðAið0:6Þ ^ Bið0:7ÞÞ ^ C iðzÞ�

¼ ½ðA3ð0:6Þ ^ B4ð0:7ÞÞ ^ C2ðzÞ� _ ½ðA3ð0:6Þ ^ B3ð0:7ÞÞ ^ C3ðzÞ�
_½ðA4ð0:6Þ ^ B4ð0:7ÞÞ ^ C2ðzÞ� _ ½ðA4ð0:6Þ ^ B3ð0:7ÞÞ ^ C3ðzÞ�

¼ ½0:6 ^ 0:8 ^ C2ðzÞ� _ ½0:6 ^ 0:2 ^ C3ðzÞ�
_½0:4 ^ 0:8 ^ C2ðzÞ� _ ½0:4 ^ 0:2 ^ C3ðzÞ�

¼ ½0:6 ^ C2ðzÞ� _ ½0:2 ^ C3ðzÞ�;
where it relates to the rules (iv){(vii), and we have

C �ðzÞ ¼

z=0:25; 0 < z � 0:15;

0:6; 0:15 < z � 0:35;

ð0:5� zÞ=0:25; 0:35 < z � 0:45;

0:2; 0:45 < z � 0:7;

ð0:75� zÞ=0:25; 0:7 < z � 0:75;

0; else:

8>>>>>>><
>>>>>>>:

Lastly, we achieve by the centroid defuzzier that

z� ¼
R
Z
zC �ðzÞdzR

Z
C �ðzÞdz ¼ 0:0825

0:26
¼ 0:3173:

Before the end of this section, we shall analyze the duty of ¯rst implication !1

and second implication !2 in the universal triple I method. It is not di±cult to know

that the form of the solution of universal triple I method is basically determined only

if!2 is chosen (i.e.,!2 takes an implication operator), and hence!2 determines the

reasoning mechanism to a large extent (see e.g., Theorem 2.2 and Proposition 2.2).

Meanwhile, !1 often exists as the form of ðAðxÞ!1BðyÞÞ (or �1ðx; yÞ and so on),

which embodies the function of rule base. What is more, the second implication has

leading status for the universal triple I method in virtue of its e®ect on direction of

inference.

Summarizing above, the second implication and ¯rst implication, respectively,

embody the reasoning mechanism and function of rule base. Thus, the way which lets

!1;!2 take di®erent implication operators, corresponds to separating of the rule

base and reasoning mechanism, which further demonstrates the reasonability of the

universal triple I method.

5. Conclusions

To solve the problem that the e®ect of the triple I method is imperfect from the

viewpoint of fuzzy systems, we generalize the triple I method to the universal triple

I method, and investigate the fuzzy systems (via the universal triple I method) and

their response functions. The main contributions and conclusions are as follows.
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The fuzzy systems via the universal triple I method are constructed, and then the

response functions of 360 fuzzy systems are discussed. We get the following results.

(a) If we take !2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g, and !1 2
fRM ;RLa;R21;R22; . . . ;R28g, then the fuzzy system based on the universal

triple I method is approximately an interpolation function. Hence such 100

fuzzy systems can be universal approximators and then usable in practical

systems.

(b) If we employ !2 2 fR0;RL;RZ ;R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g and

!1 2 fR29;R30; . . . ;R36;RZg, then the fuzzy system based on the universal

triple I method is approximately a ¯tted function. Thus such 90 fuzzy systems

may be usable in practical systems.

(c) If we take !2 2 fR0;RL;RZ , R10;RG ;RGo;RM ;Rep;Ry�0:5;Rdp��g, and

!1 2 fRG ;RL;R0;RGo;RGR;RKD;RR;RY ;Rep;Ry�0:5;Rdp��, R10;R16;R17;

. . . ;R20g, then the response function is a step response function. Therefore such

170 fuzzy systems based on the universal triple I method can hardly be used in

practice.

The results show that 190 fuzzy systems via the universal triple I method are

usable, and that 19 fuzzy systems via the CRI method are practicable, and that two

fuzzy systems via the triple I method are usable. Therefore, usable fuzzy systems

based on the universal triple I method are more than ones based on the CRI method

or triple I method. Thus, the universal triple I method has larger e®ective choosing

space. As a result, from the viewpoint of fuzzy systems, the universal triple I method

is superior to the triple I method and CRI method.

Some related conclusions of Refs. 22, 23 and 27 are improved from the viewpoints

of research idea, quantity of usable fuzzy systems and so on (see Remarks 3.2, 3.4,

3.7, 3.8 and 4.2{4.4).

It is pointed out that, in the universal triple I method, the ¯rst implication and

second implication respectively embody the function of rule base and the reasoning

mechanism. Therefore, in the universal triple I method, there exists the idea of

separating of the rule base and reasoning mechanism, further demonstrating the

reasonability of the universal triple I method. Meanwhile, the universal triple I

method has close relationship with the triple I method and CRI method. Thus, it is

easy to ¯nd that the research of universal triple I method will help analyze the

essence of the triple I method and CRI method, and further improve the development

of fuzzy reasoning theory.

For the case of m-input and single-output (where m is any natural number and

m > 2), how can we get the response functions of the corresponding fuzzy systems

(via the universal triple I method)? And what happens for the case of m1-input and

m2-output (where m1;m2 are any natural numbers and m1;m2 > 1)? Moreover, if

we employ other fuzzier and defuzzier,34,35 how can we design and analyze the cor-

responding fuzzy systems (via the universal triple I method, or the triple I method
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and so forth)? These problems are more complicated and will be investigated in

another paper.

It should be emphasized that our research group has already carried out a lot of

works revolving around a®ective computing and natural language processing.1,36{41

As one of the main problems of a®ective computing, recognizing human emotion can

be carried through by the theory of fuzzy system. Here we only provide the main

idea. We can analyze and extract the main factors determining human emotion (from

the input information which may be natural language, phonetic information, ex-

pressive information, brain wave and so on). Such factors can be expressed by fuzzy

language and then be regarded as the input of fuzzy system; while the output is the

fuzzy set which represents corresponding emotion state derived from these factors.

Thus it is not di±cult for us to obtain the fuzzy reasoning rules expressed as follows:

If x1 is Ai
1; x2 is Ai

2; . . . ; and xm is Ai
m; then y is Biði ¼ 1; . . . ; nÞ; ð15Þ

where Ai
1;A

i
2; . . . ;A

i
m respectively express the factors (determining human emo-

tion), and Bi represents the corresponding emotion state. Therefore, a fuzzy system

(of m-input and single-output) for recognizing human emotion can be established.

This will be an important way to investigate human emotion recognition, since the

fuzzy system (including fuzzy reasoning) provides an excellent way to deal with the

fuzzy, uncertain characteristics which are the essence of human emotion. Such works

will be our research emphases in the further research.
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