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The sustaining degree is generalized to the two-dimensional sustaining degree, and based 
on it a new symmetric implicational method is proposed and investigated. To begin 
with, some properties of such two kinds of sustaining degrees are carefully discussed. 
Furthermore, the symmetric implicational principles are improved. Aiming at the FMP 
(fuzzy modus ponens) and FMT (fuzzy modus tollens) problems, unified forms of the new 
method are obtained for R-implications and (S, N)-implications. Following that, optimal 
solutions of the new method are obtained for eleven R- and (S, N)-implications, and four 
specific examples are shown which include two continuous ones and two discrete ones. 
Finally, it is pointed out that the new method contains related symmetric implicational 
methods and full implication methods as its particular cases.
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1. Introduction

Fuzzy inference has been extensively applied in the areas of fuzzy control, decision-making, pattern recognition, time 
series analysis and other areas (see [1–3]). The fundamental model of fuzzy inference is expressed as follows:

If A implies B, then A∗ implies B∗. (1)

It includes two key problems, i.e. FMP (fuzzy modus ponens) and FMT (fuzzy modus tollens):

FMP: from A −→ B and A∗, obtain B∗, (2)

FMT: from A −→ B and B∗, obtain A∗, (3)

in which A, A∗ ∈ F (U ) and B, B∗ ∈ F (V ) (where F (U ), F (V ) respectively represent the sets of all fuzzy subsets of U and V ).
The CRI (compositional rule of inference) method proposed by Zadeh has been the most commonly considered strategy 

to construct the solutions to the FMP and FMT problems (see [4–6]), which uses a fuzzy implication to express the un-
derlying relationship. Then, generalizing the fuzzy implication to three fuzzy implications, Wang [7] presented a so-called 
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full implication method (triple I method), whose optimal solution was the smallest B∗ ∈ F (V ) (or the largest A∗ ∈ F (U )) 
making

(A(u) → B(v)) → (A∗(u) → B∗(v)) (4)

employ its maximum, in which → denotes a fuzzy implication. Later, it was extended to the α-full implication method, 
which aimed at (α ∈ [0, 1]):

(A(u) → B(v)) → (A∗(u) → B∗(v)) ≥ α. (5)

There has been an intensive research related to the full implication method. Song et al. established the full implication 
restriction method and the reverse full implication method in [8,9]. Using the residual implication, some unified forms of 
optimal solutions of the full implication method were constructed (see [10–12]). Zhang et al. [13] introduced the concept 
of generalized roots of theories, and based on it researched the full implication method in four kinds of propositional 
logic systems. Pei [14] provided a sound logical foundation for the full implication method with the monoidal t-norm 
based logical system. Zheng et al. [15] presented the unified form of residual intuitionistic fuzzy implications, and then 
investigated the full implication method for intuitionistic fuzzy sets. Later, the robustness becomes an intensive research area 
to study in case of the full implication method. Dai et al. discussed the robustness of the full implication method and fully 
implicational restriction method [16]. Wang and Duan proposed a finer measure for appraising robustness of fuzzy inference, 
and investigated the robustness of logic connectives and full implication method related to the finer measurements [17]. 
Luo and Zhou [18] put forward the [α, β]-full implication method based on interval-valued fuzzy set and demonstrated its 
robustness. Luo and Liu [19] presented the sensitivity interval-valued fuzzy connectives, and then investigated the robustness 
of interval-valued full implication method. To sum up, it has been demonstrated that the full implication method exhibits a 
number of sound properties (e.g., strict logic basis, reversibility properties, continuity, robustness and others).

From a detailed point of view, the first and the third fuzzy implications in (4) can be seen as the implication connective 
in a logic system; and the second fuzzy implication in (4) is concerned with the “if–then” relation of fuzzy inference 
model (1). Based on this idea, in [20], we generalized (4) as follows:

(A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)), (6)

where →1, →2 are two fuzzy implications. The corresponding fuzzy inference method was called the basic symmetric 
implicational method. Meanwhile, a more general α-symmetric implicational method [20] was obtained from α ∈ [0, 1] in 
the following form

(A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)) ≥ α, (7)

which reflected the idea of sustaining degrees. It demanded that the supporting ability of A(u) →1 B(v) to A∗(u) →1 B∗(v)

was not less than α, which was considered with regard to the fuzzy implication →2. It was verified in [20] that the 
symmetric implicational method formed a reasonable fuzzy inference algorithm.

However, the α-symmetric implicational method cannot contain the basic symmetric implicational method as its special 
case (e.g., when the maximum of (6) is not a constant value). Moreover, the case of (6) corresponds to

(A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)) ≥ W (u, v),

where W (u, v) is the maximum of (6) at (u, v), which is approximate but different from (7). Consequently, (6) and (7) are 
not proper to exactly reveal the essence of the symmetric implicational idea.

Aiming at this problem, for controlling each step in the reasoning process in a flexible way, we replace α in (7) with 
α(u, v) (in which α(u, v) is a mapping from U × V to [0, 1]), thus (7) is generalized to the following form

(A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)) ≥ α(u, v). (8)

This means that the two-dimensional sustaining degree (see Definition 3.2) of Q to Q ∗ at any point (u, v) should be 
greater than or equal to a corresponding value α(u, v) (in which Q (u, v) � A(u) →1 B(v) and Q ∗(u, v) � A∗(u) →1 B∗(v)). 
The previous reasoning principles are improved from the viewpoint of the two-dimensional sustaining degrees. The fuzzy 
inference algorithm derived from (8) is called the symmetric implicational method with two-dimensional sustaining degree, 
or called the α(u, v)-symmetric implicational method.

Nowadays, the commonly used and well-studied classes of fuzzy implications are the R-implications and (S,N)-implica-
tions (see [21–23]), which are convenient to construct a unified solving framework for fuzzy inference. The aim of this paper 
is to research the new symmetric implicational method for these kinds of fuzzy implications.

This paper is organized as follows. Section 2 covers some preliminaries. In Section 3, the sustaining degree is generalized 
to the two-dimensional sustaining degree, and some properties of such two kinds of sustaining degrees are carefully ana-
lyzed. Sections 4 investigates the α(u,v)-symmetric implicational method for FMP with the emphasis on R-implications and 
(S,N)-implications. We improve the symmetric implicational principles, and obtain its solutions in a unified form as well as 
some specific cases are investigated. Section 5 covers the α(u,v)-symmetric implicational method for FMT. Section 6 shows 
four specific examples including two continuous ones and two discrete ones. Section 7 provides some related discussions. 
Section 8 offers some conclusions.
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2. Preliminaries

Here we briefly recall the main concepts used throughout the study.

Definition 2.1. ([5]) A fuzzy negation is a decreasing function N : [0, 1] → [0, 1] which satisfies N(0) = 1, N(1) = 0. More-
over, a fuzzy negation N is said to be
(i) strict if N is continuous and strictly decreasing;
(ii) strong if N is an involution (i.e., N(N(x)) = x for any x ∈ [0, 1]).

Example 2.1. The classical negation NC (x) = 1 − x is a strong negation (and also a strict negation), whereas NK (x) = 1 − x2

is only a strict negation. The fuzzy negations ND1, ND2 defined as the following

ND1(x) =
{

1 if x = 0,

0 if x > 0,
ND2(x) =

{
1 if x < 1,

0, if x = 1,

are the least and greatest ones, which are both non-strong negations. For more examples of fuzzy negations, the reader is 
referred to [24] or [25].

Definition 2.2. ([5]) (i) A function T : [0, 1]2 → [0, 1] is called a triangular norm (t-norm, for short), if it is increasing, 
commutative, associative, and has the neutral element e = 1.

(ii) A function S : [0, 1]2 → [0, 1] is called a triangular conorm (t-conorm, for short), if it is increasing, commutative, 
associative, and has the neutral element e = 0.

Definition 2.3. ([5]) For a t-norm T and a strong negation N:
(i) the function T N : [0, 1]2 → [0, 1] is called the dual of a t-norm T w.r.t. N , where T N(x, y) = N(T (N(x), N(y))) (x, y ∈

[0, 1]).
(ii) the function SN : [0, 1]2 → [0, 1] is called the dual of a t-conorm S w.r.t. N , where SN (x, y) = N(S(N(x), N(y)))

(x, y ∈ [0, 1]).

It is noted that T N is a t-conorm while SN is a t-norm.

Definition 2.4. ([26]) Let T and I be two [0, 1]2 → [0, 1] mappings, (T , I) is called a residual pair or, T and I are residual 
to each other, if the following residuation condition holds for any x, y, z ∈ [0, 1],

T (x, y) ≤ z if and only if y ≤ I(x, z). (9)

For a mapping I with a residual pair, the mapping T residual to I is unique, and vice versa.

Definition 2.5. ([2,11]) A fuzzy implication on [0, 1] is a function I : [0, 1]2 → [0, 1] satisfying the following condition:
(P1) I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0.
We use FI to represent the set of all fuzzy implications. I(a, b) can also be written as a → b (a, b ∈ [0, 1]).

Definition 2.6. ([2]) A function I : [0, 1]2 → [0, 1] is called an R-implication, if there exists a left-continuous t-norm T such 
that

I(x, y) = sup{t ∈ [0,1] | T (x, t) ≤ y}, x, y ∈ [0,1]. (10)

Moreover, if an R-implication is obtained from T , then we denote it by IT .

Proposition 2.1. ([27]) If T is a t-norm, then the following are equivalent:
(i) T is left-continuous.
(ii) T and IT form a residual pair, where IT is achieved from (10).
(iii) The supremum in (10) is the maximum, that is:

IT (x, y) = max{t ∈ [0,1] | T (x, t) ≤ y}, x, y ∈ [0,1],
in which the right hand side always exists.

Remark 2.1. It follows from Proposition 2.1 that a t-norm T satisfies the residuation condition (9) if and only if T is left-
continuous, so many authors consider R-implications only for left-continuous t-norms. It is noted that some authors also 
consider them for all t-norms (e.g., [24,28]).
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Proposition 2.2. ([24]) Let I be an R-implication based on a left-continuous t-norm T , then I satisfies (P1) and
(P2) I(x, z) ≥ I(y, z) if x ≤ y,
(P3) I(x, y) ≥ I(x, z) if y ≥ z,
(P4) I(0, y) = 1,
(P5) I(x, 1) = 1,
(P6) I(1, x) = x,
(P7) I(x, I(y, z)) = I(y, I(x, z)),
(P8) I(x, y) = 1 ⇐⇒ x ≤ y,
(P9) I is left-continuous w.r.t. the first variable,
(P10) I is right-continuous w.r.t. the second variable,
(P11) I(x, T (x, y)) ≥ y,

where x, y, z ∈ [0, 1].

Proposition 2.3. ([10]) Let I be an R-implication derived from a left-continuous t-norm T , then (T , I) is a residual pair, and I satisfies:
(P12) x ≤ I(y, z) ⇐⇒ y ≤ I(x, z),
(P13) I(T (x, y), z) = I(x, I(y, z)),
(P14) I(supx∈X x, y) = infx∈X I(x, y),
(P15) I(x, infy∈Y y) = infy∈Y I(x, y),

where x, y, z ∈ [0, 1] and X, Y ⊂ [0, 1], X, Y 
= ∅.

Proposition 2.4. ([24]) For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:
(i) I is an R-implication generated from a left-continuous t-norm.
(ii) I satisfies (P3), (P7), (P8) and (P10).

Definition 2.7. ([21,24]) A function I : [0, 1]2 → [0, 1] is called an (S, N)-implication if there exist a t-conorm S and a fuzzy 
negation N such that

I(x, y) = S(N(x), y), x, y ∈ [0,1]. (11)

If N is a strong negation, then I is said to be a strong implication (S-implication). Furthermore, if an (S, N)-implication is 
generated from S and N , then we denote it by I S,N .

Definition 2.8. ([22]) Let I be a fuzzy implication, then the function NI : [0, 1] → [0, 1] expressed as

NI (x) = I(x,0), x ∈ [0,1],
is said to be the natural negation of I .

Proposition 2.5. ([22,24]) Let I be an (S, N)-implication generated from a t-conorm S and a fuzzy negation N, then I ∈ FI and I
satisfies (P2), (P3), (P4), (P5), (P6), (P7) and

(P16) N = NI .
Moreover, an (S,N)-implication I satisfies

(P17) I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1] (the law of contraposition w.r.t. N),
if and only if N = NI is a strong negation, that is, I is an S-implication.

Proposition 2.6. ([24]) For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:
(i) I is an S-implication generated from a t-conorm S and a strong negation N.
(ii) I satisfies (P2) (or (P3)), (P6), (P7) and (P17) w.r.t. a strong negation N.

Proposition 2.7. ([21]) For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:
(i) I is an (S, N)-implication derived from some t-conorm S and some continuous (strict, strong) fuzzy negation N.
(ii) I satisfies (P2) (or (P3)), (P7) and the function NI is a continuous (strict, strong) fuzzy negation.

Moreover, the representation of the (S, N)-implication is unique in this case.

Proposition 2.8. ([21]) For a function I : [0, 1]2 → [0, 1] the following statements are equivalent:
(i) I is a continuous (S, N)-implication.
(ii) I is an (S,N)-implication with continuous S and N.

It is easy to get Proposition 2.9 from [20].
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Proposition 2.9. If I is a fuzzy implication satisfying (P3), (P5) and (P10), then the mapping T : [0, 1]2 → [0, 1] defined by

T (a,b) = inf{x ∈ [0,1] | b ≤ I(a, x)}, a,b ∈ [0,1]
is residual to I .

Definition 2.9. ([29]) Let Z be any non-empty set, define partial order relation ≤F on F (Z) as: A ≤F B if and only if 
A(z0) ≤ B(z0) for any z0 ∈ Z , in which A, B ∈ F (Z).

Lemma 2.1. ([29]) < F (Z), ≤F > is a complete lattice.

3. Two-dimensional sustaining degree

Definition 3.1. ([29]) Let → be a fuzzy implication, and fuzzy sets C, D ∈ F (X), then C(x) → D(x) is called the sustaining 
degree of C to D at point x ∈ X , denoted as sust→(C, D)(x).

Noting that a fuzzy relation from X to Y can be regarded as a fuzzy set on X × Y , it is natural to generalize the concept 
of sustaining degree to the two-dimensional case (see the following Definition 3.2).

Definition 3.2. Suppose that → is a fuzzy implication, and that X, Y are non-empty sets, and finally that P1, P2 are two 
fuzzy relations from X to Y . Then P1(x, y) → P2(x, y) is called the two-dimensional sustaining degree of P1 to P2 at point 
(x, y) ∈ X × Y , denoted as sust→(P1, P2)(x, y).

For the fuzzy inference mode (1), it is actually an “if–then” relationship. In detail, A → B corresponds to the “if” part, and 
A∗ → B∗ reflects the “then” part (where a fuzzy implication → is used to express “imply”). To characterize the “if–then” 
relationship, it is natural to hope that A → B adequately sustains A∗ → B∗ . Here the concept of two-dimensional sustaining 
degree provides a measurement of the supporting ability of A → B to A∗ → B∗ (or more generally, the supporting ability 
of fuzzy relation P1 to P2).

Proposition 3.1. Assume that → is a fuzzy implication satisfying (P3), (P5) and (P10), and that its residual mapping T is non-
decreasing in its first component and associative. If sust→(A, B)(x) ≥ α(x) and sust→(B, C)(x) ≥ β(x) hold for any A, B, C ∈ F (X)

and x ∈ X, then sust→(A, C)(x) ≥ T (α(x), β(x)), in which α(x), β(x) ∈ [0, 1].

Proof. Since → is an implication satisfying (P3), (P5) and (P10), from Proposition 2.9 we have that the residuation condition 
(9) holds. From the fact that sust→(A, B)(x) ≥ α(x) and sust→(B, C)(x) ≥ β(x), i.e., α(x) ≤ A(x) → B(x), β(x) ≤ B(x) → C(x), 
it follows from (9) that T (A(x), α(x)) ≤ B(x) and T (B(x), β(x)) ≤ C(x).

By virtue of the conditions that T satisfies, it follows that

C(x) ≥ T (B(x),β(x)) ≥ T (T (A(x),α(x)),β(x)) = T (A(x), T (α(x),β(x))).

Thus we obtained from (9) that T (α(x), β(x)) ≤ A(x) → C(x) = sust→(A, C)(x). �
Lemma 3.1. If → is a fuzzy implication satisfying (P2), (P3), (P5) and (P10), and T the mapping residual to I , then T is non-decreasing 
in its first component.

Proof. Since → satisfies (P3), (P5) and (P10), we get that the residuation condition (9) holds. Let a1, a2, b, c ∈ [0, 1], a1 ≤ a2
and c = T (a2, b). Then T (a2, b) ≤ c and thus b ≤ a2 → c (by virtue of the residuation condition (9)). Since → satisfies (P2), 
we can get b ≤ a2 → c ≤ a1 → c, which means that T (a1, b) ≤ c = T (a2, b), i.e., T is non-decreasing in its first compo-
nent. �

It is easy to get Corollary 3.1 and Corollary 3.2 from Proposition 2.2, Lemma 3.1, and Proposition 3.1.

Corollary 3.1. Assume that → is a fuzzy implication satisfying (P2), (P3), (P5) and (P10), and that its residual mapping T is associative. 
If sust→(A, B)(x) ≥ α(x) and sust→(B, C)(x) ≥ β(x) hold for any A, B, C ∈ F (X) and x ∈ X, then sust→(A, C)(x) ≥ T (α(x), β(x)), 
in which α(x), β(x) ∈ [0, 1].

Corollary 3.2. Assume that → is an R-implication, and that T its residual mapping. If sust→(A, B)(x) ≥ α(x) and sust→(B, C)(x) ≥
β(x) hold for any A, B, C ∈ F (X) and x ∈ X, then sust→(A, C)(x) ≥ T (α(x), β(x)), in which α(x), β(x) ∈ [0, 1].
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Proposition 3.2. Assume that → is a fuzzy implication satisfying (P3), (P5) and (P10), and that its residual mapping T is non-
decreasing in its first component and associative. If P1, P2, P3 are three fuzzy relations from X to Y (in which X, Y are non-empty 
sets), and sust→(P1, P2)(x, y) ≥ α(x, y), sust→(P2, P3)(x, y) ≥ β(x, y), then sust→(P1, P3)(x, y) ≥ T (α(x, y), β(x, y)), where 
α(x, y), β(x, y) ∈ [0, 1].

Remark 3.1. It is similar to Proposition 3.1 that we can obtain the corresponding corollaries from Proposition 3.2.

Proposition 3.3. Suppose that → is a fuzzy implication satisfying (P14) and (P15), then the following properties hold for any 
A, B, Ai, Bi ∈ F (X) (X, I 
=∅, i ∈ I, x ∈ X):

(i) sust→(supi∈I Ai, B)(x) = infi∈I sust→(Ai, B)(x),
(ii) sust→(A, infi∈I Bi)(x) = infi∈I sust→(A, Bi)(x).

Proof. Since → satisfies (P14) and (P15), it follows that

sust→(sup
i∈I

Ai, B)(x) = (sup
i∈I

Ai(x)) → B(x) = inf
i∈I

(Ai(x) → B(x)) = inf
i∈I

sust→(Ai, B)(x),

and

sust→(A, inf
i∈I

Bi)(x) = A(x) → inf
i∈I

Bi(x) = inf
i∈I

(A(x) → Bi(x)) = inf
i∈I

sust→(A, Bi)(x). �
Proposition 3.4. Suppose that → is a fuzzy implication satisfying (P7), then

sust→(A, B → C)(x) = sust→(B, A → C)(x)

holds for any A, B, C ∈ F (X) (X 
= ∅, x ∈ X).

Proof. Since → satisfies (P7), it follows that

sust→(A, B → C)(x) = A(x) → (B(x) → C(x)) = B(x) → (A(x) → C(x)) = sust→(B, A → C)(x). �
Proposition 3.5. Suppose that →1, →2 are two fuzzy implications satisfying (P14) and (P15), then the following properties hold for 
any A, B, C, Bi, Ci ∈ F (X) (X, I 
= ∅, i ∈ I, x ∈ X):

(i) sust→1(A, supi∈I Bi →2 C)(x) = infi∈I sust→1(A, Bi →2 C)(x),
(ii) sust→1(A, B →2 infi∈I Ci)(x) = infi∈I sust→1(A, B →2 Ci)(x).

Proof. Since →1, →2 satisfy (P14) and (P15), one has

sust→1(A, sup
i∈I

Bi →2 C)(x) = A(x) →1 (sup
i∈I

Bi(x) →2 C(x))

= A(x) →1 inf
i∈I

(Bi(x) →2 C(x)) = inf
i∈I

(A(x) →1 (Bi(x) →2 C(x)))

= inf
i∈I

sust→1(A, Bi →2 C)(x),

and

sust→1(A, B →2 inf
i∈I

Ci)(x) = A(x) →1 (B(x) →2 inf
i∈I

Ci(x))

= A(x) →1 inf
i∈I

(B(x) →2 Ci(x)) = inf
i∈I

(A(x) →1 (B(x) →2 Ci(x)))

= inf
i∈I

sust→1(A, B →2 Ci)(x). �
It is straightforward to derive Corollary 3.3 from Proposition 3.5.

Corollary 3.3. Suppose that → is a fuzzy implication satisfying (P14) and (P15), then the following properties hold for any 
A, B, C, Bi, Ci ∈ F (X) (X, I 
= ∅, i ∈ I, x ∈ X):

(i) sust→(A, supi∈I Bi → C)(x) = infi∈I sust→(A, Bi → C)(x),
(ii) sust→(A, B → infi∈I Ci)(x) = infi∈I sust→(A, B → Ci)(x).

Remark 3.2. It is noted that an R-implication is also a fuzzy implication satisfying (P7), (P14) and (P15). Therefore in 
Proposition 3.3, Proposition 3.4 and Proposition 3.5, as well as Corollary 3.3, if → is an R-implication (or →1, →2 are 
R-implications), then the corresponding conclusions are also correct.
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We can get Corollary 3.4 from Proposition 3.4 and Proposition 2.5.

Corollary 3.4. Suppose that → is an (S, N)-implication, then sust→(A, B → C)(x) = sust→(B, A → C)(x) holds for any A, B, C ∈
F (X) (X 
= ∅, x ∈ X).

In a similar way, we can get Proposition 3.6, Proposition 3.7 and Proposition 3.8, together with Corollary 3.5.

Proposition 3.6. Suppose that → is a fuzzy implication satisfying (P14) and (P15), and that Pi, Q are fuzzy relations from X to Y , 
then the following properties hold (X, Y , I 
= ∅, i ∈ I, x ∈ X, y ∈ Y ):

(i) sust→(supi∈I P i, Q )(x, y) = infi∈I sust→(Pi, Q )(x, y),
(ii) sust→(Q , infi∈I P i)(x, y) = infi∈I sust→(Q , Pi)(x, y).

Proposition 3.7. Suppose that → is a fuzzy implication satisfying (P7), and that P1, P2, P3 are fuzzy relations from X to Y , then the 
following property holds (X, Y , I 
= ∅, i ∈ I, x ∈ X, y ∈ Y ):

sust→(P1, P2 → P3)(x, y) = sust→(P2, P1 → P3)(x, y).

Proposition 3.8. Suppose that →1, →2 are two fuzzy implications satisfying (P14) and (P15), and that P1, P2, Q i are fuzzy relations 
from X to Y , then the following properties hold (X, Y , I 
= ∅, i ∈ I, x ∈ X, y ∈ Y ):

(i) sust→1(P1, supi∈I Q i →2 P2)(x, y) = infi∈I sust→1(P1, Q i →2 P2)(x, y),
(ii) sust→1(P1, P2 →2 infi∈I Q i)(x, y) = infi∈I sust→1(P1, P2 →2 Q i)(x, y).

Corollary 3.5. Suppose that → is a fuzzy implication satisfying (P14) and (P15), and that P1, P2, Q i are fuzzy relations from X to Y , 
then the following properties hold (X, Y , I 
= ∅, i ∈ I, x ∈ X, y ∈ Y ):

(i) sust→(P1, supi∈I Q i → P2)(x, y) = infi∈I sust→(P1, Q i → P2)(x, y),
(ii) sust→(P1, P2 → infi∈I Q i)(x, y) = infi∈I sust→(P1, P2 → Q i)(x, y).

Remark 3.3. Similar to Remark 3.2, if → is an R-implication (or →1, →2 are R-implications), then the corresponding con-
clusions in Proposition 3.6, Proposition 3.7, Proposition 3.8 and Corollary 3.5 are also correct.

Corollary 3.6 is obtained from Proposition 3.7 and Proposition 2.5.

Corollary 3.6. Suppose that → is an (S, N)-implication, and that P1, P2, P3 are fuzzy relations from X to Y , then the following property 
holds (X, Y , I 
= ∅, i ∈ I, x ∈ X, y ∈ Y ): sust→(P1, P2 → P3)(x, y) = sust→(P2, P1 → P3)(x, y).

Proposition 3.9. Let →1, →2 be two fuzzy implications satisfying (P3), and P any fuzzy relation from X to Y , Q 1(x, y) = C(x) →1
D1(y), Q 2(x, y) = C(x) →1 D2(y) (in which X, Y 
= ∅ and C ∈< F (X), ≤F >, D1, D2 ∈< F (Y ), ≤F >). If D1 ≤F D2 , then 
sust→2(P , Q 1)(x, y) ≤ sust→2(P , Q 2)(x, y) holds for any x ∈ X, y ∈ Y .

Proof. Since D1 ≤F D2 and →1, →2 satisfy (P3), it follows that C(x) →1 D1(y) ≤ C(x) →1 D2(y) and sust→2(P , Q 1)(x, y) =
P (x, y) →2 (C(x) →1 D1(y)) ≤ P (x, y) →2 (C(x) →1 D2(y)) = sust→2(P , Q 2)(x, y) hold for any x ∈ X, y ∈ Y . �

Proposition 3.10 is proved in a similar way as Proposition 3.9.

Proposition 3.10. Let →1, →2 be two fuzzy implications satisfying (P2) and (P3), and P any fuzzy relation from X to Y , Q 1(x, y) =
C1(x) →1 D(y), Q 2(x, y) = C2(x) →1 D(y) (in which X, Y 
= ∅ and C1, C2 ∈< F (X), ≤F >, D ∈< F (Y ), ≤F >). If C2 ≤F C1 , then 
sust→2(P , Q 1)(x, y) ≤ sust→2(P , Q 2)(x, y) holds for any x ∈ X, y ∈ Y .

4. α(u, v)-symmetric implicational method for FMP

Based on the two-dimensional sustaining degree, (8) can also be expressed as

sust→2(Q , Q ∗)(u, v) ≥ α(u, v). (12)

Here Q (u, v) = A(u) →1 B(v) and Q ∗(u, v) = A∗(u) →1 B∗(v).
For convenience, denote a ′ = 1 −a for any a ∈ [0, 1] and A′(x) = 1 − A(x) for any fuzzy set A, meanwhile we also denote 

T ′(a, b) = 1 − T (a, b) for any mapping T : [0, 1]2 → [0, 1].
For the FMP problem (1), from the viewpoint of the α(u, v)-symmetric implicational method, we can obtain the following 

principle:
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α(u,v)-symmetric implicational principle for FMP: The conclusion B∗ of FMP problem (1) is the smallest fuzzy set satisfying 
(12) in < F (V ), ≤F >.

It is evident that such symmetric implicational principle for FMP improves the previous one discussed in [20].

Definition 4.1. Let A, A∗ ∈ F (U ), B ∈ F (V ), if B∗ (in < F (V ), ≤F >) makes (12) hold for any u ∈ U , v ∈ V , then B∗ is called 
an α(u,v)-FMP-symmetric implicational solution.

Definition 4.2. Suppose that A, A∗ ∈ F (U ), B ∈ F (V ), and that non-empty set Eα(u,v) is the set of all α(u,v)-FMP-symmetric 
implicational solutions, and finally that D∗ (in < F (V ), ≤F >) is the infimum of Eα(u,v) . Then D∗ is called an α(u,v)-InfP-
quasi symmetric implicational solution. And, if D∗ is the minimum of Eα(u,v) , then D∗ is also called an α(u,v)-MinP-
symmetric implicational solution.

Proposition 4.1 results from Proposition 3.9.

Proposition 4.1. If →1, →2 satisfy (P3), and D1 is an α(u,v)-FMP-symmetric implicational solution, and D1 ≤F D2 (where 
D1, D2 ∈< F (V ), ≤F >). Then D2 is an α(u,v)-FMP-symmetric implicational solution.

Remark 4.1. Suppose that →1, →2 satisfy (P3). In Definition 4.2, A, A∗, B should be unchangeable and B∗ changeable, 
while B∗ should make (12) hold for any u ∈ U , v ∈ V . For (12), once there exists an α(u,v)-FMP-symmetric implicational 
solution B∗ , then every fuzzy set D which is larger than B∗ (D ∈ F (V )), will be an α(u,v)-FMP-symmetric implicational 
solution. This means that there are many α(u,v)-FMP-symmetric implicational solutions, including B∗(v) ≡ 1 (v ∈ V ). This 
last is a special solution, for which (12) always holds no matter what major premise A →1 B and minor premise A∗ are 
adopted. Therefore, when the optimal α(u,v)-FMP-symmetric implicational solution exists, it should be the smallest one; in 
other words, it should be the infimum of all solutions (i.e. the infimum of Eα(u,v)).

Assume that the maximum of sust→2 (Q , Q ∗)(u, v) for FMP at every point (u, v) is M(u, v).

Proposition 4.2. ([20]) If →1, →2 satisfy (P3), then M(u, v) = (A(u) →1 B(v)) →2 (A∗(u) →1 1). Especially, if →1, →2 also 
satisfy (P5), then M(u, v) = 1.

To guarantee that (12) holds, it is necessary that α(u, v) ≤ M(u, v) holds for any u ∈ U , v ∈ V .
It follows from Lemma 2.1 that < F (V ), ≤F > is a complete lattice. Thus the α(u,v)-InfP-quasi symmetric implicational 

solution (i.e., the infimum of Eα(u,v)) exists since the non-empty set Eα(u,v) ⊂ F (V ).

Proposition 4.3. If →1, →2 satisfy (P3) and (P10), then the α(u,v)-InfP-quasi symmetric implicational solution B∗ is the α(u,v)-MinP-
symmetric implicational solution.

Proof. Note that Eα(u,v) = {D∗ ∈ F (V ) | (A(u) →1 B(v)) →2 (A∗(u) →1 D∗(v)) ≥ α(u, v), u ∈ U , v ∈ V }, and that the 
α(u,v)-InfP-quasi symmetric implicational solution B∗ = infEα(u,v) . Assume on the contrary that B∗ /∈ Eα(u,v) , then there 
exist fuzzy sets B1, B2, · · · in Eα(u,v) such that

lim
n→∞ Bn(v) = B∗(v), v ∈ V . (13)

Since B1, B2, · · · ∈ Eα(u,v) , we get (n = 1, 2, · · · , u ∈ U , v ∈ V ):

(A(u) →1 B(v)) →2 (A∗(u) →1 Bn(v)) ≥ α(u, v). (14)

Because B∗ = infEα(u,v) , we obtain Bn(v) ≥ B∗(v) (v ∈ V , n = 1, 2, · · · ), and then it follows from (13) that B∗(v) is the 
right limit of {Bn(v) | n = 1, 2, · · · } (v ∈ V ). Noting that the fuzzy implications →1, →2 satisfies (P3) and (P10), thus it 
follows from (14) that (u ∈ U , v ∈ V ):

α(u, v) ≤ lim
n→∞{(A(u) →1 B(v)) →2 (A∗(u) →1 Bn(v))} = (A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v))

= sust→2(Q , Q ∗)(u, v).

Hence B∗ ∈ Eα(u,v) , which is a contradiction.
As a result, B∗ ∈ Eα(u,v) and hence B∗ is the minimum of Eα(u,v) . Therefore, B∗ is the α(u,v)-MinP-symmetric implica-

tional solution. �
It follows from Proposition 4.3 and Proposition 2.2 that we can get Theorem 4.1.



220 Y. Tang, W. Pedrycz / International Journal of Approximate Reasoning 92 (2018) 212–231
Theorem 4.1. If →1, →2 are R-implications, then the α(u,v)-InfP-quasi symmetric implicational solution B∗ is the α(u,v)-MinP-
symmetric implicational solution.

Theorem 4.2. If →1, →2 are R-implications, and T1, T2 are respectively the mappings residual to →1, →2 , then the α(u,v)-MinP-
symmetric implicational solution can be expressed as follows:

B∗(v) = sup
u∈U

{T1(A∗(u), T2(A(u) →1 B(v), α(u, v)))}, v ∈ V . (15)

Proof. It follows from (15) that

T1(A∗(u), T2(A(u) →1 B(v), α(u, v))) ≤ B∗(v), u ∈ U , v ∈ V .

Because (T1, →1), (T2, →2) are two residual pairs, we have T2(A(u) →1 B(v), α(u, v)) ≤ A∗(u) →1 B∗(v) and α(u, v) ≤
sust→2(Q , Q ∗)(u, v) (u ∈ U , v ∈ V ), i.e., B∗ satisfies (12) for all u ∈ U , v ∈ V . Hence B∗ expressed by (15) belongs to Eα(u,v) .

Assume that D ∈ 〈F (V ), ≤F 〉, and that

(A(u) →1 B(v)) →2 (A∗(u) →1 D(v)) ≥ α(u, v), u ∈ U , v ∈ V .

Noting that (T1, →1) and (T2, →2) are two residual pairs, we obtain T2(A(u) →1 B(v), α(u, v)) ≤ A∗(u) →1 D(v), and 
then

T1(A∗(u), T2(A(u) →1 B(v), α(u, v))) ≤ D(v), u ∈ U , v ∈ V .

So D(v) is an upper bound of

{T1(A∗(u), T2(A(u) →1 B(v), α(u, v))) | u ∈ U }, v ∈ V .

Hence it follows from (15) that B∗ ≤F D . These mean that B∗ is the minimum of Eα(u,v) .
Therefore, it follows from Definition 4.2 that B∗ expressed by (15) is the α(u,v)-MinP-symmetric implicational solu-

tion. �
Example 4.1. The following fuzzy implications are all R-implications, which include Lukasiewicz implication I LK , Gödel 
implication IG D , Goguen implication IGG , Fodor implication I F D ([22,30]), and I E P (which is residual to the t-norm of 
Einstein product defined as T E P (x, y) = xy/[2 − (x + y − xy)]), IY G (which is residual to the t-norm of Yager defined as 
TY G−ω(x, y) = 1 − min[1, ((1 − x)ω + (1 − y)ω)1/ω], where ω is equal to 0.5) [31].

I LK (x, y) =
{

1 if x ≤ y
1 − x + y if x > y

, IG D(a,b) =
{

1 if x ≤ y
y if x > y

,

IGG(x, y) =
{

1 if x ≤ y
y/x if x > y

, I F D(a,b) =
{

1 if x ≤ y
(1 − x) ∨ y if x > y

,

I E P (x, y) =
{

1 if x ≤ y
(2y − xy)/(x + y − xy) if x > y

, IY G(a,b) =
{

1 if x ≤ y
1 − (

√
1 − y − √

1 − x )2 if x > y
.

Proposition 4.4 can be then easily formulated.

Proposition 4.4. The t-norm corresponding to the R-implications I LK , IG D , IGG , I F D , I E P , IY G in residual pairs are as follows, respec-
tively.

T LK (x, y) =
{

x + y − 1 if x + y > 1
0 if x + y ≤ 1

, T G D(x, y) = x ∧ y, T GG(x, y) = x × y,

T F D(x, y) =
{

x ∧ y if x + y > 1
0 if x + y ≤ 1

, T E P (x, y) = xy/(2 − x − y + xy),

T Y G(x, y) =
{

1 − (k(x, y))2 if k(x, y) ≤ 1
0 if k(x, y) > 1

, where k(x, y) = √
1 − x + √

1 − y.

In a similar way, we obtain the following theorems.

Theorem 4.3. If →1, →2 are (S, N)-implications satisfying (P10), and T1, T2 are respectively the mappings residual to →1, →2 , then 
the α(u,v)-MinP-symmetric implicational solution can be expressed as (15).

Theorem 4.4. If →1 is an R-implication, and →2 an (S, N)-implication satisfying (P10), and T1, T2 are respectively the mappings 
residual to →1, →2 , then the α(u,v)-MinP-symmetric implicational solution can be expressed as (15).
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Table 1
Examples of basic (S, N)-implications I S,N .

S N I S,N

S M NC I K D

S P NC I RC

SnM NC I F D

S LK NC ILK

S M NK IM K

Any S ND1 I D

Any S ND2 IT D

Theorem 4.5. If →1 is an (S, N)-implication satisfying (P10), and →2 an R-implication, and T1, T2 are respectively the mappings 
residual to →1, →2 , then the α(u,v)-MinP-symmetric implicational solution can be expressed as (15).

It is obvious to obtain Lemma 4.1.

Lemma 4.1. For the S-implication I S,N , if the t-conorm S is right-continuous, then I S,N satisfies (P10).

The basic t-conorms include the following (a, b ∈ [0, 1]):
(i) Maximum: SM(a, b) = max(a, b),
(ii) Probabilistic sum: S P (a, b) = a + b − ab,
(iii) Lukasiewicz: SLK (a, b) = min(a + b, 1),

(iv) Nilpotent maximum: SnM(a, b) =
{

1, a + b ≥ 1
max(a,b), otherwise

,

(v) Drastic sum: S D R (a, b) =
{

1, a,b ∈ (0,1]
max(a,b), otherwise

.

It is not difficult to find that SM , S P , SLK , SnM are right-continuous, while S D R is not. As for S D R , the main value is 
always constant (when a, b ∈ (0, 1]), thus S D R is not appropriate in light of the requirements imposed on fuzzy inference, 
therefore in this paper we do not consider S D R any more.

The examples of basic (S, N)-implications I S,N are shown in Table 1, where the related fuzzy implications are 
Kleene–Dienes implication I K D , Reichenbach implication I RC , IM K , the least (S, N)-implication I D , and the largest (S, N)-
implication IT D .

I K D(x, y) = (1 − x) ∨ y, I RC (x, y) = 1 − x + xy, IM K (x, y) = (1 − x2) ∨ y,

I D(x, y) =
{

1 if x = 0
y if x > 0

, IT D(x, y) =
{

1 if x < 1
y if x = 1

.

Proposition 4.5. The mappings corresponding to the (S, N)-implications I K D , I RC , IM K , I D , IT D in residual pairs are as follows, re-
spectively.

T K D(x, y) =
{

y if x + y > 1
0 if x + y ≤ 1

, T RC (x, y) =
{

(x + y − 1)/x if x + y > 1
0 if x + y ≤ 1

,

T M K (x, y) =
{

y if 1 − x2 < y
0 if 1 − x2 ≥ y

, T D(x, y) =
{

y if x > 0
0 if x = 0

,

T T D(x, y) =
{

y if x = 1
0 if x < 1

.

Proof. Here it is easy to find that I K D , I RC , IM K , I D , IT D are all fuzzy implications satisfying (P10).

We only prove I D (note that I D(x, y) =
{

1 if x = 0
y if x > 0

). We achieve from Proposition 2.9 that

T D(x, y) = inf{u ∈ [0,1] | y ≤ I D(x, u)}
= inf({u ∈ [0,1] | x = 0, y ≤ I D(x, u)} ∪ {u ∈ [0,1] | x > 0, y ≤ I D(x, u)})
= [inf{u ∈ [0,1] | x = 0, y ≤ 1}] ∧ [inf{u ∈ [0,1] | x > 0, y ≤ u}].

If x = 0, then T D(x, y) = 0 ∧ [∧∅] = 0 ∧ 1 = 0.
If x > 0, then T D(x, y) = [∧∅] ∧ y = 1 ∧ y = y.

Thus, it follows that T D (x, y) =
{

y if x > 0
0 if x = 0

. �
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From the results mentioned above, I LK , IG D , IGG , I F D , I E P , IY G are all R-implications, and I K D , I RC , IM K , I D , IT D are all 
fuzzy implications satisfying (P10). Then it follows from Theorem 4.2, Theorem 4.3, Theorem 4.4, Theorem 4.5 that we 
derive Proposition 4.6.

Proposition 4.6. If →1, →2∈ {I LK , IG D , IGG , I F D , I E P , IY G , I K D , I RC , IM K , I D , IT D}, then the α(u,v)-MinP-symmetric implicational 
solution can be expressed by B∗(v) = supu∈U {T1(A∗(u), T2(A(u) →1 B(v), α(u, v)))}, v ∈ V .

Example 4.2. Here we show two specific examples of the α(u,v)-MinP-symmetric implicational solution.
(i) Let →1 take IG D and →2 take IGG , then it follows from Proposition 4.6 that the α(u,v)-MinP-symmetric implicational 

solution is as follows:

B∗(v) = sup
u∈U

{T G D(A∗(u), T GG(IG D(A(u), B(v)), α(u, v)))}
= sup

u∈U
{A∗(u) ∧ (IG D(A(u), B(v)) × α(u, v))}, v ∈ V .

(ii) Let →1 take I LK and →2 take I F D . If I LK (A(u), B(v)) + α(u, v) > 1, A∗(u) + I LK (A(u), B(v)) > 1 and A∗(u) +
α(u, v) > 1 hold, then

T LK (A∗(u), T F D(I LK (A(u), B(v)),α(u, v))) = A∗(u) + (I LK (A(u), B(v)) ∧ α(u, v)) − 1.

Otherwise, we have T LK (A∗(u), T F D(I LK (A(u), B(v)), α(u, v))) = 0.
Denote

E v = {u ∈ U | I LK (A(u), B(v)) + α(u, v) > 1, A∗(u) + I LK (A(u), B(v)) > 1, A∗(u) + α(u, v) > 1}
= {u ∈ U | A∗(u) ∧ I LK (A(u), B(v)) > 1 − α(u, v), A∗(u) + I LK (A(u), B(v)) > 1},

then the α(u,v)-MinP-symmetric implicational solution is as follows:

B∗(v) = sup
u∈U

{T LK (A∗(u), T F D(I LK (A(u), B(v)),α(u, v)))}
= sup

u∈E v

{T LK (A∗(u), T F D(I LK (A(u), B(v)),α(u, v)))} ∨ sup
u∈U−E v

{T LK (A∗(u), T F D(I LK (A(u), B(v)),α(u, v)))}
= sup

u∈E v

{T LK (A∗(u), T F D(I LK (A(u), B(v)),α(u, v)))} ∨ sup
u∈U−E v

{0}
= sup

u∈E v

{A∗(u) + (I LK (A(u), B(v)) ∧ α(u, v)) − 1}, v ∈ V .

5. α(u, v)-symmetric implicational method for FMT

Aiming at the FMT problem (2), from the viewpoint of the α(u, v)-symmetric implicational method, we establish the 
following principle (which obviously improves the previous one presented in [20]):

α(u,v)-symmetric implicational principle for FMT: The conclusion A∗ of FMT problem (2) is the largest fuzzy set satisfying 
(12) in < F (U ), ≤F >.

Definition 5.1. Let A ∈ F (U ), B, B∗ ∈ F (V ), if A∗ (in < F (U ), ≤F >) makes (12) hold for any u ∈ U , v ∈ V , then A∗ is called 
an α(u,v)-FMT-symmetric implicational solution.

Definition 5.2. Suppose that A ∈ F (U ), B, B∗ ∈ F (V ), and that non-empty set Fα(u,v) is the set of all α(u,v)-FMT-symmetric 
implicational solutions, and finally that C∗ (in < F (U ), ≤F >) is the supremum of Fα(u,v) . Then C∗ is called an α(u,v)-SupT-
quasi symmetric implicational solution. And, if C∗ is the maximum of Fα(u,v) , then C∗ is also called an α(u,v)-MaxT-
symmetric implicational solution.

Proposition 5.1 results from Proposition 3.10.

Proposition 5.1. If →1, →2 satisfy (P2) and (P3), and C1 is an α(u,v)-FMT-symmetric implicational solution, and C2 ≤F C1 (where 
C1, C2 ∈< F (U ), ≤F >), then C2 is an α(u,v)-FMT-symmetric implicational solution.

Remark 5.1. Suppose that →1, →2 satisfy (P2) and (P3). For Definition 5.2, A, B, B∗ should be fixed, and A∗ should make 
(12) hold for any u ∈ U , v ∈ V . As for (12), if there exists an α(u,v)-FMT-symmetric implicational solution A∗ , then every 
fuzzy set C which is smaller than A∗ (C ∈ F (U )), will also be an α(u,v)-FMT-symmetric implicational solution. So there 
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exist many α(u,v)-FMT-symmetric implicational solutions, which include A∗(u) ≡ 0 (u ∈ U ). This last is a specific one, for 
which (12) always holds no matter what A →1 B and B∗ are chosen. As a result, if the optimal α(u,v)-FMT-symmetric 
implicational solution exists, then it should be the largest one or the supremum of Fα(u,v) .

Assume that the maximum of sust→2 (Q , Q ∗)(u, v) for FMT at every point (u, v) is L(u, v).

Proposition 5.2. If →1 satisfies (P2) and →2 satisfies (P3), then L(u, v) = (A(u) →1 B(v)) →2 (0 →1 B∗(v)). Especially, if →1
satisfies (P4) and →2 satisfies (P5), then L(u, v) = 1.

Proof. Take A∗(u) ≡ 0 (u ∈ U ), then (12) is equal to (A(u) →1 B(v)) →2 (0 →1 B∗(v)).
Conversely, since →1 satisfies (P2), it follows that A∗(u) →1 B∗(v) ≤ 0 →1 B∗(v) (noting that 0 ≤ A∗(u), u ∈ U ). Noting 

that →1 satisfies (P3), we further have

sust→2(Q , Q ∗)(u, v) ≤ (A(u) →1 B(v)) →2 (0 →1 B∗(v))

holds for any u ∈ U , v ∈ V . Furthermore, if →1 satisfies (P4) and →2 satisfies (P5), it is obvious to get L(u, v) = 1. �
To guarantee (12) holds, it is necessary that α(u, v) ≤ L(u, v) holds for any u ∈ U , v ∈ V . We get from Lemma 2.1 that 

< F (U ), ≤F > is a complete lattice. So the α(u,v)-SupT-quasi symmetric implicational solution (i.e., the supremum of Fα(u,v)) 
uniquely exists because the non-empty set Fα(u,v) ⊂ F (U ).

Proposition 5.3. If →1 satisfies (P2) and (P9), and →2 satisfies (P10), then the α(u,v)-SupT-quasi symmetric implicational solution 
A∗ is the α(u,v)-MaxT-symmetric implicational solution.

Proof. It is noted that the α(u,v)-SupT-quasi symmetric implicational solution A∗ = supFα(u,v) , it is enough to prove that 
A∗ is the maximum of Fα(u,v) . Notice that

Fα(u,v) = {C∗ ∈ F (U ) | (A(u) →1 B(v)) →2 (C∗(u) →1 B∗(v)) ≥ α(u, v), u ∈ U , v ∈ V }.
Assume to the contrary that A∗ /∈ Fα(u,v) . Then there exist fuzzy sets A1, A2, · · · in Fα(u,v) such that

lim
n→∞ An(u) = A∗(u), u ∈ U . (16)

Because A∗ = supFα(u,v) , we obtain An(u) ≤ A∗(u) (u ∈ U , n = 1, 2, · · · ), and then it follows from (16) that A∗(u) is the 
left limit of {An(u) | n = 1, 2, · · · } (u ∈ U ). Thus we get (noting that →1 satisfies (P9))

lim
n→∞{An(u) →1 B∗(v)} = A∗(u) →1 B∗(v), u ∈ U , v ∈ V . (17)

Since the fuzzy implication →1 satisfies (P2), we have An(u) →1 B∗(v) ≥ A∗(u) →1 B∗(v) (u ∈ U , v ∈ V , n = 1, 2, · · · ), and 
then it follows from (17) that A∗(u) →1 B∗(v) is the right limit of {An(u) →1 B∗(v) | n = 1, 2, · · · } (u ∈ U , v ∈ V ).

Taking into account that A1, A2, · · · ∈ Fα(u,v) , we have (n = 1, 2, · · · ):

(A(u) →1 B(v)) →2 (An(u) →1 B∗(v)) ≥ α(u, v), u ∈ U , v ∈ V .

Thus we obtain (by noting that →2 satisfies (P10)):

α(u, v) ≤ lim
n→∞{(A(u) →1 B(v)) →2 (An(u) →1 B∗(v))}

= (A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v))

= sust→2(Q , Q ∗)(u, v), u ∈ U , v ∈ V ,

which contradicts the assumption. As a result, we achieve A∗ ∈ Fα(u,v) , and hence A∗ is the maximum of Fα(u,v) . �
It follows from Proposition 5.3 and Proposition 2.2 that we can get Theorem 5.1.

Theorem 5.1. If →2 is an R-implication, then the α(u,v)-SupT-quasi symmetric implicational solution A∗ is the α(u,v)-MaxT-
symmetric implicational solution.

Theorem 5.2. If →1, →2 are R-implications, and T2 is the mapping residual to →2, then the α(u,v)-MaxT-symmetric implicational 
solution can be expressed as follows:

A∗(u) = inf
v∈V

{T2(A(u) →1 B(v), α(u, v)) →1 B∗(v)}, u ∈ U . (18)
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Proof. Since →1 is an R-implication, then it follows from Proposition 2.3 that →1 satisfies (P12).
We get from (18) that

A∗(u) ≤ T2(A(u) →1 B(v), α(u, v)) →1 B∗(v), u ∈ U , v ∈ V .

Because →1 satisfies (P12) and (T2, →2) is a residual pair, we obtain

T2(A(u) →1 B(v),α(u, v)) ≤ A∗(u) →1 B∗(v)

and then α(u, v) ≤ sust→2(Q , Q ∗)(u, v) (u ∈ U , v ∈ V ), that is, (12) holds for any u ∈ U , v ∈ V . Hence A∗ expressed as (18)
belongs to Fα(u,v) .

Furthermore, we verify that A∗ is the maximum of Fα(u,v) . Assume that C ∈< F (U ), ≤F >, and that

(A(u) →1 B(v)) →2 (C(u) →1 B∗(v)) ≥ α(u, v), u ∈ U , v ∈ V .

Since (T2, →2) is a residual pair and →1 satisfies (P12), we have T2(A(u) →1 B(v), α(u, v)) ≤ C(u) →1 B∗(v) and C(u) ≤
T2(A(u) →1 B(v), α(u, v)) →1 B∗(v) (u ∈ U , v ∈ V ). So C(u) is a lower bound of

{T2(A(u) →1 B(v),α(u, v)) →1 B∗(v) | v ∈ V }, u ∈ U .

Hence it follows from (18) that C ≤F A∗ . Consequently, A∗ is the maximum of Fα(u,v) .
According to Definition 5.2, we achieve that A∗ expressed as (18) is the α(u,v)-MaxT-symmetric implicational solu-

tion. �
In a similar way as for Theorem 5.2, we can obtain Theorem 5.3.

Theorem 5.3. Suppose that →1 is an R-implication, and that →2 takes the (S, N)-implication I S1,N1 satisfying (P10), and finally that 
T2 is the mappings residual to →2. Then the α(u,v)-MaxT-symmetric implicational solution can be computed as (18).

Since I LK , IG D , IGG , I F D , I E P , IY G are all R-implications, and I K D , I RC , IM K , I D , IT D are all fuzzy implications satisfying 
(P10), it follows from Theorem 5.2 and Theorem 5.3 that we can have Proposition 5.4.

Proposition 5.4. Suppose that →1∈ {I LK , IG D , IGG , I F D , I E P , IY G}, and that →2∈ {I LK , IG D , IGG , I F D , I E P , IY G , I K D , I RC , IM K , I D ,

IT D}, then the α(u,v)-MaxT-symmetric implicational solution is A∗(u) = infv∈V {T2(A(u) →1 B(v), α(u, v)) →1 B∗(v)}, u ∈ U .

Theorem 5.4. Suppose that →1, →2 respectively take the (S, N)-implication I S1,N1 , I S2,N2 satisfying (P10), and that T1, T2 are re-
spectively the mappings residual to →1, →2 . Then the α(u,v)-MaxT-symmetric implicational solution can be computed as follows:

A∗(u) = inf
v∈V

{N1(T1(N1(B∗(v)), T2(A(u) →1 B(v), α(u, v))))}, u ∈ U . (19)

Proof. Note that →1, →2 are two (S, N)-implications satisfying (P10), then it follows from Proposition 2.9 that there exist 
residual pairs (T1, →1), (T2, →2). Since →1 employs the (S, N)-implication I S1,N1 , it follows from Proposition 2.5 that →1
satisfies (P17), i.e., has the law of contraposition w.r.t. the strong negation N1.

It follows from (19) that

A∗(u) ≤ N1(T1(N1(B∗(v)), T2(A(u) →1 B(v), α(u, v)))), u ∈ U , v ∈ V .

Because →1 satisfies the law of contraposition w.r.t. N1, and (T1, →1), (T2, →2) are two residual pairs, we obtain 
(u ∈ U , v ∈ V )

T1(N1(B∗(v)), T2(A(u) →1 B(v), α(u, v))) ≤ N1(A∗(u)),

T2(A(u) →1 B(v), α(u, v)) ≤ N1(B∗(v)) →1 N1(A∗(u)),

T2(A(u) →1 B(v), α(u, v)) ≤ A∗(u) →1 B∗(v)

α(u, v) ≤ (A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)) = sust→2(Q , Q ∗)(u, v).

That is, (12) holds for any u ∈ U , v ∈ V , which implies that A∗ expressed as (19) belongs to Fα(u,v) .
Moreover, we prove that A∗ is the maximum of Fα(u,v) . Assume that C ∈< F (U ), ≤F >, and that

(A(u) →1 B(v)) →2 (C(u) →1 B∗(v)) ≥ α(u, v), u ∈ U , v ∈ V .

Considering that (T1, →1), (T2, →2) are two residual pairs and that →1 has the law of contraposition w.r.t. N1, we have 
(u ∈ U , v ∈ V )
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T2(A(u) →1 B(v), α(u, v)) ≤ C(u) →1 B∗(v),

T2(A(u) →1 B(v), α(u, v)) ≤ N1(B∗(v)) →1 N1(C(u)),

T1(N1(B∗(v)), T2(A(u) →1 B(v),α(u, v))) ≤ N1(C(u)),

C(u) ≤ N1(T1(N1(B∗(v)), T2(A(u) →1 B(v),α(u, v)))).

Thus C(u) is a lower bound of

{N1(T1(N1(B∗(v)), T2(A(u) →1 B(v),α(u, v)))) | v ∈ V }, u ∈ U .

So it follows from (19) that C ≤F A∗ . As a result, A∗ is the maximum of Fα(u,v) .
By virtue of Definition 5.2, we obtain that A∗ expressed as (19) is the α(u,v)-MaxT-symmetric implicational solution. �
As in case of Theorem 5.4, we derive Theorem 5.5.

Theorem 5.5. Suppose that →1 takes the (S, N)-implication I S1,N1 satisfying (P10), and that →2 is an R-implication, and finally that 
T1, T2 are respectively the mappings residual to →1, →2 . Then the α(u,v)-MaxT-symmetric implicational solution can be computed 
as (19).

From Theorem 5.4 and Theorem 5.5 we obtain Proposition 5.5.

Proposition 5.5. Suppose that →1∈ {I K D , I RC , IM K , I D , IT D} and →2∈ {I LK , IG D , IGG , I F D , I E P , IY G , I K D , I RC , IM K , I D , IT D}, then 
the α(u,v)-MaxT-symmetric implicational solution is A∗(u) = infv∈V {N1(T1(N1(B∗(v)), T2(A(u) →1 B(v), α(u, v))))}, u ∈ U .

Example 5.1. Here we show two specific examples of the α(u,v)-MaxT-symmetric implicational solution.
(i) Let →1 take I LK and →2 take IGG , then it follows from Proposition 5.4 that the α(u,v)-MaxT-symmetric implicational 

solution is as follows:

A∗(u) = inf
v∈V

{I LK (T GG(I LK (A(u), B(v)), α(u, v)), B∗(v))}
= inf

v∈V
{I LK ((I LK (A(u), B(v)) × α(u, v)), B∗(v))}, u ∈ U .

If I LK (A(u), B(v)) × α(u, v) > B∗(v), then

I LK ((I LK (A(u), B(v)) × α(u, v)), B∗(v)) = 1 − (I LK (A(u), B(v)) × α(u, v)) + B∗(v).

Otherwise, we have I LK ((I LK (A(u), B(v)) × α(u, v)), B∗(v)) = 1.
Denote

Fu = {v ∈ V | I LK (A(u), B(v)) × α(u, v) > B∗(v)},
then the α(u,v)-MaxT-symmetric implicational solution is as follows:

A∗(u) = inf
v∈Fu

{I LK ((I LK (A(u), B(v)) × α(u, v)), B∗(v))}
∧ inf

v∈V −Fu
{I LK ((I LK (A(u), B(v)) × α(u, v)), B∗(v))}

= inf
v∈Fu

{1 − (I LK (A(u), B(v)) × α(u, v)) + B∗(v)} ∧ inf
v∈V −Fu

{1}
= inf

v∈Fu
{1 − (I LK (A(u), B(v)) × α(u, v)) + B∗(v)}, u ∈ U .

(ii) Let →1 take I K D and →2 take IG D , then it follows from Proposition 5.5 that the α(u,v)-MaxT-symmetric implicational 
solution is as follows:

A∗(u) = inf
v∈V

{N1(T K D(N1(B∗(v)), T G D [I K D(A(u), B(v)), α(u, v)]))}
= inf

v∈V
{1 − (T K D [(1 − B∗(v)), [((1 − A(u)) ∨ B(v)) ∧ α(u, v)]])}, u ∈ U .

If (1 − B∗(v)) + ([(1 − A(u)) ∨ B(v)] ∧ α(u, v)) > 1 hold (i.e., ((1 − A(u)) ∨ B(v)) ∧ α(u, v) > B∗(v)), then

T K D((1 − B∗(v)), (((1 − A(u)) ∨ B(v)) ∧ α(u, v))) = ((1 − A(u)) ∨ B(v)) ∧ α(u, v).

Otherwise, we have T K D((1 − B∗(v)), (((1 − A(u)) ∨ B(v)) ∧ α(u, v))) = 0.
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Denote

Fu = {v ∈ V | ((1 − A(u)) ∨ B(v)) ∧ α(u, v) > B∗(v)},
then the α(u,v)-MaxT-symmetric implicational solution is as follows:

A∗(u) = inf
v∈Fu

{1 − (T K D((1 − B∗(v)), (((1 − A(u)) ∨ B(v)) ∧ α(u, v))))}
∧ inf

v∈V −Fu
{1 − (T K D((1 − B∗(v)), (((1 − A(u)) ∨ B(v)) ∧ α(u, v))))}

= inf
v∈Fu

{1 − (((1 − A(u)) ∨ B(v)) ∧ α(u, v))} ∧ inf
v∈V −Fu

{1 − 0}
= inf

v∈Fu
{1 − (((1 − A(u)) ∨ B(v)) ∧ α(u, v))}, u ∈ U .

6. Examples

Here we provide four illustrative examples (including two continuous cases and two discrete ones) to deal with the
α(u,v)-symmetric implicational method.

With n rules, (2) and (3) come as:

FMP: from n rules Ai → Bi and A∗, compute B∗, (20)

FMT: from n rules Ai → Bi and B∗, compute A∗. (21)

The overall inference rule is frequently chosen to be φ(u, v) � ∨n
i=1(Ai(u) →1 Bi(v)).

Consequently, (12) should be expressed as:

[∨n
i=1(Ai(u) →1 Bi(v))] →2 (A∗(u) →1 B∗(v)) ≥ α(u, v), (22)

or

sust→2(φ, Q ∗)(u, v) ≥ α(u, v). (23)

Suppose that the α(u,v)-MinP-symmetric implicational solution (or the α(u,v)-MaxT-symmetric implicational solution) 
from (12) is �(A(u) →1 B(v)), then it is easy to obtain that the α(u,v)-MinP-symmetric implicational solution (or the 
α(u,v)-MaxT-symmetric implicational solution) derived from (23) is �(φ(u, v)).

Example 6.1. Let U = V = [0, 1], A(u) = (2 + u)/4, B(v) = (3 − 2v)/4, A∗(u) = (2 − u)/2 and α(u, v) = (3 + v − u)/4 (in 
which u, v ∈ [0, 1]). Suppose that →1= IG D , →2= I K D in the α(u, v)-symmetric implicational method for FMP. We now 
calculate the α(u,v)-MinP-symmetric implicational solution from Theorem 4.4.

To begin with, we have

IG D(A(u), B(v)) =
{

1, if 2+u
4 ≤ 3−2v

4 ,
3−2v

4 , if 2+u
4 > 3−2v

4
=

{
1, if u + 2v ≤ 1
3−2v

4 , if u + 2v > 1.
.

Then, it follows from Theorem 4.4 that the α(u,v)-MinP-symmetric implicational solution is as follows (v ∈ V ),

B∗(v) = sup
u∈U

{T1(A∗(u), T2(A(u) →1 B(v), α(u, v)))}
= sup

u∈U
{T G D(A∗(u), T K D(IG D(A(u), B(v)), α(u, v)))}

= sup
u∈U

{A∗(u) ∧ T K D(IG D(A(u), B(v)), α(u, v))}

= sup
u∈[0,1]

{
2 − u

2
∧ T K D(1,

3 + v − u

4
)

∣∣∣∣∣ u + 2v ≤ 1

}
∨ sup

u∈[0,1]

{
2 − u

2
∧ T K D(

3 − 2v

4
,

3 + v − u

4
)

∣∣∣∣∣ u + 2v > 1

}

= sup
u∈[0,1]

{
2 − u

2
∧ 3 + v − u

4

∣∣∣∣∣ u + 2v ≤ 1

}
∨ sup

u∈[0,1]

{
2 − u

2
∧ 3 + v − u

4

∣∣∣∣∣ u + 2v > 1,
3 − 2v

4
+ 3 + v − u

4
> 1

}

= sup
u∈[0,1]

{
2 − u

2
∧ 3 + v − u

4

∣∣∣∣∣ u + 2v ≤ 1

}
∨ sup

u∈[0,1]

{
2 − u

2
∧ 3 + v − u

4

∣∣∣∣∣ u > 1 − 2v, u < 2 − v

}
.

(i) Suppose that 0 ≤ v ≤ 1/2. Then 0 ∈ {u ∈ [0, 1], u + 2v ≤ 1}. It is easy to find 2 − v > 1 − 2v , then { u ∈ [0, 1], u >
1 − 2v, u < 2 − v} 
=∅. Considering that 2−u ∧ 3+v−u is non-increasing w.r.t. u, we get
2 4
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B∗(v) = (1 ∧ 3 + v

4
) ∨ (

2 − (1 − 2v)

2
∧ 3 + v − (1 − 2v)

4
) = 3 + v

4
∨ (

2 + 4v

4
∧ 2 + 3v

4
) = 3 + v

4
∨ 2 + 3v

4

= 3 + v

4
.

Here 3+v
4 ≥ 2+3v

4 is from v ≤ 1/2.
(ii) Suppose that 1 ≥ v > 1/2. Then {u ∈ [0, 1], u + 2v ≤ 1} = ∅. Here 0 ∈ { u ∈ [0, 1], u > 1 − 2v, u < 2 − v}, taking into 

account that 2−u
2 ∧ 3+v−u

4 is non-increasing w.r.t. u, we have

B∗(v) = (sup∅) ∨ (1 ∧ 3 + v

4
) = 0 ∨ 3 + v

4
= 3 + v

4
.

Together we obtain that the α(u,v)-MinP-symmetric implicational solution is

B∗(v) = 3 + v

4
. �

Example 6.2. Let U = V = [0, 1], A(u) = (2 + u)/4, B(v) = (3 − 2v)/4, B∗(v) = (1 − v)/2 and α(u, v) = (3 + u − v)/4
(in which u, v ∈ [0, 1]). Suppose that →1= I LK , →2= I F D in the α(u, v)-symmetric implicational method for FMT. We now 
calculate the α(u,v)-MaxT-symmetric implicational solution from Theorem 5.2.

To begin with, we have

I LK (A(u), B(v)) =
{

1, if 2+u
4 ≤ 3−2v

4 ,

1 − 2+u
4 + 3−2v

4 , if 2+u
4 > 3−2v

4

=
{

1, if u + 2v ≤ 1
5−u−2v

4 , if u + 2v > 1.
.

Then, it follows from Theorem 5.2 that the α(u,v)-MaxT-symmetric implicational solution is as follows (u ∈ U ),

A∗(u) = inf
v∈V

{T2(A(u) →1 B(v), α(u, v)) →1 B∗(v)}
= inf

v∈V
{I LK (T F D(I LK (A(u), B(v)), α(u, v)), B∗(v))}

= inf
v∈[0,1]

{
I LK (T F D(1,

3 + u − v

4
),

1 − v

2
)

∣∣∣∣∣ u + 2v ≤ 1

}

∧ inf
v∈[0,1]

{
I LK (T F D(

5 − u − 2v

4
,

3 + u − v

4
),

1 − v

2
)

∣∣∣∣∣ u + 2v > 1

}

= inf
v∈[0,1]

{
I LK (

3 + u − v

4
,

1 − v

2
)

∣∣∣∣∣ u + 2v ≤ 1

}
∧ inf

v∈[0,1]

{
I LK (

5 − u − 2v

4
∧ 3 + u − v

4
,

1 − v

2
)

∣∣∣∣∣ u + 2v > 1

}

= inf
v∈[0,1]

{
I LK (

3 + u − v

4
,

1 − v

2
)

∣∣∣∣∣ u + 2v ≤ 1

}
∧ inf

v∈[0,1]

{
I LK (

5 − u − 2v

4
,

1 − v

2
)

∣∣∣∣∣ 2u + v ≥ 2, u + 2v > 1

}

∧ inf
v∈[0,1]

{
I LK (

3 + u − v

4
,

1 − v

2
)

∣∣∣∣∣ 2u + v < 2, u + 2v > 1

}

= inf
v∈[0,1]

{
1 − 3 + u − v

4
+ 1 − v

2

∣∣∣∣∣ u + 2v ≤ 1

}
∧ inf

v∈[0,1]

{
1 − 5 − u − 2v

4
+ 1 − v

2

∣∣∣∣∣ 2u + v ≥ 2, u + 2v > 1

}

∧ inf
v∈[0,1]

{
1 − 3 + u − v

4
+ 1 − v

2

∣∣∣∣∣ 2u + v < 2, u + 2v > 1

}

= inf
v∈[0,1]

{
3 − u − v

4

∣∣∣∣∣ v ≤ 1 − u

2

}
∧ inf

v∈[0,1]

{
1 + u

4

∣∣∣∣∣ v ≥ 2 − 2u, v >
1 − u

2

}

∧ inf
v∈[0,1]

{
3 − u − v

4

∣∣∣∣∣ v < 2 − 2u, v >
1 − u

2

}
.

Here T F D( 5−u−2v
4 , 3+u−v

4 ) = 5−u−2v
4 ∧ 3+u−v

4 due to 5−u−2v
4 + 3+u−v

4 = 8−3v
4 > 1.

I LK ( 3+u−v
4 , 1−v

2 ) = 1 − 3+u−v
4 + 1−v

2 due to 3+u−v
4 ≥ 1−v

2 .

I LK ( 5−u−2v , 1−v ) = 1 − 5−u−2v + 1−v due to 5−u−2v ≥ 1−v .
4 2 4 2 4 2
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(i) Suppose that 0 ≤ u < 1/2. Then { v ∈ [0, 1], v ≥ 2 − 2u, v > 1−u
2 } = ∅. Considering that 3−u−v

4 are non-increasing 
w.r.t. v , then we have

A∗(u) = 3 − u − 1−u
2

4
∧ inf∅∧ 3 − u − (2 − 2u)

4
= 5 − u

8
∧ 1 ∧ 1 + u

4
= 1 + u

4
.

Note that 5−u
8 ≥ 1+u

4 due to u ≤ 1.
(ii) Suppose that 1/2 ≤ u < 1. Then { v ∈ [0, 1], v ≥ 2 − 2u, v > 1−u

2 } 
= ∅. Considering that 3−u−v
4 are non-increasing 

w.r.t. v , then we have

A∗(u) = 3 − u − 1−u
2

4
∧ 1 + u

4
∧ 3 − u − (2 − 2u)

4
= 5 − u

8
∧ 1 + u

4
∧ 1 + u

4
= 1 + u

4
.

(iii) Suppose that u = 1. Then { v ∈ [0, 1], v ≥ 2 − 2u, v > 1−u
2 } 
= ∅ and { v ∈ [0, 1], v < 2 − 2u, v > 1−u

2 } = ∅. Consid-
ering that 3−u−v

4 are non-increasing w.r.t. v , then we have

A∗(u) = 3 − u − 1−u
2

4
∧ 1 + u

4
∧ inf∅= 5 − u

8
∧ 1 + u

4
∧ 1 = 1 + u

4
.

Together we have

A∗(u) = 1 + u

4
, u ∈ U . �

Example 6.3. Let U = {u1, u2, · · · , u5} in which u1 = 0.2, u2 = 0.4, u3 = 0.6, u4 = 0.8, u5 = 1.0, and V = {v1} where v1 =
0.6, and α(u, v) = (1 − u2 + v)/2. Moreover, six rules Ai → Bi and the input A∗ are as follows:

A1 = 0.8

u1
+ 0.3

u2
+ 0.2

u3
+ 0.3

u4
+ 0.6

u5
, B1 = 0.2

v1
,

A2 = 0.9

u1
+ 0.4

u2
+ 0.0

u3
+ 0.5

u4
+ 1.0

u5
, B2 = 0.2

v1
,

A3 = 0.5

u1
+ 0.7

u2
+ 0.8

u3
+ 0.7

u4
+ 0.5

u5
, B3 = 0.5

v1
,

A4 = 0.4

u1
+ 0.6

u2
+ 0.3

u3
+ 0.6

u4
+ 0.4

u5
, B4 = 0.5

v1
,

A5 = 0.2

u1
+ 0.9

u2
+ 0.7

u3
+ 1.0

u4
+ 0.6

u5
, B5 = 0.8

v1
,

A6 = 0.3

u1
+ 1.0

u2
+ 0.6

u3
+ 0.9

u4
+ 0.7

u5
, B6 = 0.8

v1
,

A∗ = 0.6

u1
+ 0.5

u2
+ 0.7

u3
+ 0.8

u4
+ 0.3

u5
.

This is an example for fuzzy classification based on fuzzy expert system, where 3 classes correspond to B(v1) = 0.2, 
B(v1) = 0.5, B(v1) = 0.8. Suppose that →1= IG D , →2= I K D in the α(u, v)-symmetric implicational method for FMP. Then 
we present processing required to develop the α(u,v)-MinP-symmetric implicational solution B∗ to determine which class 
B∗ belongs to.

For v1 = 0.6, we get

φ(u1, v1) = ∨6
i=1(Ai(u1) →1 Bi(v1))

= (0.8 →1 0.2) ∨ (0.9 →1 0.2) ∨ (0.5 →1 0.5) ∨ (0.4 →1 0.5) ∨ (0.2 →1 0.8) ∨ (0.3 →1 0.8)

= 0.2 ∨ 0.2 ∨ 1.0 ∨ 1.0 ∨ 1.0 ∨ 1.0 = 1.0.

Similarly, we can get φ(u2, v1) = 0.8, φ(u3, v1) = 1.0, φ(u4, v1) = 0.8, φ(u5, v1) = 1.0.
From Theorem 4.4, we can get the α(u,v)-MinP-symmetric implicational solution is as follows:

B∗(v1) = sup
u∈U

{T1(A∗(u), T2(φ(u, v), α(u, v)))}
= sup

u∈U
{T G D(A∗(u), T K D(φ(u, v), α(u, v)))}

= [T G D(A∗(u1), T K D(φ(u1, v1), α(u1, v1)))] ∨ [T G D(A∗(u2), T K D(φ(u2, v1), α(u2, v1)))]
∨ · · · ∨ [T G D(A∗(u5), T K D(φ(u5, v1), α(u5, v1)))]
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= [T G D(0.6, T K D(1.0, α(0.2,0.6)))] ∨ [T G D(0.5, T K D(0.8, α(0.4,0.6)))] ∨ [T G D(0.7, T K D(1.0, α(0.6,0.6)))]
∨ [T G D(0.8, T K D(0.8, α(0.8,0.6)))] ∨ [T G D(0.3, T K D(1.0, α(1.0,0.6)))]

= [T G D(0.6, T K D(1.0, 0.78))] ∨ [T G D(0.5, T K D(0.8, 0.72))] ∨ [T G D(0.7, T K D(1.0, 0.62))]
∨ [T G D(0.8, T K D(0.8, 0.48))] ∨ [T G D(0.3, T K D(1.0, 0.3))]

= [T G D(0.6,0.78)] ∨ [T G D(0.5,0.72)] ∨ [T G D(0.7,0.62)] ∨ [T G D(0.8,0.48)] ∨ [T G D(0.3,0.3)]
= 0.6 ∨ 0.5 ∨ 0.62 ∨ 0.48 ∨ 0.3 = 0.62.

Since 0.62 is closest to 0.5, the classification result is the second class. �
Example 6.4. Let α(u, v) = (1 + u − v)/2, and U = {u1} where u1 = 0.6, and V = {v1, v2, v3, v4} where v1 = 0.2, v2 = 0.4, 
v3 = 0.6, v4 = 0.8. The rules and input are as follows:

A1 = 0.3

u1
, B1 = 0.2

v1
+ 0.3

v2
+ 0.1

v3
+ 0.5

v4
,

A2 = 0.3

u1
, B2 = 0.1

v1
+ 0.8

v2
+ 0.0

v3
+ 0.7

v4
,

A3 = 0.6

u1
, B3 = 0.5

v1
+ 0.7

v2
+ 0.4

v3
+ 0.0

v4
,

A4 = 0.6

u1
, B4 = 0.3

v1
+ 0.6

v2
+ 0.3

v3
+ 0.8

v4
,

A5 = 0.9

u1
, B5 = 0.6

v1
+ 1.0

v2
+ 0.7

v3
+ 0.1

v4
,

A6 = 0.9

u1
, B6 = 0.7

v1
+ 0.8

v2
+ 0.6

v3
+ 0.9

v4
,

B∗ = 0.5

v1
+ 0.9

v2
+ 0.8

v3
+ 0.2

v4
.

This is an example for fuzzy classification based on fuzzy expert system, in which three classes correspond to A(u1) = 0.3, 
A(u1) = 0.6, A(u1) = 0.9. Suppose that →1= I LK , →2= I F D in the α(u, v)-symmetric implicational method for FMT. We 
now calculate the α(u,v)-MaxT-symmetric implicational solution.

For u1 = 0.6, we get

φ(u1, v1) = ∨6
i=1(Ai(u1) →1 Bi(v1))

= (0.3 →1 0.2) ∨ (0.3 →1 0.1) ∨ (0.6 →1 0.5) ∨ (0.6 →1 0.3) ∨ (0.9 →1 0.6) ∨ (0.9 →1 0.7)

= 0.9 ∨ 0.8 ∨ 0.9 ∨ 0.7 ∨ 0.7 ∨ 0.8 = 0.9.

Similarly, we can get φ(u1, v2) = 1.0, φ(u1, v3) = 0.8, φ(u1, v4) = 1.0.
It follows from Theorem 5.2 that the α(u,v)-MaxT-symmetric implicational solution is as follows:

A∗(u1) = inf
v∈V

{T2(φ(u, v),α(u, v)) →1 B∗(v)}
= inf

v∈V
{I LK (T F D(φ(u, v),α(u, v)), B∗(v))}

= [I LK (T F D(φ(u1, v1),α(u1, v1)), B∗(v1))] ∧ [I LK (T F D(φ(u1, v2),α(u1, v2)), B∗(v2))]
∧ [I LK (T F D(φ(u1, v3),α(u1, v3)), B∗(v3))] ∧ [I LK (T F D(φ(u1, v4),α(u1, v4)), B∗(v4))]

= [I LK (T F D(0.9,α(0.6,0.2)), 0.5)] ∧ [I LK (T F D(1.0,α(0.6,0.4)), 0.9)]
∧ [I LK (T F D(0.8,α(0.6,0.6)), 0.8)] ∧ [I LK (T F D(1.0,α(0.6,0.8)), 0.2)]

= [I LK (T F D(0.9,0.7), 0.5)] ∧ [I LK (T F D(1.0,0.6), 0.9)]
∧ [I LK (T F D(0.8,0.5), 0.8)] ∧ [I LK (T F D(1.0,0.4), 0.2)]

= [I LK (0.7,0.5)] ∧ [I LK (0.6,0.9)] ∧ [I LK (0.5,0.8)] ∧ [I LK (0.4,0.2)]
= 0.8 ∧ 1.0 ∧ 1.0 ∧ 0.8 = 0.8.

Since 0.8 is nearest to 0.9, the third class is what is required. �
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7. Discussion

Here we include some discussion related to the α(u, v)-symmetric implicational method.
i) If α(u, v) ≡ α (u ∈ U , v ∈ V ), then the α(u, v)-symmetric implicational method degenerates into the α-symmetric 

implicational method.
ii) If α(u, v) = M(u, v) (u ∈ U , v ∈ V ), (12) is transformed into

(A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)) ≥ M(u, v).

Since the maximum of (12) for FMP at every point (u, v) is M(u, v), we have (u ∈ U , v ∈ V )

(A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)) ≤ M(u, v).

Hence we achieve (u ∈ U , v ∈ V )

(A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)) = M(u, v).

Consequently the α(u, v)-symmetric implicational method for FMP degenerates into the symmetric implicational method 
for FMP.

Similarly, if α(u, v) = L(u, v) (u ∈ U , v ∈ V ), then the α(u, v)-symmetric implicational method for FMT degenerates into 
the symmetric implicational method for FMT.

iii) There are three reasons to generalize α to α(u, v).
(a) As mentioned in Section 1, the solutions to the basic symmetric implicational method are coming from (A(u) →1

B(v)) →2 (A∗(u) →1 B∗(v)) ≥ W (u, v). When W (u, v) is a constant, then the basic symmetric implicational method is a 
special case of the α-symmetric implicational method (i.e., W (u, v) = α for any u ∈ U , v ∈ V ). However, when W (u, v) is 
not a constant, then there is no direct relationship between the α-symmetric implicational method and the basic symmetric 
implicational method. As a result, the previous theory of symmetric implicational method is not perfect. Focusing on such 
problem, by generalizing α to α(u, v), the α(u, v)-symmetric implicational method contains the α-symmetric implicational 
method and the basic symmetric implicational method as its particular cases, leading to that these symmetric implicational 
methods form a unified view.

(b) The basic symmetric implicational method already implies the idea of W (u, v). It is noted that W (u, v) is the 
maximum of (6) at (u, v), which is a point-to-point value for any u ∈ U , v ∈ V . Obviously, α(u, v) can also be regarded as a 
generalization of W (u, v). Consequently, it is natural to use α(u, v) to realize the symmetric implicational method of fuzzy 
inference.

(c) Since α(u, v) is a generalization of α and W (u, v), using α(u, v), provides a more exact representation and offers a 
more flexible mechanism for the symmetric implicational inference idea. As a result, the α(u, v)-symmetric implicational 
method exhibits some theoretical generalization in contrast with the α-symmetric implicational method and the basic 
symmetric implicational method.

iv) If →1, →2 employ the same fuzzy implication, then the α(u, v)-symmetric implicational method degenerates into the 
corresponding case of the full implication method. Specially, the α(u, v)-symmetric implicational method degenerates into 
the α-full implication method when →1=→2 and α(u, v) ≡ α (u ∈ U , v ∈ V ). And the α(u, v)-symmetric implicational 
method degenerates into the full implication method when →1=→2 and α(u, v) = M(u, v) or L(u, v) (u ∈ U , v ∈ V ). 
These kinds of full implication methods are all particular cases of the α(u, v)-symmetric implicational method.

For p fuzzy implications in the inference framework, any kind of full implication method can get p kinds of specific 
reasoning forms. However, the α(u, v)-symmetric implicational method can provide p2 kinds, which include the p kinds 
derived from the full implication method. For example, in this work, 11 specific fuzzy implications are included. Then 
the full implication method can get 11 reasoning forms, while the α(u, v)-symmetric implicational method can provide 
11 ∗ 11 = 121 reasoning forms. As a result, the α(u, v)-symmetric implicational method can achieve more forms of fuzzy 
inference.

8. Conclusions

The symmetric implicational method with two-dimensional sustaining degree (i.e., the α(u, v)-symmetric implicational 
method) is proposed and investigated. The main contributions and conclusions are outlined as follows.

(i) The sustaining degree is generalized to the two-dimensional sustaining degree, and some properties of such two kinds 
of sustaining degrees are carefully discussed.

(ii) The α(u, v)-symmetric implicational methods for FMP and FMT are researched, including the following three aspects:
(a) New symmetric implicational principles are brought forward, which improve the previous ones.
(b) Unified forms of the α(u, v)-symmetric implicational method are attained for FMP and FMT, in which →1, →2

employs an R-implication or (S, N)-implication.
(c) The optimal solutions of the α(u, v)-symmetric implicational method are obtained for several specific fuzzy implica-

tions.
(iii) We show four computing examples including two continuous ones and two discrete ones.
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(iv) We provide some discussions for the α(u, v)-symmetric implicational method and related methods. It is noted that 
the proposed method lets all symmetric implicational methods compose a united entirety.

This study could deliver further improvements to the areas of fuzzy inference and fuzzy controllers. In the future, it is 
worth investigating the α(u, v)-symmetric implicational method and other fuzzy inference strategies from the viewpoint of 
granular computing (see [32–34]), and generalizing the existing constructs to granular fuzzy inference schemes.
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