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a b s t r a c t 

Fuzzy clustering algorithms are usually data-driven. Recently, knowledge has been introduced into these 

methods to form knowledge-driven and data-driven fuzzy clustering algorithms. However, these algo- 

rithms still have the problems of sensitivity to clustering center initialization and a lack of robustness, 

in general. There is a genuine need for a sound acquisition of viewpoints. In this study, a new fuzzy 

clustering algorithm driven by data and knowledge named Density Viewpoint-induced Possibilistic Fuzzy 

C-Means (DVPFCM) is put forward. To begin with, we propose a new method to calculate the density 

radius, which determines the density range of each data point. Based on this, we establish a Hypersphere 

Density-based Clustering Center Initialization method (HDCCI), which can obtain the initial clustering 

centers located in the denser region of the dataset. Furthermore, the high density point obtained by the 

HDCCI method is taken as a new viewpoint and integrated into the clustering algorithm. The new view- 

point helps to speed up the convergence of the algorithm. It can also guide the clustering algorithm to 

discover the data structure. Finally, on the basis of the HDCCI method, the idea of high-density viewpoint 

is introduced, and the advantages of FCM (Fuzzy C-Means) and PFCM (Possibilistic Fuzzy C-Means) are 

combined, and then the DVPFCM algorithm is proposed. Through experimental studies including some 

comparative analyses, it is demonstrated that the DVPFCM algorithm is better in several different ways 

in terms of initializing clustering centers and values of some performance indexes. It also exhibits bet- 

ter performance in determining the distance between the computed clustering centers and the reference 

centers. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Cluster analysis aims at discovering the structure in a multivari-

te dataset, which partitions the data into a number of subsets.

he data in the same subset exhibit a maximal similarity, and the

ata in the different subsets possesses is totally dissimilar. Cluster

nalysis has been applied widely to numerous areas, such as ge-

logy, taxonomy, business, engineering systems, medicine and im-

ge processing [1–7] . Clustering assign each object to a single cat-

gory. For instance, the RLM algorithm is an example of clustering

8] . Then, fuzzy clustering has become a new and hot direction in

his field, which uses fuzzy memberships to describe the extent to

hich each sample point belongs to a class. 
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Fuzzy C-Means (FCM) is the generic algorithm of fuzzy cluster-

ng [9] . Its goal is to maximize the compactness within the class

nd the separation between classes. However, the FCM algorithm

s not only sensitive to the initialization of clustering centers, but

lso susceptible to noise points. Krishnapuram and Keller [10] pro-

osed the Possibilistic C-Means algorithm (PCM). PCM uses a pos-

ibilistic partition matrix, which reflects the typicality of a data

oint relative to a clustering center. In addition, it relaxes the con-

traint presented in FCM stating that the sum of membership val-

es is equal to 1. Compared with FCM, PCM has a better ability to

eal with noise points. However, the PCM algorithm is also sen-

itive to initialization. Without appropriate initialization, one may

ave overlapping classes or fewer clusters than the present num-

er of clusters [11,12] . The Possibilistic Clustering Algorithm (PCA)

13] and the Cutset-type Possibilistic C-Means clustering algorithm

C-PCM) [14] were improvements of PCM at this point. Pal et al.

15] proposed the Possibilistic Fuzzy C-Means algorithm (PFCM),

hich took into account both the memberships and the possibil-

ties. PFCM solves the problem of overlapping clustering centers

https://doi.org/10.1016/j.neucom.2018.11.007
http://www.ScienceDirect.com
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and has strong noise immunity. Until now, there were many im-

provements of the FCM algorithm [16–21] . For instance, the Eu-

clidean distance was replaced by a kernel-guided distance function

to enhance the anti-noise performance of the algorithm [17,18] . Ge-

netic algorithm was introduced into the FCM to improve its per-

formance [19] . Askari et al. [20] proposed a Generalized Entropy

based Possibilistic C-Means algorithm (GEPFCM) combining the En-

tropy C-Means (ECM) algorithm with the PFCM algorithm, which

obtained more accurate clustering centers. 

Furthermore, domain knowledge can be introduced to support

clustering mechanisms and enhance the realization of the over-

all processing. These knowledge guidelines are proposed by users

or experts and can assist the process of clustering. Our research

group proposed a knowledge-driven fuzzy clustering algorithm

with viewpoints (called V-FCM shortly) [22] . This algorithm imple-

ments a personalized because the “viewpoints” represent the con-

tent that users are interested in, such as the average, maximum,

minimum, etc. Viewpoints are regarded as an integral part of the

structure in data so that the clustering results are what the user

wants to know. If a viewpoint is the average, we can get the cen-

tralized distribution in data. And if the viewpoint is the extreme

value, we can obtain the distribution of the data boundary area.

Fazendeiro and Valente De Oliveira proposed an observer-based

fuzzy clustering algorithm in [23] , which simulated the scene in

which people observe things in reality. The closer the observer ob-

serves a pile of things, the more details the observer can get. Con-

versely, the farther away the observer is, the less details are ob-

served. But we can know the overall structure at a proper distance.

Therefore, the authors express the position of the observer by fo-

cal point. The parameter ζ standing in the objective function is

used to control the distance from the observer to the target ob-

ject. Then the number of clusters decreases from 

√ 

N while the ζ
increases from zero until the clustering validity index XB gets the

optimal value. In this way, the reasonable structure of the observed

target is gotten. Experiments showed that without the parameter

of cluster numbers given in advance, the observer-based clustering

algorithm can automatically find the number of clusters in data.

It becomes possible given to the introduction of the “observer”

knowledge. 

The idea of adopting viewpoints in the V-FCM algorithm is

sound and the results are promising. However, there are still sev-

eral problems with the V-FCM algorithm. 

As a result, this study is focused on the following two issues: 

• The problem of viewpoints selection. Selected viewpoints

in the V-FCM algorithm are directly specified by the user.

Therefore, whether or not an algorithm can select a more

reasonable viewpoint is an issue that we need to focus on.

In particular, the V-FCM algorithm uses average or boundary

values that are of interest to the user to represent the view-

points. The purpose of clustering is to make the distances

between classes as far as possible and the intra-class dis-

tances as close as possible. For this reason, we use the con-

cept of the density in the RLM algorithm. That means the

viewpoint used is the point with the highest density. The

densest point is at the center of the data distribution dense

area, which is consistent with the characteristics of the clus-

tering centers in the data structure. So it is reasonable to use

it as a part of the prototype matrix. 
• The noise immunity problem of the algorithm. The V-FCM

algorithm introduces the viewpoints into the FCM algorithm,

but the FCM algorithm is sensitive to noise points. How to

improve this is a problem that we need to consider about.

In order to better play the supporting role of the viewpoint,

we have extended it to the PFCM algorithm to improve the
robustness of the algorithm. i  
In this study, we propose a Density Viewpoint-induced Pos-

ibilistic Fuzzy C-Means (DVPFCM) algorithm. Firstly, in terms of

iewpoint selection, the previous density function in the RLM algo-

ithm is improved. The point with the highest density is used, and

 new density-based clustering center initialization method is pro-

osed, which is called the Hypersphere Density-based Clustering

enter Initialization (HDCCI) method. The HDCCI method can re-

uce the iteration times of the algorithm and improve the accuracy

f the algorithm. Furthermore, this method obtains the data point

ith the highest density and is not a noise point as the “view-

oint” to guide the algorithm to find the clustering centers more

ccurately. Secondly, we combine the advantages of FCM and PCM,

hile avoid the issue of noise sensitivity of the FCM algorithm and

f which PCM tends to produce consistent clustering centers. In

ddition, a new viewpoint is integrated into the algorithm to get

he DVPFCM algorithm. The new algorithm results in a more rea-

onable clustering result. Position the research in a general setting,

ne can refer to the roadmap displayed in Fig. 1 . 

The paper is organized as follows. Section 2 describes related

orks and problems with some algorithms. Section 3 shows the

roposed DVPFCM algorithm. Section 4 presents experimental re-

ults of DVPFCM and other algorithms on artificial data sets and

ome data sets of machine learning. Section 5 gives a conclusion

nd suggestions for further research. 

. Related studies 

In this section, we briefly review the “classical” FCM [9] and

FCM [15] algorithms, as well as four other improved algorithms

uch as PCA [13] , GEPFCM [20] , V-FCM [22] and C-PCM [14] . The

ast one is RLM [8] related to our proposed cluster center initial-

zation method (HDCCI). 

Assuming that the application object is a set of N samples rep-

esented by X = { x k } N k =1 
. We aim to classify it into C classes to get a

et of clustering centers V = { v i } C i =1 
. Each sample x k and clustering

enter v i are positioned in the R l space where l is the data dimen-

ion. We set the iteration threshold ε and the maximum number

f iterations iterMax in advance, and the initial value of the itera-

ion number is iter = 0 . 

.1. Classical and advanced clustering algorithms 

The FCM algorithm is a classical algorithm of the clustering

ethods based on the objective function. It employs fuzzy mem-

erships to characterize the extent to which each sample point

elongs to a class, and then obtains the final clustering results

hrough the membership matrix. The minimized objective function

f the FCM algorithm is expressed as: 

 F CM 

= 

N ∑ 

k =1 

C ∑ 

i =1 

u 

m 

ik d 
2 
ik (1)

here u ik is the membership grade of x k in cluster i , which ranges

rom 0 to 1 and has the constrain 

∑ C 
i =1 u ik = 1 ( k = 1 , 2 , . . . , N).

 

2 
ik 

= ‖ x k − v i ‖ 2 denotes the Euclidean distance between the i th

lustering center and the k th sample. v i ∈ R l is the centroid of the

 th cluster ( i = 1 , . . . , C). And m ∈ ( 1 , + ∞ ) is a parameter that con-

rols the fuzziness of membership for each sample k . 

PFCM is a combination of PCM1 [10] and FCM. Krishnapu-

am and Keller proposed PCM1 to overcome the sensitivity to

oise or outliers presented in the FCM algorithm. PCM1 relaxed

he constraint about the fuzzy membership matrix and the mem-

ership grade is replaced with typicality of x k relative to cluster

 . The PFCM algorithm contains both membership and typicality
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Fig. 1. Overall roadmap of research on clustering methods. 
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omponents. Its objective function reads as follows: 

 PF CM 

= 

N ∑ 

k =1 

C ∑ 

i =1 

(
au 

m 

ik + bt p 
ik 

)
d 2 ik + 

C ∑ 

i =1 

r i 

N ∑ 

k =1 

( 1 − t ik ) 
p (2) 

ubject to the constrains 
∑ C 

i =1 u ik = 1 ( k = 1 , 2 , . . . , N) and t ik ≤ 1 .

ere t ik is a typicality component. m ∈ ( 1 , + ∞ ) and p ∈ ( 1 , + ∞ )

ncreases fuzziness and overlap among the clusters. a > 0 and b >

 are relative importance of membership grades u ik and typicalities

 ik . r i is a penalty factor, which assumes the following form: 

 i = K 

∑ N 
k =1 u 

m 

ik 
d 2 

ik ∑ N 
k =1 u 

m 

ik 

. (3) 

 i is computed using FCM algorithm and the general value of K

s 1. 

The PFCM algorithm is more robust than the FCM, but it still

as the problem of being sensitive to the initialization of clustering

enters. The calculation of r i depends on the FCM algorithm, so its

perations are not simple enough. 

The PCA algorithm is an improvement over the PCM2 algorithm

24] . As PCA combines the validity indices PE and PC to extend the

bjective function of the FCM algorithm. It can directly calculate

he typicality value without running the FCM algorithm to get the

alue of r i . The PCA objective function is: 

 PCA = 

C ∑ 

i =1 

N ∑ 

k =1 

u 

m 

ik d 
2 
ik + 

β

m 

2 C 

C ∑ 

i =1 

N ∑ 

k =1 

(
u 

m 

ik log u 

m 

ik − u 

m 

i j 

)
(4) 

here m corresponds with the fuzzifier m in FCM. β is the sample

o-variance that measures the degree of separation of the data set.

n other words, we have 

= 

∑ N 
k =1 ‖ 

x k − x̄ ‖ 

2 

with x̄ = 

∑ N 
k =1 x k . (5) 
N N 
PCA solves the problem of dependency of PCM2 on FCM, but

t is still sensitive to the initialization of cluster centroids. So PCA

ometimes generates coincident clusters. 

The GEPFCM algorithm is an improved algorithm based on the

CM (Entropy C-Means) algorithm [25,26] and the PFCM algorithm.

t enhances the accuracy of determining clustering centers of noisy

ata by generalizing ECM combined with PFCM. And the new dis-

ance function is used to replace the commonly used Euclidean

istance to weaken the effect of noise points on the positioning

f clustering centers. Its extended objective function is: 

 GEPF CM 

= 

N ∑ 

k =1 

C ∑ 

i =1 

(
au 

m 

ik f i,F CM 

(‖ 

x k − v i ‖ 

2 
)

+ bt p 
ik 

f i,PCM 

(‖ 

x k − v i ‖ 

2 
)

+ c s ik f i,E 
(‖ 

x k − v i ‖ 

2 
))

+ 

N ∑ 

k =1 

C ∑ 

i =1 

s i j ln ( s i j ) 

+ 

C ∑ 

i =1 

r i 

N ∑ 

k =1 

( 1 − t ik ) 
p (6) 

here a , b, c are coefficients to balance memberships grades

 ik , typicalities t ik and entropies s ik . They actually take a =
 = c = 1 . Here we also require that 

∑ C 
i =1 u ik = 1 ( k = 1 , . . . , N).

f i,F CM 

( ‖ x k − v i ‖ 2 ) , f i,PCM 

( ‖ x k − v i ‖ 2 ) and f i,E ( ‖ x k − v i ‖ 2 ) are dis-

ance functions defined in [5] , which are calculated as follows: 

f i,E 
(‖ 

x k − v i ‖ 

2 
)

= c ‖ 

x k − v i ‖ 

2 
, (7) 

f i,F CM 

(‖ 

x k − v i ‖ 

2 
)
= f i,PCM 

(‖ 

x k − v i ‖ 

2 
)
= 1 − exp 

(
−ρ‖ 

x k − v i ‖ 

2 

R 

2 
i 

)
, 

(8) 
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2 
i = 

∑ N 
k =1 t 

p 

ik 
‖ 

x k − v i ‖ 

2 ∑ N 
k =1 t 

p 

ik 

. (9)

Here, ρ = 

∑ N 
k =1 

∑ C 
i =1 s ik ‖ x k − v i ‖ 2 . 

Note that the penalty factor r i in the objective function ( 6 ) de-

pends on PFCM. Its formula is expressed as ( 3 ). The initialization

of u ik , t ik and v i are the results of PFCM. So the GEPFCM algorithm

not only is sensitive to the initialization of the cluster centroids but

also relies on the FCM and PFCM algorithms. Its running process is

complicated. 

The V-FCM algorithm introduced the concept of “viewpoints”

based on the FCM algorithm. A viewpoint is a domain knowledge

provided by a user and it involves navigation for a personalized

search of the structure. Viewpoints can be typical situations in

data, such as average, maximum, minimum, etc. So the V-FCM al-

gorithm makes the clustering process easier with the help of the

viewpoints, and the clustering results are more reasonable. 
The viewpoints are defined by the two matrixes, denoted as B

and F : 

b i j = 

{
1 , if the j th feature of the i th row of B is from the viewpoint 

0 , otherwise . 
, 

f i j = 

{
y , b i j = 1 

0 , otherwise . 
(10)

where y is the specific value of the viewpoint. 

The V-FCM algorithm explores data structure by minimizing the

following objective function: 

J V −F CM 

= 

N ∑ 

k =1 

C ∑ 

i =1 

l ∑ 

j=1 

u 

m 

ik 

∥∥x k j − g i j 

∥∥2 
with g i j = 

{
v i j , b i j = 0 

f i j , b i j = 1 

. (11)

Compared with the FCM algorithm, V-FCM can generate more

reasonable clustering results, but there exist problems for noise

points and clustering center initialization. Moreover, the types of

viewpoints also affect the clustering. 

The C-PCM algorithm locates the data points by obtaining the

class core of each cluster center from β-cutset, which solves the

problem of cluster-center consistency of the PCM1 algorithm. Its

objective function is: 

J C PC M 

= 

C ∑ 

i =1 

N ∑ 

k =1 

t m 

ik d 
2 
ik + η

C ∑ 

i =1 

N ∑ 

k =1 

( 1 − t ik ) 
m 

, (12)

 ik = 

1 

1 + 

(
d 2 

ik 
/η

)1 / ( m −1 ) 
, (13)

The ( 12 ) is similar to the one of the PCM1 however η assumes

a certain predetermined fixed value. It differs from the PCM1 al-

gorithm in that it has further operations on t i j during the iterative

update process. After calculating with ( 13 ), the typicalities t i j are

updated by the following way: 

If t qk = max 1 ≤i ≤C t ik > βi , then {
t ik = 0 , i = 1 , . . . , C & i � = q 
t ik = t ik , i = q 

. (14)

If t qk = max 1 ≤i ≤C t ik < βi , then 

 ik = t ik , i = 1 , . . . , C, (15)

where βi = K ·
( 

1 + 

( ∑ N 
k =1 

t m 
ik 

d ik 

η1 / 2 
∑ N 

k =1 
t m 
ik 

)−2 / (m −1) 
) 

, and K usually takes

0.85. 

The RLM algorithm is a fast clustering method based on density

of data. It does not iteratively update clustering centers, but di-

rectly obtains those according to the density. Then it calculates the

s  
istances from each point to each clustering center. The data point

elongs to a cluster if it is closer to this cluster. This algorithm is

ased on the assumption that the clustering center is surrounded

y less dense neighborhoods and there is a larger distance from

ny points with a higher local density. Therefore, two values need

o be calculated for any data points, i.e., its local density ρk and its

inimum distance δk to other points with higher local densities. 

The local density of a data point is calculated in the form: 

k = 

∑ 

f ( d k j − r) , (16)

f (x ) = 

{
1 , x = d k j − r < 0 

0 , otherwise 
. (17)

here d k j is the distance between data point x k and x j . r is the

ensity radius. The local density ρk represents the number of data

bjects in the radius r range of data point x k . 

If the clustering centers are determined by the local density val-

es, then it is possible to consider noise points as clustering cen-

ers. Because with the density radius, noise points also have higher

ocal density values. There is a requirement to calculate another

arameter δk ( k ∈ { 1 , . . . , N} ). Its formula is expressed as follows: 

k = min { d k j | ρ j > ρk , j ∈ { 1 , 2 , . . . , N}} . (18)

For the point with the largest local density, its δk = max { d k j | k � =
j, j ∈ { 1 , . . . , N}} ( k ∈ { 1 , . . . , N} ). The parameter δk describes the

inimum distance between point k and other points with higher

ensities. It can be seen that the true clustering centers have larger

alues of ρk and δk . But noise points have small δ because they

re isolated and it is often impossible to get close to other higher-

ensity points. 

In the RLM algorithm, the value of density radius r is given to

alculate the density ρk and the minimum distance δk to points

ith higher density values. Then according to the ρ − δ distribu-

ion map, the data points with high density and farther to other

oints with higher density are selected to be clustering centers.

here are some problems in its optimization process: 

• Density radius r is just a pre-estimated value, and it affects

the values of the density and distance, which will eventually

affect the clustering results. 
• This method cannot automatically define the clustering cen-

ters. It is necessary to observe the ρ − δ map to determine

clustering centers. This result is somewhat subjective and

there are often human errors. 

.2. Problems with related algorithms 

According to the above introduction to the six algorithms, we

an know that FCM, PFCM, PCA, GEPFCM and V-FCM all have the

roblem of sensitivity to clustering centers initialization. Unsuit-

ble initial centroid values may cause the result to converge to a

ocal optimal value or lead to a slowly clustering process, which

as a great negative impact on the clustering results. In addition,

he FCM algorithm is sensitive to noise points. The PFCM algorithm

lleviates this problem by introducing typicality, but it also brings

he problem that the value of the parameter r i depends on the re-

ults of the FCM algorithm. The PCA algorithm eliminates this de-

endency, but sometimes there is a trouble of consistency of clus-

ering centers [27] . This is a serious problem in fuzzy clustering

lgorithms [28] . The GEPFCM algorithm has a dependency on the

CM algorithm and the PFCM algorithm. Because the parameter in

his algorithm based on the results in the FCM algorithm and the

FCM algorithm to calculate its value. This constraint makes the al-

orithm running time longer. The V-FCM algorithm simplifies the

lustering process by introducing viewpoints. However, there are

till problems such as insensitivity to noise points and initialization
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Table 1 

Comparison of the advantages and disadvantages of each algorithm. 

Algorithms Year Advantages Disadvantages 

FCM 1981 Classic algorithm, automatically discovering clustering centers Sensitive to clustering centers initialization, poor noise points 

immunity 

PFCM 2005 High noise immunity, automatically discovering clustering 

centers. 

Sensitive to clustering centers initialization; the parameter r i 
depends on the results of FCM. 

PCA 2006 High noise immunity, automatically discovering clustering 

centers, solving the PFCM parameter dependency problem. 

Sensitive to clustering centers initialization, clustering centers 

uniformity problem. 

V-FCM 2010 Simplifying the clustering process, faster convergence. Sensitive to clustering centers initialization, poor noise point 

immunity. 

RLM 2014 Quickly identifying clustering centers. Density radius r is difficult to determine; it is not easy to obtain 

clustering centers; there exist human errors. 

GEPFCM 2017 High noise immunity, finding clustering centers more 

accurately. 

The parameter r i depends on the results of PFCM; the algorithm is 

more complex to run. 

C-PCM 2018 Overcoming the consistency of clustering centers Sensitive to clustering centers initialization 
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Algorithm 1 Hypersphere density-based clustering centers initialization (HDCCI). 

Input: a set of N data points X = { x k } N k =1 
, the desired number of clusters C . 

Output: a clustering center matrix V = { v i } C i =1 
and the viewpoint x d . 

procedure HDCCI (Data X , Number C ) 

V = [ ] ; 

Calculate hypersphere radius r using ( 19 ) 

Calculate ρk using ( 9 ); 

Calculate δk using ( 16 ); 

Calculate τk using ( 20 ); 

Sort τ= { τk } N k =1 
in descending order to get a set τ ′ , and get the data set 

X ′ corresponding to the set τ ′ ; 
Select the point x ′ 1 corresponding to τ1 as the first clustering center v 1 so 

that V = V ∪ v 1 , and x d = v 1 ; 
The number of selected clustering centers tmp = 1 , the next considerable 

data index k = 2 ; 

repeat 

while ‖ x ′ k − V ‖ < r

k = k + 1 ; 

V = V ∪ x k ; 
t mp = t mp + 1 ; 

until tmp = C

return V , x d ; 

end procedure 

b
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f clustering centers. And the types of viewpoints are related to

he accuracy of clustering results. The RLM algorithm is the fastest

mong these six algorithms, but its density radius is difficult to

stimate. The clustering centers need to be obtained by observing

he density-distance map, and there is a human error. Each of the

ix algorithms has advantages and disadvantages. The comparison

s summarized in Table 1 . 

In general, the initialization of clustering centers and the sensi-

ivity of noise points are the main problems of many fuzzy cluster-

ng algorithms. Therefore, we focus on solving these two types of

roblems in this study. 

. The DVPFCM algorithm 

In this section, we show the idea of our proposed algorithm

i.e., the DVPFCM algorithm) step by step. 

.1. The hypersphere density-based clustering center initialization 

HDCCI) algorithm 

As mentioned above, many fuzzy clustering algorithms are sen-

itive to the initialization of clustering centers, such as FCM, PFCM

nd so on. For these algorithms, unsuitable initial values may cause

he results to converge to an undesirable minimum or make the

lustering process converge slowly. In the process of clustering op-

imization, there is an attraction domain around each local min-

mum point of the objective function. If the selected center is

ocated in the attraction domain close to the attractor, the opti-

ization process will quickly converge to the pole. Otherwise, the

onvergence speed will be slow. If the initial center falls outside

he attraction domain, the optimization process may converge to

ther local minimum points. Based on this, it is generally believed

hat a more suitable clustering center is where the samples are

enser. 

Therefore, we adopt the improved density function to obtain

he higher density points in the samples as the initial clustering

enters, which aims to solve the problem that the fuzzy clustering

lgorithm is sensitive to the initialization of clustering centers. 

We can know that the first initial clustering center is in the

enter of the high density area of the sample. It is the point with

ighest density in the data set that we are looking for. We regard

t as a “viewpoint”. 

Here we propose the Hypersphere Density-based Clustering

enter Initialization (HDCCI) method, and show its details. 

At first, we calculate the local density ρk of data point x k and its

inimum distance δk to other points with higher local densities.

hese two parameters are calculated as ( 9 ) and ( 11 ), respectively.

here the density radius r is not predetermined, it is calculated
y the following new formula we propose: 

 = max 
(
d k j 

)
/ (2 C) (19) 

here d k j is the distance from x k to x j and C is the cluster num-

er. We can think of the distribution of entire dataset as a hyper-

phere (noting that a hypersphere contains all data points). The

ypersphere diameter is the maximum distance between points

i.e., max ( d k j ) ). Each cluster is a small sphere that contains all the

oints belonging to this cluster, and is approximately regarded as

eing composed of C small spheres. So the distance between points

n each cluster does not exceed r . 

Next, the parameter τk ( k = 1 , . . . , N) is used to help us easily

nd the true clustering centers, which is expressed as: 

k = ρk × δk . (20) 

k represents the product of density and distance. Because the

lustering center has a larger density and distance, and the noise

oint has a larger density but a small distance. The larger value of

k , the more likely it is that the x k is a clustering center. In our ap-

roach, we use the parameter τ and the density radius r to select

lustering centers. 

Finally, we calculate the parameter τk ( k = 1 , . . . , N) and sort it.

hen we consider that the distance between the selected clustering

enter(s) and the clustering center to be selected is greater than r

o avoid the selected clustering centers in the same area. So that

e can easily obtain high density and distributed clustering cen-

ers. 
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Algorithm 2 Density viewpoint-induced possibilistic fuzzy C-means (DVPFCM) . 

Input: A set of N data points X = { x k } N k =1 
, the desired number of clusters C . 

Output: A membership matrix U = { u ik } C,N 
i,k =1 

, a clustering center matrix 

G = { g i } C i =1 
and typicality matrix T = { t ik } C,N 

i,k =1 
. 

procedure DVPFCM(Data X , Number C ) 

Run Algorithm 1 to get ( H (0) , x d ) = HDCCI( X , C ); 

repeat 

it er = it er + 1 ; 

Update U (iter) = [ u ik ] by calculating memberships u ik using ( 35 ); 

Update T (iter) = [ t ik ] by calculating typicalities t ik using ( 37 ); 

Update H (iter) = [ h i ] by calculating centers h i using ( 36 ); 

until ‖ H (iter) − H (iter−1) ‖ < ε or iter > iterMax ; 

return U (iter) , H (iter) , T (iter) ; 

end procedure 

w

σ  

ϕ  

 

P  

m  

n  

m  

w  

e

 

t  

t

∑
 

 

t  

a

J  

 

e

 

 

t

 

 

 

u

k 

 

Algorithm 1 shows the whole process of the HDCCI method. 

As for the RLM algorithm, its density radius r is predetermined

and it is difficult to determine what value to set. In addition, the

selection of clustering centers in the RLM algorithm requires draw-

ing density – distance map at first. And then the corresponding

points in the data set are observed as the selected clustering cen-

ters. This process is troublesome and subjective. It is easy to cause

human error. However, in the proposed HDCCI method, we build a

new formula ( 19 ) to calculate the density radius r , which considers

the distribution characteristics of the data set. In this way, differ-

ent data sets can get a suitable density radius automatically. We

do not need human operations, which can avoid the human error. 

3.2. The mechanism of the DVPFCM algorithm 

Based on the HDCCI method, we can get the densest data point,

and use it as the viewpoint. In detail, we select the first clustering

center v 1 through HDCCI method, which has a high density and is

far from other high density points. The selected one is not likely to

be a noise point because the noise point also has high density, but

it is isolated so that it is close to the other high density points. The

first clustering center v 1 meets the features of the true clustering

center. So we can regard it as an integral part of the data structure,

which help us discover other parts (other clustering centers) as a

viewpoint. 

Assume that the first data points selected by HDCCI method is

x d (i.e., v 1 ). The viewpoint in our algorithm can be denoted as x d .

In [22] , the position of the viewpoint in the clustering center ma-

trix is definite, but it is varied in our approach. The row position of

the viewpoint in the clustering center matrix is q = arg ( min ( d qd ))

with d qd = ‖ v q − x d ‖ . We replace the clustering center closest to

the viewpoint as the viewpoint, because the closer the distance is,

the more similar the two points are, which is in line with the ac-

tual experience. 

Our goal is to introduce the domain knowledge of the high-

density viewpoint to optimize both the FCM and PFCM. As a result,

the objective function in the proposed algorithm DVPFCM consists

of the three parts: (1) the minimization of the distances between

the data and the prototypes; (2) the distribution of data and the

viewpoint; (3) the control of t i j to avoid the trivial solution. The

objective function of DVPFCM can be expressed as follows: 

J DV PF CM 

= 

N ∑ 

k =1 

C ∑ 

i =1 ,i � = q 

(
au 

m 

ik + bt p 
ik 

)‖ 

x k − v i ‖ 

2 

+ 

N ∑ 

k =1 

(au 

m 

qk + bt p 
qk 

) ‖ 

x k − x d ‖ 

2 

+ 

σ 2 

m 

2 C 

C ∑ 

i =1 

N ∑ 

k =1 

( ϕ k − t ik ) 

p 

(21)

It is noted that the second term of the objective function is

about the degree of disassociation of data points and the view-

point. So we can introduce matrix H = [ h i ] 
C 
i =1 

to rewrite ( 21 ) to

make it more concise: 

h i = 

{
v i , i � = q 
x d , i = q 

. (22)

So ( 21 ) can be expressed as: 

J DV PF CM 

= 

N ∑ 

k =1 

C ∑ 

i =1 

(
au 

m 

ik + bt p 
ik 

)‖ 

x k − h i ‖ 

2 

+ 

σ 2 

m 

2 C 

C ∑ 

i =1 

N ∑ 

k =1 

( ϕ k − t ik ) 

p 

. (23)
here 

2 = 

∑ N 
k =1 ‖ 

x k − x ‖ 

2 

N 

with x̄ = 

∑ N 
k =1 x k 
N 

, (24)

 k = 

∑ N 
j=1 

∥∥x j − x k 
∥∥2 

N 

(k = 1 , . . . , N) . (25)

The parameters m and p have the same meaning as in the

FCM algorithm. The parameter σ 2 is a covariance matrix used to

easure the compactness of the data set. The degree of compact-

ess and separation of a data set can be used to make clustering

ore effective [29, 30] . The ϕ k represents the weight of each point,

hich is its contribution to clustering and measures the impact of

ach point on the clustering results. 

The element u ik ∈ [ 0 , 1 ] in the membership matrix U also needs

o satisfy the membership normalization condition that the sum of

he memberships of one point attributed to each class is 1: 

C 
 

i =1 

u ik = 1 ( k = 1 , . . . , N ) . (26)

Taking this constraint into account, we consider the optimiza-

ion that invokes the Lagrange multipliers so that we subsequently

rrived at the unconstrained minimization of J ′ : 

 

′ = J DV PF CM 

+ λ

( 

1 −
C ∑ 

i =1 

u ik 

) 

. (27)

The necessary conditions that lead to the minimum of ( 27 ) are

xpressed as follows: 

∂ J ′ 
∂ u ik 

= 0 , 
∂ J ′ 
∂ h i 

= 0 , 
∂ J ′ 
∂ t ik 

= 0 , i = 1 , . . . , C, k = 1 , . . . , N. (28)

By setting the gradient of J ′ to zero with respect to u ik , h i and

 ik , we obtain 

∂ J ′ 
∂ u ik 

= amu 

m −1 
ik 

‖ 

x k − h i ‖ 

2 − λ = 0 , (29)

∂ J ′ 
∂ h i 

= 2 

N ∑ 

k =1 

(
au 

m 

ik + bt p 
ik 

)
( x k − h i ) = 0 , (30)

∂ J ′ 
∂ t ik 

= pb ‖ 

x k − h i ‖ 

2 
t p−1 

ik 
− p σ 2 

m 

2 C 
( ϕ k − t ik ) 

p−1 = 0 . (31)

From ( 29 ), we obtain 

 ik = 

(
λ

am 

) 1 
m −1 

( 

1 

‖ 

x − h i ‖ 

2 
m −1 

) 

. (32)
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(3) Calinski–Harabasz index. 
Substituting ( 32 ) into ( 26 ), we have 

C 
 

i =1 

u ik = 

C ∑ 

i =1 

(
λ

am 

) 1 
m −1 

( 

1 

‖ 

x k − h i ‖ 

2 
m −1 

) 

= 1 . (33) 

It follows that 

λ

am 

) 1 
m −1 

= 

1 ∑ C 
i =1 

1 

‖ x k −h i ‖ 
2 

m −1 

. (34) 

Substituting ( 34 ) into ( 32 ), we obtain 

 ik = 

‖ 

x k − h i ‖ 

− 2 
m −1 

∑ C 
j=1 

∥∥x k − h j 

∥∥− 2 
m −1 

. (35) 

From ( 30 ) and ( 22 ), we have 

 i = 

{ 

x d , i = q ∑ N 
k =1 ( au m 

ik 
+ bt p 

ik ) x k ∑ N 
k =1 ( au m 

ik 
+ bt p 

ik ) 
, i � = q 

. (36) 

This combines the idea of the viewpoint where q =
rg ( min ( d qd )) . 

From ( 31 ), we obtain 

 ik = 

ϕ k 

1 + 

(
bC m 

2 ‖ x k −h i ‖ 2 
σ 2 

) 1 
p−1 

. (37) 

At this point, the derivation processes of the objective function,

lustering centers, membership matrix and typicality matrix have

een explained. 

To sum up, we get the whole mechanism of the DVPFCM al-

orithm, which is a novel fuzzy clustering algorithm driven by

oth data and knowledge. Its execution framework is shown in

lgorithm 2 . 

. Experimental studies 

In this section, we demonstrate the performance of the pro-

osed algorithm (DVPFCM) through a series of experiments, and

ompare the clustering results with seven algorithms, which were

ntroduced in Section 2 (including FCM, PFCM, PCA, RLM, GEPFCM,

-FCM and C-PCM). The method in [23] focuses on the determina-

ion of the optimal number of clusters, which is different from the

urpose of the algorithms in our study, so it is not compared with

ur proposed DVPFCM. 

The experiment objects are two synthetic datasets, eight UCI

achine learning datasets and the Olivetti face database. The

ynthetic datasets DATA1 and DATA2 are made up of the func-

ion make_blob() in python scikit-learn library to generate points

ith a Gaussian distribution. These two datasets have overlapped

lasses and are not easily partitioned. The dataset size of DATA2

s larger than that of DATA1, and the number of clusters is larger

DATA1 contains 3 clusters while DATA2 has 7 clusters). The distri-

ution of DATA2 is more complicated. Tested UCI dataset [31] in-

lude Iris, Optical Recognition of Handwritten Digits (0,6,8,9), Let-

er Recognition (A,B), Breast Cancer Wisconsin, SPECT heart data,

oo, Balance scale and Image segmentation data. These datasets

re popular and famous datasets in machine learning field. The

livetti face database consists of 400 faces of 40 individuals (10

ace images per person). We select 200 from 20 people with 1024

ttributes, which are shown as Fig. 6 . 

Table 2 summarizes the basic information of these 10 datasets,

ncluding total number of samples, feature number and number of

lusters. For all experiments, the parameters in algorithms employ

efault values. The specific settings are as follows: m = 2 , p = 2 ,
 = b = 1 , ε = 10 −5 , iterMax = 150 and c = 1 in GEPFCM. For conve-

ience, the r in RLM is calculated by ( 19 ). 

.1. Performance indexes 

For comparative analyses, we use two major categories of per-

ormance indexes, i.e., hard clustering indexes and fuzzy cluster-

ng indexes. In the following, we use the superscript “( + )” to

ndicate that the clustering validity indexes are extremely large in-

exes, that is, the larger the index values, the better the clustering

erformance. In contrast, the superscript “( −)” means the index is

n extremely small one. 

Fuzzy clustering algorithms divides each sample into its class

orresponding to the maximum membership according to the

embership matrix, so the hard clustering indexes can also be

pplied to the fuzzy clustering algorithms. However, Campello

ointed out in [32] that the casting of fuzzy clustering to hard

lustering often fails to faithfully reflect the performance of fuzzy

lustering algorithms. Because it ignores the memberships in fuzzy

lustering algorithms so that hard clustering indexes are unable

o discriminate between overlapped and not overlapped clusters.

s such, the hard clustering indexes might not be appropriate for

ssessment of fuzzy clustering algorithms. To get around these

rawbacks, we mainly use fuzzy clustering indexes to evaluate

he performances of the fuzzy clustering algorithms. Furthermore,

he three hard clustering indexes and two fuzzy clustering indexes

re briefly introduced as follows. 

Hard clustering indexes employed here are as follows: 

(1) Classification rate 

The classification rate (CR) is a common measure used to deter-

mine how well clustering algorithms perform on the given

dataset with a known cluster structure [33] . It is the per-

centage of patterns that are correctly classified. The closer

to 1, the better the performance of the clustering algorithm.

Its calculation formula is as follows: 

C R 

( + ) = 

∑ C 
i =1 d i 
N 

. (38) 

Here d i is the number of objects correctly identified in the i th

cluster, and N is the number of all objects in the dataset. 

(2) Normalized mutual information 

The normalized mutual information (NMI) [34] is a symmet-

ric measure to quantify the statistical information shared

between two cluster distributions. The larger its value, the

more similar the two class distributions are and the better

the clustering performance. Its formula is: 

NM I ( + ) (R, Q ) = 

∑ I 
i =1 

∑ J 
j=1 

p ( i, j ) log p ( i, j ) 
p ( i ) p ( j ) √ 

H ( R ) H ( Q ) 
. (39)

Here R , Q are two partitions of the dataset. Assuming R and

Q have I and J clusters, respectively. P (i ) is the probability

that a randomly selected sample from the dataset falls into

cluster R i in partition R . Its formal is P (i ) = 

| R i | 
N where | R i |

is the number of samples in cluster R i . p( i, j ) denotes the

probability that an object belongs to cluster R i in R and clus-

ter Q j in Q , which is calculated by p(i, j) = 

| R i ∩ Q j | 
N . H(R ) is

the entropy associated with all probabilities p(i ) in partition

R . Its calculation is H(R ) = − ∑ I 
i =1 P (i ) log P (i ) . The definition

of H(Q ) is similar to this. 
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Table 2 

Summary of the datasets used in the experiments. 

ID Name Instances Attributes Classes 

D1 DATA1 150 2 3 

D2 DATA2 10 0 0 2 7 

D3 Iris 150 4 3 

D4 Optical Recognition of Handwritten Digits (0,6,8,9) 713 64 4 

D5 Breast Cancer Wisconsin 569 30 2 

D6 SPECT heart data 267 22 2 

D7 Zoo 101 17 7 

D8 Balance scale 625 4 3 

D9 Letter Recognition (A,B) 1555 16 2 

D10 Image segmentation data 2100 19 7 
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The Calinski–Harabasz (CH) index [35] based on the intra-class

distance of the samples and the dispersion matrix between classes

is: 

 H 

( + ) = 

T r ( S B ) 

C − 1 

/ 

T r ( S w 

) 

N − C 
, with T r ( S B ) 

= 

C ∑ 

i =1 

n i × d ( v i , ̄v ) , T r ( S w 

) = 

C ∑ 

i =1 

N ∑ 

k =1 

d ( x k , v i ) . (40)

Here n i is the number of samples belonging to i th cluster in

the dataset. Grand mean v̄ = 

∑ C 
i =1 v i /C. The larger the CH index,

the smaller the intra-class distance and the greater the distance

between classes, the better the clustering performance. 

Two fuzzy clustering indexes used here are as follows. 

(4) The extension index of ARI 

The extension index of ARI (EARI) is a fuzzy extension of the

adjusted Rand index (ARI) [32,36,37] . This extended index

is obtained by first rewriting the formulation of the ARI in

a fully equivalent form using basic concepts from set the-

ory. The EARI index can be used to measure the degree of

similarity between two clustering results, so the higher the

value, the more similar the data structure of the two clus-

ters, the better the clustering performance. 

Assuming that R and Q are two hard partitions, there are some

definition in ARI index: 

a is the number of pairs of data points belonging to the same

class in R and to the same cluster in Q; 

b is the number of pairs of data points belonging to the same

class in R and to different clusters in Q; 

c is the number of pairs of data points belonging to different

classes in R and to the same cluster in Q; 

d is the number of pairs of data points belonging to different

classes in R and to different clusters in Q . 

According to the basic set theory, given two membership ma-

trices ( U 1 and U 2 ), the quantities a , b, c, and d are redefined

as follows when r and q are two soft partitions: 

a = | V ∩ Y | = 

N ∑ 

j 2 =2 

j 2 −1 ∑ 

j 1 =1 

t ( V ( j 1 , j 2 ) , Y ( j 1 , j 2 ) ) , (41)

b = | V ∩ Z | = 

N ∑ 

j 2 =2 

j 2 −1 ∑ 

j 1 =1 

t ( V ( j 1 , j 2 ) , Z ( j 1 , j 2 ) ) , (42)

c = | X ∩ Y | = 

N ∑ 

j 2 =2 

j 2 −1 ∑ 

j 1 =1 

t ( X ( j 1 , j 2 ) , Y ( j 1 , j 2 ) ) , (43)

d = | X ∩ Z | = 

N ∑ 

j 2 −1 ∑ 

t ( X ( j 1 , j 2 ) , Z ( j 1 , j 2 ) ) . (44)
j 2 =2 j 1 =1 m
Here V = { V ( j 1 , j 2 ) | V ( j 1 , j 2 ) = s k 
i =1 

t( r i j 1 , r i j 2 ) , j 2 = 2 , . . . , N, j 1 =
1 , . . . , j 2 − 1 } is the set of pairs of data points belong-

ing to the same class in U 1 . X = { X ( j 1 , j 2 ) | X ( j 1 , j 2 ) =
s i 1 , i 2 ∈ [ 1 ,k ] | i 1 � = i 2 t( r i 1 j 1 , r i 2 j 2 ) , j 2 = 2 . . . N , j 1 = 1 . . . j 2 − 1 } is

the set of pairs of data points belonging to different

classes in U 1 . Y = { Y ( j 1 , j 2 ) | Y ( j 1 , j 2 ) = s v 
l=1 

t( r l j 1 , r l j 2 ) ,

j 2 = 2 , . . . , N , j 1 = 1 , . . . , j 2 − 1 } is the set of pairs of data

points belonging to the same cluster in U 2 . Finally Z =
{ Z ( j 1 , j 2 ) | Z ( j 1 , j 2 ) = s l 1 , l 2 ∈ [ 1 , v ] | l 1 � = l 2 t( r l 1 j 1 , r l 2 j 2 ) , j 2 = 2 , . . . , 

N , j 1 = 1 , . . . , j 2 − 1 } is the set of pairs of data points be-

longing to different clusters in U 2 . Here, “t” is a t-norm that

is used as a conjunction to implement the connective “and”

of the proposition. The authors of [37] and [38] use the

“min” operator as a t -norm. Likewise, “s ” is a co-norm that

is used as a disjunction to implement the connective “or” of

proposition. We use the “max” operator as a co-norm. 

To sum up, the EARI can be defined as follows: 

EAR I ( + ) = 

a − (a + b)(a + c) 
a + b+ c+ d 

(a + b)+(a + c) 
2 

− (a + b)(a + c) 
a + b+ c+ d 

. (45)

(5) Xie–Beni index. 

The Xie–Beni (XB) index [38] is a popular index in measuring

uzzy clustering performance. It expresses intracluster compactness

y the sum of the distances from each sample to the clustering

enters, and intercluster separation by the minimum of the dis-

ance between all clustering centers. The XB index can be formu-

ated as follows: 

 B 

( −) = 

∑ C 
i =1 

∑ N 
k =1 u 

m 

ik 
d ( x k , v i ) 

N × min i � = j d 
(
v i , v j 

) . (46)

.2. Testing synthetic datasets 

Table 2 shows the basic information of all the used datasets. We

rst discuss the synthetic datasets DATA1 and DATA2. Fig. 2 shows

he point distribution of DATA1 and DATA2. Fig. 3 shows the ρ − δ
istribution and γ distribution of DATA1. 

Here we first explain the difference between the algorithm we

roposed and the RLM algorithm from the angle of clustering cen-

er initialization. Fig. 2 (a) shows the spatial distribution character-

stics of the DATA1 dataset. The “x ” marks are the “bridge points”

r noise points that affect the clustering results. From Fig. 3 , it can

e noticed that the “bridge points” or noise points (in their corre-

ponding ρ − δ distributions and γ values) are submerged in the

− δ distribution and γ distribution of other data. And in partic-

lar, they are completely absent from the γ distribution. So noise

r “bridge points” cannot be selected as the clustering centers. The

ositive “� ” indicates the initial clustering center applied to the

VPFCM algorithm obtained by the clustering center initialization

ethod HDCCI. That is, the data point corresponding to the high γ
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(a) (b)

Fig. 2. Synthetic datasets. (a) DATA1. (b) DATA2. 

(a)                              (b)

Fig. 3. Results of the algorithms on DATA1. (a) ρ–δ distribution of RLM. (b) γ distribution of HDCCI. 
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alue is selected as the initial clustering center. In Fig. 3 (a), there

xists the case that a “ ” marked data point coincides with a “� ”

arked data point. That is to say the densities of these two data

oints are almost the same. 

According to the RLM algorithm, these two points both should

e selected as the clustering centers. However, we can know in

ig. 2 (a) that the position of these two data are not far apart and

hat they belong to the same cluster, so we cannot choose both as

lustering centers. Then it can be seen in Fig. 3 (b) that the γ val-

es of these two points are also equal. Assuming that one point

as been selected as the clustering center, the clustering center

nitialization method HDCCI we proposed does not choose another

s the clustering center because it is within r from the selected

ne. In this way, the initial clustering centers that we ultimately

hoose are all distributed in high-density areas and are far apart

as shown in Fig. 2 (a)), which are in line with the characteristics

f the ideal clustering centers and is therefore superior to the RLM

lgorithm. 

For the DATA1 data, we further compare the initial clustering

enters obtained by the HDCCI method and the final clustering

enters got by the DVPFCM algorithm. The actual clustering centers

f DATA1 are [[ −6.5, −3.5], [ −7.5, −9], [ −2.5, −7]]. The initialized
lustering centers from HDCCI are [[ −6.76, −3.34], [ −7.56, −8.68],

 −3.45, −7.22]] (identified by “� ” in Fig. 2 (a)), and the average dis-

ance between them and the actual clustering centers is 0.5353.

rom Fig. 2 (a), it can also be seen that the selected clustering cen-

er [ −3.45, −7.22] is not in the center of the structure, and the clus-

ering center [ −6.76, −3.34] is not only at the high density area but

lso closest to one of the actual clustering centers. So it is ap-

ropriate to adopt this point as the viewpoint. After running the

VPFCM algorithm, we get the final clustering centers, which are

 −6.76, −3.34], [ −7.56, −8.94], [ −2.30, −6.79]]. And the average dis-

ance from the actual clustering center is 0.2267. It is closer to the

ctual clustering centers than the value of 0.5353. Consequently it

s evident that the DVPFCM algorithm obtains great improvement

nd better results than the HDCCI method. 

For the synthetic dataset DATA2, the distribution characteris-

ics of its data points can be seen from Fig. 2 (b). The points la-

eled with different shapes represent different classes, and the

oints labeled with the same shape indicate that they belong to

he same cluster. The reference clustering center coordinates of

he DATA2 are [[8,4],[2,8],[2,2],[4,9],[5,5],[5,2.5],[7,1]]. Bridge points

xist in adjacent areas between clusters, which add difficulty to

istance-based clustering algorithms. 
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Table 3 

The distance between the clustering centers obtained by FCM and the actual clustering centers. 

Algorithm Centers Distance Average distance Algorithm Centers Distance Average distance 

FCM [8.0,3.9] 0.10 0 0 0.8363 PFCM [7.7,3.9] 0.3162 0.2407 

[5.0,5.3] 4.0361 [2.2,7.9] 0.2236 

[2.0,2.0] 0.0 0 0 0 [2.3,2.2] 0.3606 

[3.0,8.5] 1.1180 [3.9,8.8] 0.2236 

[5.0,4.5] 0.50 0 0 [5.0,4.9] 0.10 0 0 

[5.0,2.5] 0.0 0 0 0 [5.0,2.6] 0.10 0 0 

[7.0,1.1] 0.10 0 0 [6.8,1.3] 0.3606 

PCA [7.9,3.8] 0.2236 0.1982 RLM [8.0,3.9] 0.2236 0.1898 

[2.2,8.2] 0.2828 [2.1,8.1] 0.1414 

[2.1,2.0] 0.10 0 0 [2.0,2.0] 0.2236 

[3.7,8.9] 0.3162 [3.0,8.5] 0.3162 

[5.0,4.9] 0.10 0 0 [5.0,4.5] 0.2236 

[5.1,2.6] 0.1414 [5.0,5.3] 0.10 0 0 

[6.9,1.2] 0.2236 [7.1,1.0] 0.10 0 0 

GEPFCM [7.9,3.8] 0.2236 0.1765 V-FCM [8.0,3.9] 0.10 0 0 0.0980 

[2.0,7.9] 0.10 0 0 [2.1,8.1] 0.1414 

[2.2,2.1] 0.2236 [2.1,2.0] 0.10 0 0 

[3.8,8.9] 0.2236 [3.9,9.0] 0.10 0 0 

[5.0,4.9] 0.10 0 0 [5.0,5.0] 0.0 0 0 0 

[5.1,2.6] 0.1414 [5.1,2.6] 0.1414 

[6.9,1.2] 0.2236 [7.1,1.0] 0.10 0 0 

C-PCM [7.9,3.9] 0.1414 0.0892 DVPFCM [8.0,3.9] 0.10 0 0 0.0770 

[3.0,9.0] 0.1414 [2.0,8.1] 0.10 0 0 

[2.0,2.0] 0.0 0 0 0 [1.9,1.9] 0.1414 

[3.9,9.1] 0.10 0 0 [3.9,9.0] 0.10 0 0 

[5.0,5.0] 0.0 0 0 0 [5.0,5.0] 0.0 0 0 0 

[4.9,2.5] 0.10 0 0 [5.0,2.4] 0.10 0 0 

[7.0,1.1] 0.10 0 0 [7.1,1.0] 0.10 0 0 
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Table 3 lists the clustering centers coordinates obtained by clus-

tering algorithms, the distances and the average distances from the

actual clustering centers. By comparing the average distances be-

tween the real clustering centers and the clustering centers ob-

tained by each algorithm, we can find that the results obtained by

our proposed DVPFCM algorithm are closest to the true value and

its error is only 0.077. Meanwhile the second closest is the V-FCM

algorithm. However, the distance between the results of FCM and

the real results is 0.8363, which is 10 times that of the DVPFCM

and V-FCM algorithm. This shows that the “viewpoint” can guide

the clustering algorithm to find the real data structure. Look at

the clustering centers obtained by the RLM algorithm and there is

a certain gap between the actual clustering centers, which shows

that (1) the real clustering center is not necessarily a point in the

dataset; (2) the RLM algorithm can find the approximate location

of the real clustering center. Therefore, the clustering center ini-

tialization method based on this algorithm is reliable. The V-FCM,

GEPFCM, PCA, PFCM, and FCM algorithms are affected by noise

points or the initialization of clustering centers, so the resulting

clustering centers are far away from the true clustering centers.

Summarizing above, the results obtained by the DVPFCM algorithm

are closest to the true values, and the viewpoint plays a key guid-

ing role. 

Fig. 4 displays the classification rates for FCM, PFCM, PCA, RLM,

GEPFCM, V-FCM and DVPFCM in DATA1 and DATA2. We can know

that the correct rate of the proposed DVPFCM algorithm is the

highest and it can even reach 1, which means that all points are

classified correctly. The second one is the V-FCM algorithm. So

by analyzing the experimental results of each algorithm on the

synthetic datasets, we can find that the DVPFCM algorithm com-

bines the advantages of the V-FCM algorithm and the PFCM algo-

rithm. Because the typicality weakens the interference of noises or

bridge points, the real data structure of the dataset is found un-

der the guidance of the viewpoint. The clustering center initializa-

tion method HDCCI finds the approximate locations of the cluster-

ing centers before the further iterations of the DVPFCM algorithm,
hich avoid the algorithm falling into the local optimal value or

teration divergence. 

.3. Testing UCI machine learning datasets 

The adopted UCI machine learning datasets are Iris, zoo, balance

cale, Optical Recognition of Handwritten Digits (0,6,8,9), Breast

ancer Wisconsin, SPECT heart data, Letter Recognition (A,B), im-

ge segmentation data. The Iris dataset is a standard dataset in ex-

erimental cases. Fig. 5 shows its Sammon mapping graph. This

ataset include three clusters, but there are two classes are not

asy to be clustered (labeled by “X” and “∗”) because they are over-

apped each other. The Zoo dataset has more features and clus-

ers than that of Iris, while the Balance scale dataset has a larger

umber of instances. The Optical Recognition of Handwritten Digits

0,6,8,9) dataset is the recognition of hand-written numbers of 0, 6,

, and 9, which has the largest number of attributes in all datasets.

he Breast Cancer Wisconsin and SPECT heart dataset are medical

ata in which the types of features are numerical and binary, re-

pectively. The Image segmentation data has the largest number of

nstances while the Letter Recognition (A, B) is slightly less than it.

ut the Letter Recognition (A, B) dataset has less clusters than the

mage Segmentation dataset. 

Table 4 shows the results of the selected machine learning

atasets by various clustering algorithms. The performance indexes

nclude the above-mentioned three hard clustering measures (CR,

HI and NMI) and two fuzzy clustering measures (EARI and XB).

ecause the indexes EARI and XB relate to the specific values of the

embership matrix, and the RLM algorithm belongs to the hard

lustering, which does not have the membership parameter, so the

LM does not have the EARI and XB indexes values. 

As we can see from Table 4 , by comparing results of the se-

ected hard clustering measures, the performance relationship of

he clustering algorithms in most datasets (except SPECT heart

ata) is as follows: 

FCM < PFCM < PCA < RLM < GEPFCM < V-FCM < DVPFCM. 
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(a) (b)

Fig. 4. Comparison of classification rates: (a) DATA1 (b) DATA2. 

Fig. 5. Iris dataset (Sammon mapping). 
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Fig. 6. The Olivetti f
Then from the fuzzy clustering validity indexes (EARI and XB),

he performance relationship of the clustering algorithms in all

ataset is: 

FCM < PFCM < PCA < GEPFCM < V-FCM < DVPFCM. 

Compared with other algorithms, the proposed DVPFCM algo-

ithm can also guarantee higher classification rate when it gets

maller XB values. For the Image dataset, the lowest classification

ate is only 0.2719 obtained by other algorithms except DVPFCM,

hich is much lower than the result of DVPFCM (0.5319). In ad-

ition, Table 5 gives the growth ratios of CR for the DVPFCM al-

orithm. Compared with the classical FCM and PFCM algorithm,

VPFCM can improve the correct rate by at least 8.13%, while

he maximum is increased by 93.49%. And compared with the

-PCM algorithm whose performance is second only to that of

he DVPFCM algorithm on most indexes, the proposed DVPFCM

lgorithm can improve the accuracy of 7.27% on average, while

he maximum can be improved by 38.23%. It can be seen that

he clustering results obtained by our proposed algorithm have
ace database. 
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Table 4 

Clustering results on UCI datasets. 

Datasets Algorithms FCM PFCM PCA RLM GEPFCM V-FCM C-PCM DVPFCM 

Iris CR ( + ) 0.5867 0.60 0 0 0.6600 0.8067 0.8200 0.8667 0.8933 0.8933 

CH 

( + ) 9.6191 9.6269 9.7422 10.9058 11.9973 12.1314 12.1314 12.2276 

NMI ( + ) 0.2585 0.3287 0.4999 0.6821 0.7031 0.7274 0.7431 0.7688 

EARI ( + ) 0.7135 0.7371 0.7914 – 0.9042 0.9822 0.9926 0.9943 

XB ( − ) 0.7407 0.6801 0.5021 – 0.4533 0.3743 0.3629 0.2238 

Optical Recognition of Handwritten Digits (0,6,8,9) CR ( + ) 0.5386 0.5582 0.5750 0.8668 0.8773 0.9158 0.9285 0.9369 

CH 

( + ) 18.4032 21.2999 23.5065 24.0312 24.2069 25.3173 25.3843 28.0189 

NMI ( + ) 0.4335 0.5447 0.6360 0.6905 0.7362 0.7742 0.8174 0.8309 

EARI ( + ) 0.5790 0.7202 0.8490 – 0.8637 0.9350 0.9500 0.9659 

XB ( − ) 1.7151 1.7057 1.5858 – 1.5094 0.9486 0.7749 0.2643 

Breast Cancer Wisconsin CR ( + ) 0.7856 0.7873 0.8366 0.8541 0.8893 0.9051 0.9051 0.9192 

CH 

( + ) 40.89951 53.6177 63.263 66.2016 81.966 83.6 84 9 84.254 92.7073 

NMI ( + ) 0.2908 0.3067 0.3328 0.4672 0.5286 0.5336 0.5490 0.5814 

EARI ( + ) 0.8351 0.8957 0.9316 – 0.9794 0.9823 0.9962 0.9999 

XB ( − ) 0.9728 0.8796 0.7203 – 0.4723 0.3949 0.3746 0.3713 

SPECT heart data CR ( + ) 0.5655 0.6742 0.7528 0.3558 0.7940 0.8165 0.7940 0.8502 

CH 

( + ) 16.5447 19.8554 25.3664 18.8236 29.2436 32.9398 30.0071 33.3627 

NMI ( + ) 0.1128 0.1380 0.1818 0.0266 0.1907 0.2119 0.1748 0.2142 

EARI ( + ) 0.2636 0.3394 0.5175 – 0.5760 0.6498 0.5522 0.8935 

XB ( − ) 6.5483 4.0402 2.678 – 2.2130 0.7602 0.7500 0.7592 

Zoo CR ( + ) 0.4257 0.5050 0.5248 0.5545 0.5743 0.6040 0.6238 0.6634 

CH 

( + ) 1.0072 1.1213 1.1353 1.1512 1.1878 1.2508 1.2423 1.264 

NMI ( + ) 0.4172 0.4466 0.5205 0.5748 0.5929 0.7247 0.7429 0.7695 

EARI ( + ) 0.8633 0.8984 0.9327 – 0.9656 0.9700 0.9772 0.9772 

XB ( − ) 0.7063 0.6517 0.5005 – 0.4265 0.3642 0.2294 0.2119 

Balance scale CR ( + ) 0.5376 0.5520 0.6176 0.7360 0.7456 0.7504 0.7712 0.80 0 0 

CH 

( + ) 24.6063 25.1068 25.9596 28.1003 32.9543 34.1714 34.7239 36.7628 

NMI ( + ) 0.1548 0.1747 0.2252 0.2492 0.3469 0.3595 0.3827 0.4773 

EARI ( + ) 0.2819 0.3465 0.6541 – 0.7295 0.7316 0.8577 0.8577 

XB (-) 0.9973 0.8461 0.70 0 0 – 0.4354 0.2827 0.1101 0.1101 

Letter Recognition (A,B) CR ( + ) 0.8476 0.8695 0.8965 0.9029 0.9273 0.9370 0.9370 0.9402 

CH 

( + ) 128.5351 142.8131 180.0137 218.1078 224.3567 242.0209 250.0544 252.3733 

NMI ( + ) 0.3842 0.4424 0.5229 0.5282 0.6544 0.7109 0.7109 0.7236 

EARI ( + ) 0.8187 0.8601 0.8823 – 0.9229 0.9445 0.9600 0.9781 

XB ( − ) 1.5822 0.9043 0.793 – 0.5906 0.5259 0.5042 0.4831 

Image segmentation data CR ( + ) 0.2749 0.3105 0.3338 0.3538 0.4200 0.4816 0.3848 0.5319 

CH 

( + ) 21.3247 22.5122 23.5307 24.4764 26.6791 28.8336 28.2917 30.7711 

NMI ( + ) 0.3175 0.4339 0.4994 0.6256 0.6273 0.6395 0.5077 0.6911 

EARI ( + ) 0.5373 0.6391 0.6689 – 0.6706 0.7329 0.8280 0.8617 

XB ( − ) 1.7168 0.9718 0.8905 – 0.5971 0.5944 0.4979 0.3151 

Table 5 

The CR growth ratios of the DVPFCM on UCI datasets (%). 

FCM PFCM PCA RLM GEPFCM V-FCM C-PCM 

D3 52.26 48.88 35.34 10.74 8.94 3.07 0 

D4 73.95 67.84 62.94 8.09 6.79 2.30 0.91 

D5 17.01 16.75 9.87 7.62 3.36 1.56 1.56 

D6 50.34 26.11 12.94 138.95 7.08 4.13 7.08 

D7 55.84 31.16 26.41 19.64 15.51 9.83 6.35 

D8 48.81 44.93 29.53 8.70 7.30 6.61 3.73 

D9 10.93 8.13 4.87 4.13 1.39 0.34 0.34 

D10 93.49 71.30 59.35 50.34 26.64 10.44 38.23 

Average 50.33 39.41 30.16 31.03 9.63 4.79 7.27 
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higher reliability. In terms of other evaluation indexes, the pro-

posed DVPFCM algorithm seems always slightly better, which in-

dicates that DVPFCM may be more suitable for the actual ma-

chine learning datasets and outperforms other techniques when

the datasets have larger numbers or more features. 

Furthermore, one thing to note is that for the SPECT heart data,

the results obtained by the RLM algorithm and the C-PCM algo-

rithm are not ideal, so RLM and C-PCM may not be suitable for bi-

nary dataset. For the image dataset, C-PCM does not perform better

than GEPFCM and V-FCM in hard cluster validity indexes (CR, CHI,

NMI). But for other datasets, CPCM is superior to other algorithms

except our proposed DVPFCM in all cluster validity indexes. It may
how the dataset with a large dimension and a large number of

eatures is a great challenge to the CPCM algorithm. 

Overall, DVPFCM is the most outstanding in terms of obtaining

nitial clustering centers, the distances between clustering results

nd reference clustering centers, and various performance indexes.

.4. Testing the Olivetti face database 

The 400 different images of the Olivetti face database were

aken at different times, under different lighting conditions, un-

er different expressions of the same person (open or closed eyes,

mile or not smile). Our experiment uses photos of the first 20 per-

ons. We implement DVPFCM for the 200 face images and gets its

R of 0.8950, while C-PCM, V-FCM, GEPFCM, RLM, PCA, PFCM and

CM have 0.7200, 0.8450, 0.6750, 0.6350, 0.5000, 0.4450, 0.5000 of

R, respectively. Those experimental results show that our DVPFCM

lgorithm has better performance in face recognition. 

Moreover, all the experiments are based on knowing the clus-

ers number C of dataset. But in reality, this priori knowledge is of-

en unknown. Therefore, with the help of some clustering validity

ndexes, we test the accuracy of DVPFCM, C-PCM, V-FCM, GEPFCM,

FCM and FCM in obtaining the optimal number of clusters. Those

ndexes include: normalized partition entropy (NPE) [39] , DB index

roposed in [40] , XB index [38] and Calinski–Harabasz index (CH)

35] , which are all commonly used clustering validity indexes. Now,

ssuming that we do not know the C of the Olivetti face database,

e take the number of clusters corresponding to the extreme val-
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Table 6 

Optimal cluster numbers got from validity indexes for UCI datasets under different clustering algorithms. 

dataset True C Index FCM PFCM PCA GEPFCM VFCM CPCM DVPFCM 

Iris 3 CH 2 2 2 2 2 2 2 

DB 2 2 2 2 2 2 2 

NPE 2 2 2 2 2 2 2 

XB 2 2 2 2 2 2 2 

Optical Recognition of Handwritten Digits (0,6,8,9) 4 CH 3 3 3 4 4 3 3 

DB 3 11 18 3 4 4 3 

NPE 5 3 2 2 3 4 3 

XB 4 3 4 4 3 2 4 

Breast Cancer Wisconsin 2 CH 2 2 2 4 2 2 2 

DB 2 2 2 8 2 8 2 

NPE 2 2 2 2 2 2 2 

XB 2 2 2 2 2 2 2 

SPECT heart data 2 CH 2 3 2 2 2 2 2 

DB 7 2 2 2 2 7 2 

NPE 2 2 2 2 2 2 2 

XB 7 2 2 2 2 3 2 

Zoo 7 CH 7 8 7 7 7 7 7 

DB 7 7 7 8 7 8 8 

NPE 8 8 9 7 7 7 7 

XB 7 7 6 7 5 6 7 

Balance scale 3 CH 4 3 3 3 3 3 3 

DB 3 3 11 2 3 6 3 

NPE 4 2 2 2 2 3 3 

XB 3 3 2 2 2 4 3 

Letter Recognition (A,B) 2 CH 2 2 2 2 2 2 2 

DB 3 6 2 2 3 2 2 

NPE 2 2 2 3 2 2 2 

XBI 2 2 2 2 2 2 2 

Image segmentation data 7 CH 4 4 4 4 7 7 7 

DB 4 4 7 4 4 7 4 

NPE 7 4 7 4 4 4 4 

XB 4 4 7 7 4 4 7 
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Table 7 

Computational complexities of various clus- 

tering algorithms. 

Algorithm Computational complexity 

FCM O(iterNC 2 l) 

PFCM O(iter(N 2 Cl + NC 2 l)) 

PCA O(iterNCl) 

GEPFCM O(iter(N 2 Cl + NC 2 l)) 

RLM O(Nl) 

V-FCM O(iterNC 2 l) 

CPCM O(iterNCl) 

DVPFCM O(iterNC 2 l) 
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es of these cluster validity indexes as the ideal number of clus-

ers. Fig. 7 shows the optimal number of clusters obtained by our

lgorithm DVPFCM based on these indexes values. Note that in or-

er to more clearly represent the magnitude of the change in the

alue of the cluster validity indexes under different clusters, the

PE takes its log value and the XB is inverted. We observe that

he results of CH, DB and NPE indexes show that the ideal clus-

er number of the Olivetti face database is 20 while the result got

y XB 

−1 is 19. So the DVPFCM algorithm can recognize how many

aces are in the Olivetti face database. In addition, Table 6 gives

he optimal cluster numbers estimated by these cluster validity in-

exes for the UCI datasets. From Table 6 , we can see that compared

o other fuzzy clustering algorithms (FCM, PFCM, PCA, GEPFCM,

-FCM, CPCM), the DVPFCM algorithm seems to be able to better

iscover the true cluster number C. 

.5. Computational complexity 

Next, we analyze the computational complexities for the

VPFCM, C-PCM, V-FCM, RLM, GEPFCM, and FCM algorithms. The

VPFCM algorithm can be divided into four parts: (1) we run HD-

CI algorithm to obtain initial cluster centers and the high-density

iewpoint, which needs O(Nl) ; (2) we iteratively update member-

hip degree matrix U , which needs O(iter(NC 2 l)) ; (3) we iteratively

pdate typicality matrix T , which needs O(iter(NCl)) ; (4) we iter-

tively update cluster center matrix V , which needs O(iter(NC)) .

ince the big O notation only describes the upper bound on the

rowth rate of the function, the total computational complexity

f the DVPFCM algorithm is O(iter(NC 2 l)) . The computational com-

lexities of other seven comparison algorithms are shown in the

able 7 . We can find that the DVPFCM algorithm adds the domain

nowledge of “high-density viewpoint”, but it does not increase

he time complexity of the algorithm, which is equal to the com-

utational complexity of FCM. Compared with the two possibilistic
uzzy clustering algorithms, PFCM and GEPFCM, the computational

omplexity of our DVPFCM algorithm is greatly reduced. The rea-

on is that we optimize the parameter γi of the two algorithms to

arameter σ 2 . γi is calculated by substituting the cluster centers

nd membership matrix got by FCM and need to be updated iter-

tively, while the σ 2 considers the data points distribution charac-

eristics so that it can be calculated before iteration, which greatly

aves the running time of the DVPFCM algorithm. 

Tables 8 and 9 display the average number of iterations and

he average calculation time for each run of various algorithms. We

erformed 50 runs for every algorithm except for the DVPFCM al-

orithm. The results of the DVPFCM algorithm are certain because

he initial clustering centers of each run are the same obtained by

he HDCCI method. The number in parentheses indicates the rank-

ng of the algorithm and Arank denotes the average ranking of the

lgorithm. Note that the RLM algorithm does not result in itera-

ions, so statistics for it are not demanded here. 

It can be seen from these two tables that the DVPFCM algo-

ithm requires the least iteration times on most datasets except

he GEPFCM algorithm and the V-FCM algorithm is second to it.

his means that with the help of a viewpoint and the clustering
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(a) The CH index

(b) The DB index

(c) The NPE index

(d) The XB-1 index

Fig. 7. Four cluster validity indexes for the Olivetti face database using DVPFCM. 
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Table 8 

Average number of iterations for tested algorithms. 

FCM PFCM PCA GEPFCM V-FCM CPCM DVPFCM 

D1 15.3(6) 17.0(7) 13.9(5) 3.1(1) 12.9(4) 10.2(3) 8.0(2) 

D2 24.2(4) 30.3(6) 35.0(7) 4.3(1) 24.2(4) 8.0(3) 4.0(2) 

D3 15.9(4) 26.2(6) 43.0(7) 3.0(1) 20.5(5) 15.0(3) 12.0(2) 

D4 27.9(6) 6.7(3) 78.0(7) 2.0(1) 8.2(4) 19.3(5) 6.0(2) 

D5 19.7(5) 43.8(7) 22.0(6) 2.0(1) 13.0(4) 6.3(2) 10.0(3) 

D6 79.9(7) 17.8(5) 24.0(6) 2.0(1) 8.6(2) 9.2(4) 9.0(3) 

D7 67.6(7) 15.0(4) 24.0(5) 2.7(1) 31.0(6) 10.6(3) 9.0(2) 

D8 99.2(7) 12.6(3) 27.0(5) 2.0(1) 81.0(6) 22.2(4) 11.0(2) 

D9 26.4(7) 18.9(5) 23.0(6) 2.0(1) 11.5(3) 12.0(4) 10.0(2) 

D10 78.4(6) 16.0(2) 83.0(7) 4.5(1) 48.0(4) 50.5(5) 31.0(3) 

Arank 5.9 4.8 6.1 1 4.2 3.6 2.3 

Table 9 

Average time of iterations for tested algorithms. 

FCM PFCM PCA RLM GEPFCM V-FCM CPCM DVPFCM 

D1 0.0030(2) 0.0310(7) 0.0045(4) 0.0190(5) 0.1314(8) 0.0017(1) 0.0038(3) 0.0250(6) 

D2 0.0367(3) 0.0727(4) 0.0132(1) 0.0780(5) 1.1946(8) 0.5900(7) 0.0249(2) 0.1810(6) 

D3 0.0034(3) 0.0079(5) 0.0025(2) 0.0170(6) 0.0911(8) 0.0027(1) 0.0078(4) 0.0222(7) 

D4 0.1269(4) 0.1330(5) 0.0628(2) 0.1640(6) 0.5402(7) 0.0086(1) 0.0650(3) 0.8170(8) 

D5 0.0382(4) 0.0751(6) 0.0066(2) 0.0730(5) 0.2307(7) 0.0043(1) 0.0175(3) 0.5313(8) 

D6 0.0642(5) 0.0685(6) 0.0032(2) 0.0240(4) 0.1447(8) 0.0018(1) 0.0095(3) 0.0725(7) 

D7 0.0192(5) 0.0229(6) 0.0029(1) 0.0140(3) 0.1573(8) 0.0150(4) 0.0050(2) 0.0472(7) 

D8 0.0951(5) 0.1005(6) 0.0048(1) 0.0370(2) 0.2252(8) 0.0400(3) 0.0469(4) 0.1950(7) 

D9 0.0796(4) 0.1520(5) 0.0105(2) 0.3060(6) 0.4117(7) 0.0063(1) 0.0593(3) 2.4066(8) 

D10 0.4289(4) 0.4782(5) 0.1197(1) 0.5840(6) 1.8114(7) 0.1780(2) 0.4081(3) 14.0320(8) 

Arank 3.9 5.5 1.8 4.8 7.6 2.2 3.0 7.2 
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enter initialization method, the DVPFCM algorithm is faster than

ther algorithms. The GEPFCM algorithm has the lowest iteration

imes, but on average, its running time cost is the highest, because

t depends on the FCM and PFCM algorithms. 

In terms of running time, the DVPFC algorithm runs the cluster-

ng center initialization method HDCCI to get the initial clustering

enters, and then find more accurate data structure through the

uidance of the viewpoint, so it also requires more running time

on average, second to the GEPFCM algorithm). However, it can ob-

ain better clustering results than other algorithms and has more

utstanding clustering performance. In this respect, these costs are

orthwhile. 

.6. Discussion 

In this section, we verify the accuracy and convenience of the

lustering center initialization method HDCCI. The results show

hat this novel clustering center initialization algorithm can accu-

ately find high-density data points as the initial clustering cen-

ers. Moreover, this method not only calculates the density of the

ata point, but also compute the point distance to other higher

ensity points, so it can effectively avoid the interference of noise

oints (because noise point may have higher density but the dis-

ance value is definitely small). The results of the selection are ob-

ained by directly calculating the relevant parameters by the pro-

ram, and without human participation. This process is simple and

onvenient. This is also superior to RLM. 

Then, we tested the performance of our proposed DVPFCM

lgorithm and other algorithms on UCI datasets and synthetic

atasets. By comparison, the DVPFCM algorithm did obtain higher

lassification rates both in the synthetic datasets and UCI datasets.

n other indexes, the DVPFCM algorithm performed better than the

CM, PFCM, PCA, RLM, GEPFCM and V-FCM algorithms. 

Finally, we compared the average number of iterations for var-

ous algorithms and found that the DVPFCM algorithm requires

ewer iterations than the traditional clustering algorithms, which

hows that the DVPFCM algorithm converges faster. In general, the
VPFCM algorithm can provide more accurate clustering results

nd is more robust. 

The better performance of the DVPFCM algorithm can be at-

ributed to the following points: 

• The proposed HDCCI clustering center initialization method

can get the initial clustering centers close to the real data

structures. This not only prevents the algorithm from iter-

ating divergence and speeds up the algorithm convergence,

but also helps to improve the classification rate of the algo-

rithm. 
• As a part of the data structure, the viewpoint helps to guide

the clustering algorithm to find the real data structure, so as

to obtain better clustering results. 
• The objective function of the DVPFCM algorithm introduces

typicality in the possibilistic clustering algorithm and its pa-

rameter σ 2 considers the degree of compactness and separa-

tion of the dataset, which makes the algorithm more robust

against noise points. 

The proposed DVPFCM algorithm and the V-FCM algorithm

ave the following distinct differences: 

• The purposes of clustering are different. As mentioned

above, the V-FCM algorithm focuses on personalized search,

and the DVPFCM algorithm is to get more accurate cluster-

ing centers with the help of the “viewpoint” to improve the

reliability of the algorithm. 
• The categories of viewpoint are not the same. The V-FCM

algorithm uses the average or boundary value that is of

interest to the user to represent the viewpoint, where the

viewpoint needs to be specified in advance. The DVPFCM

algorithm adopts the point with the highest density as the

viewpoint which is based on clearer selection. And there is

no need to prior design the viewpoint. 
• The noise immunity of the algorithm is different. The

V-FCM algorithm integrates the viewpoint into the FCM al-

gorithm. But the FCM algorithm is sensitive to noise points.

The DVPFCM algorithm combines the viewpoint with the
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C  
PFCM algorithm, and optimizes some parameters related to

the tightness of the data distribution. The robustness of

the DVPFCM algorithm is significantly higher than that of

V-FCM. 

5. Conclusions 

In this study, we have proposed a new density-based cluster

center initialization method-HDCCI at first. The initial cluster cen-

ters obtained by this method are located at the center of the

sample-intensive region, which can make the initial cluster cen-

ters close to the real data structure. Thus we solve the problem

that most fuzzy clustering algorithms are sensitive to cluster cen-

ter initialization. Then, we introduce the “high-density viewpoint”

obtained by the HDCCI method to assist the clustering algorithm

so as to establish the DVPFCM algorithm. It is directly used as a

part of the prototypes to guide the algorithm to find other classes

faster. By comparing the iteration times of each algorithm, we find

that our DVPFCM algorithm has fewer iterations than FCM, PFCM,

PCA, V-FCM and C-PCM algorithms, while the V-FCM algorithm has

the least number of iterations compared with the first three algo-

rithms. This result fully demonstrates that the “viewpoint” helps

speed up the convergence of the algorithm. 

Applying our proposed DVPFCM algorithm and comparison al-

gorithms (FCM, PFCM, PCA, RLM, GEPFCM, V-FCM, C-PCM) to the

synthetic datasets and the real UCI datasets, experimental results

show that DVPFCM poses better performance in the initialization

of cluster centers, the distance between the clustering results and

the reference cluster centers, and various evaluation indexes. In

summary, the DVPFCM algorithm can provide more ideal cluster-

ing results and is more robust. Moreover, when these algorithms

are applied to the Olivetti face database, we find that the accu-

racy of our DVPFCM algorithm in face recognition is much higher

than the accuracy offered by other algorithms, which indicates that

the proposed DVPFCM algorithm exhibits tangible practical signifi-

cance. 

In future studies, it is worth applying the DVPFCM algorithm to

other areas, such as image segmentation, mechanical fault detec-

tion, and so on. Moreover, the kernel-based fuzzy clustering algo-

rithms can also be introduced viewpoints to enhance the perfor-

mance of the clustering algorithm, which is also one of important

pursuits in the future. 
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