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ON CONTINUITY OF THE ENTROPY-BASED
DIFFERENTLY IMPLICATIONAL ALGORITHM

Yiming Tang, Witold Pedrycz

Aiming at the previously-proposed entropy-based differently implicational algorithm of fuzzy
inference, this study analyzes its continuity. To begin with, for the FMP (fuzzy modus ponens)
and FMT (fuzzy modus tollens) problems, the continuous as well as uniformly continuous
properties of the entropy-based differently implicational algorithm are demonstrated for the
Tchebyshev and Hamming metrics, in which the R-implications derived from left-continuous t-
norms are employed. Furthermore, four numerical fuzzy inference examples are provided, and it
is found that the entropy-based differently implicational algorithm can obtain more reasonable
solution in contrast with the fuzzy entropy full implication algorithm. Finally, in the entropy-
based differently implicational algorithm, we point out that the first fuzzy implication reflects
the effect of rule base, and that the second fuzzy implication embodies the inference mechanism.
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1. INTRODUCTION

Fuzzy inference plays a key role in fuzzy control, pattern recognition, image processing,
data mining and many others [21][28][42]. In order to solve the basic problems of fuzzy
inference [4][19], i.e., FMP (fuzzy modus ponens) and FMT (fuzzy modus tollens) as
follows:

FMP: from given rule A → B and input A∗, compute the output B∗, (1)

FMT: from given rule A → B and input B∗, compute the output A∗, (2)

where A,A∗ ∈ F (U) (representing the set of fuzzy subsets of U) and B,B∗ ∈ F (V ),
the CRI (compositional rule of inference) method proposed by Zadeh is the commonly
used strategy [11][43]. In the CRI method, a single fuzzy implication was used. Then
the method was extended to triple fuzzy implications, and the full implication algorithm
was proposed by Wang in 1999 [39]. The main mode of the full implication algorithm is
to find the smallest B∗ ∈ F (V ) (or the largest A∗ ∈ F (U)) such that

(A(u) → B(v)) → (A∗(u) → B∗(v)) (3)
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attains its maximum for any u ∈ U, v ∈ V (here → denotes a fuzzy implication on
[0, 1]). As its follow-up, the fuzzy entropy full implication algorithm [9] was proposed
being guided by the principle of maximum entropy (established by E. T. Jaynes in 1975),
which showed how to choose the optimal solution to the fuzzy inference problem.

The full implication algorithm is nowadays a point of intensive researches, which
includes related logic fundamentals, reversibility, pointwise optimization (see [5][18]
[26][36]). However it is not ideal from the perspective of fuzzy controller (see [16]),
which exhibits inferior response ability and practicality. To deal with such problem,
we proposed the differently implicational algorithm in [31]. In this new method, (3) is
changed into

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)), (4)

in which →1 and →2 stand for different fuzzy implications. It is noted that the differ-
ently implicational algorithm is a generalization of both the full implication algorithm
and the CRI method. In [32], the reversibility property of the differently implicational
algorithm was analyzed when using the expansion, reduction and other type operators,
which demonstrated that its reversibility property was satisfied. Moreover, we estab-
lished fuzzy controllers based on the differently implicational algorithm, and found that
their response abilities were good. In [34], we found that 190 fuzzy controllers via the
differently implicational algorithm could be used in practical systems; meanwhile only
19 fuzzy controllers via the CRI method and 2 ones via the full implication algorithm
were found in. Here fuzzy implications used in three algorithms were in the same scope,
while the singleton fuzzier together with the combination of the centroid defuzzier and
the defuzzier of average from the maximum were employed in these fuzzy controllers.
Therefore, the differently implicational algorithm has larger effective choosing space for
usable fuzzy controllers, which can obtain practically sound fuzzy controllers in contrast
with the full implication algorithm and the CRI method. More studies completed with
regard to the differently implicational algorithm [30][33][35], confirmed the advantages
of the approach.

By virtue of the principle of maximum entropy, we put forward the differently im-
plicational algorithm with maximum fuzzy entropy in [37], which referred to as the
entropy-based differently implicational algorithm. Its optimal solution is the fuzzy set
B∗ (or A∗) with maximum fuzzy entropy such that (4) assumes its maximum.

For (1) of fuzzy inference, when the input A∗ is close to A, if the inference result
B∗ is totally different from B, then such inference mechanism can not be acceptant in
applications. It is natural to anticipate that small deviation of input will not lead to a
huge differences in the inference result. This is regarded as the continuity problem. It
is pointed out in [14] that the continuity is important for fuzzy inference. As a result,
we investigate the continuity of the entropy-based differently implicational algorithm.

Section 2 covers some preliminaries, which includes related definitions and some pre-
vious works on the entropy-based differently implicational algorithm. In Section 3, the
continuous as well as uniformly continuous properties of the entropy-based differently
implicational algorithm are analyzed for the FMP problem. In Section 4, the continu-
ity of the entropy-based differently implicational algorithm is researched for the FMT
problem. In Section 5, some examples are shown, demonstrating that the entropy-based
differently implicational algorithm can obtain better solution than the fuzzy entropy
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full implication algorithm. Section 6 provides some discussions of the results. Section 7
concludes the paper.

2. PRELIMINARIES

Definition 2.1. ([1][2][19]) A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if
it satisfies the following conditions:

(Q1): I is decreasing w.r.t. the first variable,
(Q2): I is increasing w.r.t. the second variable,
(Q3): I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0.

I(a, b) is also written as a → b (a, b ∈ [0, 1]).

It is easy to note that
(LB): I(0, b) = 1, b ∈ [0, 1] (the left boundary condition),
(RB): I(a, 1) = 1, a ∈ [0, 1] (the right boundary condition),

hold for any fuzzy implication I, thus the following condition holds:
(NC): I(0, 1) = 1 (the normality condition).

Definition 2.2. ([15]) A function T : [0, 1]2 → [0, 1] is said to be a t-norm if T is
associative, commutative, increasing and satisfies T (1, a) = a (a ∈ [0, 1]).

Definition 2.3. ([19]) A fuzzy implication → is called an R-implication if there exists a
left-continuous t-norm T satisfying the following formula (where ∨ denotes supremum):

a → b = ∨{x ∈ [0, 1]| T (a, x) ≤ b}, a, b ∈ [0, 1]. (5)

As for Definition 2.3, in general for any t-norm T we have supremum in the formula
(5), but when T is left-continuous, then we have maximum in (5) (see details in [2][8]).

Definition 2.4. ([20]) Suppose that T , → are two [0, 1]2 → [0, 1] functions. → is called
a residual of T , if the following condition satisfies:

T (a, b) ≤ c ⇐⇒ b ≤ a → c (a, b, c ∈ [0, 1]). (6)

Proposition 2.5. ([7]) Let T be a t-norm. T is left-continuous if and only if → is a
residual of T , where → is achieved from (5).

Lemma 2.6. ([40]) Let I be an R-implication, and T a left-continuous t-norm, and I
a residual of T , then I satisfies (Q1), (Q2), (Q3) and the following conditions:

(OP): a ≤ b ⇐⇒ I(a, b) = 1 (the ordering property),
(EP): I(a, I(b, c)) = I(b, I(a, c)) (the exchange principle),
(NP): I(1, a) = a (the left neutrality property),
(Q4): a ≤ I(b, c) ⇐⇒ b ≤ I(a, c),
(Q5): I(supx∈X x, a) = infx∈X I(x, a),
(Q6): I(a, infx∈X x) = infx∈X I(a, x),
(Q7): I(T (a, b), c) = I(a, I(b, c)),
(Q8): I is left-continuous w.r.t. the first variable,
(Q9): I is right-continuous w.r.t. the second variable,

where a, b, c, x ∈ [0, 1] and X ⊂ [0, 1], X ̸= ∅.
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Here we mainly consider the following R-implications, including Lukasiewicz impli-
cation IL, I0 implication [25] (which is also called IFD, see [1]), Gödel implication IG,
Goguen implication IGo, and Iep, Iy−0.5 (see [31][38]).

IL(a, b) =

{
1, a ≤ b
1− a+ b, a > b

,

I0(a, b) =

{
1, a ≤ b
(1− a) ∨ b, a > b

,

IG(a, b) =

{
1, a ≤ b
b, a > b

,

IGo(a, b) =

{
1, a ≤ b
b/a, a > b

,

Iep(a, b) =

{
1, a ≤ b
(2b− ab)/(a+ b− ab), a > b

,

Iy−0.5(a, b) =

{
1, a ≤ b

1− (
√
1− b−

√
1− a )2, a > b

.

Proposition 2.7. ([31]) The t-norms of which IL, I0, IG, IGo, Iep, Iy−0.5 are the corre-
sponding residuals, are:

TL(a, b) =

{
a+ b− 1, a+ b > 1
0, a+ b ≤ 1

,

T0(a, b) =

{
a ∧ b, a+ b > 1
0, a+ b ≤ 1

,

TG(a, b) = a ∧ b,
TGo(a, b) = a× b,
Tep(a, b) = ab/(2− a− b+ ab),

Ty−0.5(a, b) =

{
1− (r(a, b))2, r(a, b) ≤ 1
0, r(a, b) > 1

, (where r(a, b) =
√
1− a+

√
1− b ).

Definition 2.8. Suppose that Z is any non-empty set, and that F (Z) represents the
set of fuzzy subsets of Z. Then a partial order relation ≤F on F (Z) is defined as follows:

A ≤F B ⇐⇒ A(z0) ≤ B(z0) (∀z0 ∈ Z),

in which A,B ∈ F (Z).

Lemma 2.9. ([41]) < F (Z),≤F> is a complete lattice.

It is easy to prove Lemma 2.10.

Lemma 2.10. |a ∧ c− b ∧ c| ≤ |a− b|, |a ∨ c− b ∨ c| ≤ |a− b|, where a, b, c ∈ [0, 1].

Lemma 2.11. ([10]). If U → R mappings f, g are bounded, in which U is a nonempty
set and R is the set of real number, then for any u ∈ U , we have

(i) | supu∈U f(u)− supu∈U g(u)| ≤ supu∈U |f(u)− g(u)|;
(ii) | infu∈U f(u)− infu∈U g(u)| ≤ supu∈U |f(u)− g(u)|.
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Definition 2.12. ([29]) Let E be a set-to-point mapping E : F (X) → [0, 1]. E is a
fuzzy entropy measure if it satisfies the four De Luca and Termini axioms:

(i) E(A) = 0 if and only if A is non-fuzzy,
(ii) E(A) = 1 if and only if A(x) = 0.5 for all x ∈ X,
(iii) E(A) ≤ E(B) if A is less fuzzy than B, i.e., if

A(x) ≤ B(x) when B(x) ≤ 0.5, and A(x) ≥ B(x) when B(x) ≥ 0.5,
(iv) E(A) = E(Ac).

In this section, we briefly review the solutions produced by the entropy-based differ-
ently implicational algorithm [37].

For convenience, we denote R1(u, v) = A(u) →1 B(v). Aiming at FMP (1), from the
viewpoint of entropy-based differently implicational algorithm, the following principle is
given:

Entropy-based differently implicational principle for FMP: The solution B∗

of FMP problem (1) is the fuzzy set (in < F (V ),≤F>) with maximum fuzzy entropy
letting (4) get its maximum.

Definition 2.13. ([37]) Let A,A∗ ∈ F (U), B ∈ F (V ), if B∗ (in < F (V ),≤F>) makes
(4) obtain its maximum for any u ∈ U, v ∈ V , then B∗ is said to be an initial entropy-
inference solution of FMP.

Definition 2.14. ([37]) If A,A∗ ∈ F (U), B ∈ F (V ), and non-empty set E is the set
of all initial entropy-inference solutions of FMP, and lastly D∗ is the fuzzy set with
maximum fuzzy entropy in E, then D∗ is said to be a formal entropy-inference solution
of FMP.

Assume that the maximum of (4) for FMP at every point (u, v) is M(u, v).

Proposition 2.15. (i) If D1 is an initial entropy-inference solution of FMP, and D1 ≤F

D2 (in which D1, D2 ∈< F (V ),≤F>). Then D2 is an initial entropy-inference solution
of FMP. (ii) M(u, v) = R1(u, v) →2 (A∗(u) →2 1) = 1.

P r o o f . (i) Since D1 is an initial entropy-inference solution of FMP, R1(u, v) →2

(A∗(u) →2 D1(v)) = M(u, v) (u ∈ U, v ∈ V ). Because D1 ≤F D2 and →2 satisfies
(Q2), it follows that A∗(u) →2 D1(v) ≤ A∗(u) →2 D2(v) and

M(u, v) = R1(u, v) →2 (A∗(u) →2 D1(v))

≤ R1(u, v) →2 (A∗(u) →2 D2(v)).

Note that R1(u, v) →2 (A∗(u) →2 D2(v)) ≤ M(u, v), thus R1(u, v) →2 (A∗(u) →2

D2(v)) = M(u, v) (u ∈ U, v ∈ V ). Therefore D2 is also an initial entropy-inference
solution of FMP. (ii) Similar to (i), it is easy to verify that M(u, v) = R1(u, v) →2

(A∗(u) →2 1). Moreover, since (RB) holds for →2, one has M(u, v) = 1. �
Here we interpret the definition of the formal entropy-inference solution of FMP. From

Proposition 2.15, it is easy to find that for an initial entropy-inference solution D1, any
fuzzy set D2 which satisfies D1 ≤F D2 is also an initial entropy-inference solution. It
is obvious that there are many initial entropy-inference solutions B∗, that is, B∗ is not
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unique. Then we need to determine which one is the best solution. In the light of the
principle of maximum entropy proposed by E. T. Jaynes [12][13], we choose the fuzzy set
with maximum fuzzy entropy as the best solution, which is the formal entropy-inference
solution of FMP.

Theorem 2.16. Suppose that →2 is an R-implication, and that T is a left-continuous
t-norm, and that →2 is a residual of T , then the formal entropy-inference solution of
FMP can be computed with the aid of the following formula:

B∗(v) = 0.5 ∨ sup
u∈U

{T (A∗(u), R1(u, v))}, v ∈ V. (7)

P r o o f . Denote D∗(v) = supu∈U{T (A∗(u), R1(u, v))}, v ∈ V. First, we show that B∗

makes (4) take its maximum M(u, v) for any u ∈ U, v ∈ V . It follows from the expression
of D∗ that

T (A∗(u), R1(u, v)) ≤ D∗(v), u ∈ U, v ∈ V. (8)

Since →2 is an R-implication, it follows from Lemma 2.6 that M(u, v) = 1 and →2

satisfies (OP), (Q9). Noting that →2 is a residual of T , we obtain from (8) that
R1(u, v) ≤ A∗(u) →2 D∗(v) and

R1(u, v) →2 (A∗(u) →2 D∗(v)) = 1 = M(u, v)

hold for any u ∈ U, v ∈ V . Thus D∗ ∈ E and D∗ is an initial entropy-inference solution
of FMP.

Second, we verify that D∗ is the minimum of E. Suppose that any fuzzy set D ∈ E.
Thus (u ∈ U, v ∈ V )

R1(u, v) →2 (A∗(u) →2 D(v)) = M(u, v) = 1.

Taking into account that →2 is a residual of T and that →2 satisfies (OP), we obtain
R1(u, v) ≤ A∗(u) →2 D(v) and T (A∗(u), R1(u, v)) ≤ D(v) (u ∈ U, v ∈ V ). Thus D(v)
is an upper bound of {T (A∗(u), R1(u, v)) | u ∈ U}, v ∈ V. Hence it follows from the
expression of D∗ that D∗ ≤F D. These imply that D∗ is the minimum of E.

Denote B∗ = 0.5 ∨D∗. Then D∗ ≤F B∗. It follows from Proposition 2.15 that B∗ is
also an initial entropy-inference solution of FMP, and thus B∗ ∈ E.

Then we prove that B∗ is the fuzzy set with maximum entropy in E. In fact, let
Bk be any fuzzy set in E. Obviously D∗ ≤F Bk. If D∗(v) ≤ Bk(v) ≤ 0.5 or D∗(v) ≤
0.5 ≤ Bk(v), then B∗(v) = 0.5; if 0.5 ≤ D∗(v) ≤ Bk(v), then B∗(v) = D∗(v) (v ∈ V ).
Together we get Bk(v) ≤ B∗(v) ≤ 0.5 or 0.5 ≤ B∗(v) ≤ Bk(v), and hence we get from
Definition 2.12 that E(B∗) ≥ E(Bk).

Therefore, B∗ expressed as (7) is the formal entropy-inference solution of FMP in the
light of Definition 2.14.

�

Example 2.17. The formal entropy-inference solution of FMP is expressed as follows
(v ∈ V ):

(i) If →2 takes IL, then B∗(v) = 0.5 ∨ supu∈U{A∗(u) +R1(u, v)− 1}.
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(ii) If →2 takes I0, then B∗(v) = 0.5 ∨ supu∈Ev
{A∗(u) ∧R1(u, v)}, where Ev = {u ∈

U | A∗(u) +R1(u, v) > 1}.
(iii) If →2 takes IG, then B∗(v) = 0.5 ∨ supu∈U{A∗(u) ∧R1(u, v)}.
(iv) If →2 takes IGo, then B∗(v) = 0.5 ∨ supu∈U{A∗(u)×R1(u, v)}.
(v) If→2 takes Iep, then B∗(v) = 0.5∨supu∈U{A∗(u)×R1(u, v)/[2−A∗(u)−R1(u, v)+

A∗(u)×R1(u, v)]}.
(vi) If→2 takes Iy−0.5, thenB∗(v) = 0.5∨supu∈Ev

{1−[
√

1−A∗(u)+
√
1−R1(u, v) ]

2},
where Ev = {u ∈ U |

√
1−A∗(u) +

√
1−R1(u, v) ≤ 1}.

For the FMT (2), from the viewpoint of the entropy-based differently implicational
algorithm, the following principle is formulated:

Entropy-based differently implicational principle for FMT: The solution A∗

of FMT problem (2) is the fuzzy set (in < F (U),≤F>) with maximum fuzzy entropy
letting (4) achieve its maximum.

Definition 2.18. ([37]) Let A ∈ F (U), B,B∗ ∈ F (V ), if A∗ (in < F (U),≤F>) lets (4)
get its maximum for any u ∈ U, v ∈ V , then A∗ is said to be an initial entropy-inference
solution of FMT.

Definition 2.19. ([37]) If A ∈ F (U), B,B∗ ∈ F (V ), and non-empty set F is the set
of all initial entropy-inference solutions of FMT, and lastly C∗ is the fuzzy set with
maximum fuzzy entropy in F, then C∗ is called a formal entropy-inference solution of
FMT.

Assume that the maximum of (4) for FMT at every point (u, v) is N(u, v).

Proposition 2.20. (i) If C1 is an initial entropy-inference solution of FMT, and C2 ≤F

C1 (in which C1, C2 ∈< F (U),≤F>). Then C2 is an initial entropy-inference solution
of FMT. (ii) N(u, v) = 1.

P r o o f . (i) Since C1 is an initial entropy-inference solution of FMT, one hasR1(u, v) →2

(C1(u) →2 B∗(v)) = N(u, v) (u ∈ U, v ∈ V ). Because C2 ≤F C1 and →2 satisfies (Q1),
(Q2), it follows that C1(u) →2 B∗(v) ≤ C2(u) →2 B∗(v) and

N(u, v) ≤ R1(u, v) →2 (C2(u) →2 B∗(v)) (u ∈ U, v ∈ V ).

It is similar to Proposition 2.15 that D2 is also an initial entropy-inference solution of
FMT.

(ii) Similar to Proposition 2.15, it is easy to find

N(u, v) = R1(u, v) →2 (0 →2 B∗(v)) (u ∈ U, v ∈ V )..

Since →2 is a fuzzy implication, it follows that (LB) and (RB) hold for →2, thus
N(u, v) = 1. �

Theorem 2.21. If →2 is an R-implication, then the formal entropy-inference solution
of FMT comes as follows:

A∗(u) = 0.5 ∧ inf
v∈V

{R1(u, v) →2 B∗(v)}, u ∈ U. (9)
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P r o o f . Denote C∗(u) = infv∈V {R1(u, v) →2 B∗(v)}, v ∈ V. First, we verify that C∗

makes (4) take its maximum N(u, v) for any u ∈ U, v ∈ V . It follows from the expression
of C∗ that

C∗(u) ≤ R1(u, v) →2 B∗(v), u ∈ U, v ∈ V. (10)

Since →2 is an R-implication, we get from Lemma 2.6 and Proposition 2.20 that
N(u, v) = 1 and →2 satisfies (OP), (Q4). Then it follows from (10) that R1(u, v) ≤
C∗(u) →2 B∗(v) and

R1(u, v) →2 (C∗(u) →2 B∗(v)) = 1 = N(u, v)

hold for any u ∈ U, v ∈ V . Thus C∗ ∈ F and C∗ is an initial entropy-inference solution
of FMT.

Second, we prove that C∗ is the maximum of F. Suppose that any fuzzy set C ∈ F.
Thus

R1(u, v) →2 (C(u) →2 B∗(v)) = N(u, v) = 1

holds for any u ∈ U, v ∈ V . Noting that →2 satisfies (OP) and (Q4), we get R1(u, v) ≤
C(u) →2 B∗(v) and C(u) ≤ R1(u, v) →2 B∗(v) hold for any u ∈ U, v ∈ V . Thus C(u)
is a lower bound of

{R1(u, v) →2 B∗(v) | v ∈ V }, u ∈ U.

So it follows from the expression of C∗ that C ≤F C∗. These imply that C∗ is the
maximum of F.

Denote A∗ = 0.5 ∧ C∗. Then A∗ ≤F C∗. It follows from Proposition 2.20 that A∗ is
also an initial entropy-inference solution of FMT, and thus A∗ ∈ F.

Then we prove that A∗ is the fuzzy set with maximum entropy in F. In fact, let Ak be
any fuzzy set in F. Obviously Ak ≤F C∗. If Ak(u) ≤ C∗(u) ≤ 0.5, then A∗(u) = C∗(u);
if Ak(u) ≤ 0.5 ≤ C∗(u) or 0.5 ≤ Ak(u) ≤ C∗(u), then A∗(u) = 0.5 (u ∈ U). Together
we get Ak(u) ≤ A∗(u) ≤ 0.5 or 0.5 ≤ A∗(u) ≤ Ak(u), and hence it from Definition 2.12
that E(A∗) ≥ E(Ak).

Therefore, A∗ expressed as (9) is the formal entropy-inference solution of FMT in the
light of Definition 2.19.

�

Example 2.22. The formal entropy-inference solution of FMT is computed as follows
(where Fu = {v ∈ V | R1(u, v) > B∗(v)}):

(i) If →2 takes IL, then A∗(u) = 0.5 ∧ infv∈Fu{1−R1(u, v) +B∗(v)}, u ∈ U .

(ii) If →2 takes I0, then A∗(u) = 0.5 ∧ infv∈Fu{(1−R1(u, v)) ∨B∗(v)}, u ∈ U .

(iii) If →2 takes IG, then A∗(u) = 0.5 ∧ infv∈Fu{B∗(v)}, u ∈ U .

(iv) If →2 takes IGo, then A∗(u) = 0.5 ∧ infv∈Fu{B∗(v)/R1(u, v)}, u ∈ U .

(v) If→2 takes Iep, then A∗(u) = 0.5∧infv∈Fu{(2B∗(v)−R1(u, v)×B∗(v))/(R1(u, v)+
B∗(v)−R1(u, v)×B∗(v))}, u ∈ U .

(vi) If→2 takes Iy−0.5, thenA∗(u) = 0.5∧infv∈Fu{1−(
√
1−B∗(v)−

√
1−R1(u, v) )

2},
u ∈ U .
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3. CONTINUITY OF ENTROPY-BASED DIFFERENTLY IMPLICATIONAL AL-
GORITHM FOR FMP

A distance function d is regard as a metric if it is positive definite (d(a, b) ≥ 0, and
d(a, b) = 0 if and only if a = b), symmetric (d(a, b) = d(b, a)), and possesses the triangle
inequality (d(a, c) ≤ d(a, b) + d(b, c)) for any points a, b, c. The concept of distance has
been developed to fuzzy set. Here suppose that d is a distance between fuzzy sets [3][27],
which is a metric.

Definition 3.1. A fuzzy inference algorithm for FMP (1) is a mapping f : F (U) →
F (V ), i.e., there exists an output B∗ = f(A∗) ∈ F (V ) for any input A∗ ∈ F (U).

(i) For any ε > 0, if there exists δ > 0 making d(f(A∗
1), f(A

∗
2)) < ε whenever

d(A∗
1, A

∗
2) < δ for any A∗

1, A
∗
2 ∈ F (U), then f is said to be uniformly continuous in

metric d;
(ii) For any ε > 0, if there exists δ > 0 making d(f(A∗), f(A)) < ε whenever

d(A∗, A) < δ for any A∗ ∈ F (U), then f is said to be continuous at A ∈ F (U) in
metric d.

Definition 3.2. A fuzzy inference algorithm for FMT (2) is a mapping g : F (V ) →
F (U).

(i) For any ε > 0, if there exists δ > 0 making d(g(B∗
1), g(B

∗
2)) < ε whenever

d(B∗
1 , B

∗
2) < δ for any B∗

1 , B
∗
2 ∈ F (V ), then g is said to be uniformly continuous in

metric d;
(ii) For any ε > 0, if there exists δ > 0 making d(g(B∗), g(B)) < ε whenever

d(B∗, B) < δ for any B∗ ∈ F (V ), then g is said to be continuous at B ∈ F (V ) in
metric d.

The practical problems often concern a finite number of elements. For example,
in the areas of natural language processing and computing with words, all works are
always done on the basis of a word corpus which only includes a finite number of words.
Moreover, nowadays the computer is only able to store and deal with finite numbers. As a
result, here we suppose that the universes U, V are finite sets, i.e., U = {u1, u2, . . . , um},
V = {v1, v2, . . . , vn}. Besides, the universe which includes infinite number of elements,
belongs to another situation, and it is beyond the scope of this paper. Here we mainly
consider the two frequently used metrics, i.e., the following Tchebyshev metric dT and
Hamming metric dH (where A,B ∈ F (U)):

dT (A,B) = max
u∈U

|A(u)−B(u)|,

dH(A,B) =
1

m

∑
u∈U

|A(u)−B(u)|.

Theorem 3.3. The entropy-based differently implicational algorithm for FMP expressed
as (7) is uniformly continuous in metric d ∈ {dT , dH}, if the t-norm T is continuous.

P r o o f . For any inputs A∗
1, A

∗
2 ∈ F (U), we analyze the continuity property of the

entropy-based differently implicational algorithm for FMP. Taking into account that the
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t-norm T is continuous, it follows that T is uniformly continuous w.r.t. its first variable
in [0,1]. As a result, for any ε > 0, there exists δ1 > 0 such that

|T (A∗
1(u), R1(u, v))− T (A∗

2(u), R1(u, v))| < ε (11)

hold if |A∗
1(u)−A∗

2(u)| < δ1 (u ∈ U).
(i) For the case of d = dT , we employ

δ = δ1.

Suppose that
dT (A

∗
1, A

∗
2) < δ.

It implies that
max
u∈U

|A∗
1(u)−A∗

2(u)| < δ

and that
|A∗

1(u)−A∗
2(u)| < δ = δ1 (u ∈ U).

Thus, there exists δ > 0 such that (11) holds. Note that U, V are finite, then the meaning
of sup is the same as max. In virtue of Lemma 2.10 as well as Lemma 2.11, we have

dT (B
∗
1 , B

∗
2)

= max
v∈V

∣∣∣B∗
1(v)−B∗

2(v)
∣∣∣

= max
v∈V

∣∣∣0.5 ∨max
u∈U

{T (A∗
1(u), R1(u, v))} − 0.5 ∨max

u∈U
{T (A∗

2(u), R1(u, v))}
∣∣∣

≤ max
v∈V

∣∣∣max
u∈U

{T (A∗
1(u), R1(u, v))} −max

u∈U
{T (A∗

2(u), R1(u, v))}
∣∣∣

≤ max
v∈V

max
u∈U

∣∣∣T (A∗
1(u), R1(u, v))− T (A∗

2(u), R1(u, v))
∣∣∣

< max
v∈V

max
u∈U

ε

= ε.

In this process mentioned above, it is noted that U, V are finite sets, which ensures that
(11) implies

max
v∈V

max
u∈U

∣∣∣T (A∗
1(u), R1(u, v))− T (A∗

2(u), R1(u, v))
∣∣∣ < max

v∈V
max
u∈U

ε.

As a result, there exists δ > 0 such that dT (B
∗
1 , B

∗
2) < ε if dT (A

∗
1, A

∗
2) < δ, therefore the

entropy-based differently implicational algorithm for FMP expressed as (7) is uniformly
continuous in dT .

(ii) For the case of d = dH , we choose

δ = δ1/m.

Assume that dH(A∗
1, A

∗
2) < δ. It implies that∑

u∈U

|A∗
1(u)−A∗

2(u)|/m < δ
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and that
|A∗

1(u)−A∗
2(u)| < mδ = δ1 (u ∈ U).

So there exists δ > 0 such that (11) holds. Moreover, we have from Lemma 2.10 and
Lemma 2.11 that

dH(B∗
1 , B

∗
2)

=
1

n

∑
v∈V

∣∣∣B∗
1(v)−B∗

2(v)
∣∣∣

=
1

n

∑
v∈V

∣∣∣0.5 ∨max
u∈U

{T (A∗
1(u), R1(u, v))} − 0.5 ∨max

u∈U
{T (A∗

2(u), R1(u, v))}
∣∣∣

≤ 1

n

∑
v∈V

∣∣∣max
u∈U

{T (A∗
1(u), R1(u, v))} −max

u∈U
{T (A∗

2(u), R1(u, v))}
∣∣∣

≤ 1

n

∑
v∈V

max
u∈U

∣∣∣T (A∗
1(u), R1(u, v))− T (A∗

2(u), R1(u, v))
∣∣∣

<
1

n

∑
v∈V

max
u∈U

ε

= ε.

Therefore, there exists δ > 0 such that dH(B∗
1 , B

∗
2) < ε if dH(A∗

1, A
∗
2) < δ, which implies

that the entropy-based differently implicational algorithm for FMP computed by (7) is
uniformly continuous in dH . �

It is easy to note that if f is uniformly continuous then it is continuous, thus we
derive Theorem 3.4 from Theorem 3.3.

Theorem 3.4. The entropy-based differently implicational algorithm for FMP expressed
as (7) is continuous in metric d ∈ {dT , dH}, if the t-norm T is continuous.

For →2∈ {IL, IG, IGo, Iep, Iy−0.5}, its corresponding t-norm is continuous, then we
have Corollary 3.5.

Corollary 3.5. If →2∈ {IL, IG, IGo, Iep, Iy−0.5}, then the entropy-based differently im-
plicational algorithm for FMP is uniformly continuous in d ∈ {dT , dH}, and thus con-
tinuous in d ∈ {dT , dH}.

It is noted that T0 (which is called the nilpotent minimum) is an important left-
continuous t-norm and has many desirable characteristics (see [6]), then we investigate
the corresponding case that →2 takes I0.

Proposition 3.6. For any A∗
1, A

∗
2 ∈ F (U), there exists δ0 > 0 such that if d(A∗

1, A
∗
2) <

δ0 where d ∈ {dT , dH}, then
E1v = E2v (v ∈ V ),

in which

E1v = {u ∈ U | A∗
1(u) +R1(u, v) > 1}, E2v = {u ∈ U | A∗

2(u) +R1(u, v) > 1}.
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P r o o f . For any v ∈ V , we analyze the relationship between E1v and E2v.
(i) For the case of d = dT , we employ

δ1 = min
u∈E1v

[A∗
1(u) +R1(u, v)− 1].

Obviously
A∗

1(u) +R1(u, v)− 1 ≥ δ1 > 0 (u ∈ E1v, v ∈ V ). (12)

Suppose that dT (A
∗
1, A

∗
2) < δ1. Then

max
u∈U

|A∗
1(u)−A∗

2(u)| < δ1 (u ∈ U),

and thus we get
A∗

1(u)− δ1 < A∗
2(u) < A∗

1(u) + δ1 (u ∈ U). (13)

For any u0 ∈ E1v, we get
A∗

1(u0) +R1(u0, v) > 1,

and it follows from (12), (13) that

A∗
2(u0) > A∗

1(u0)− δ1 ≥ A∗
1(u0)− [A∗

1(u0) +R1(u0, v)− 1] = 1−R1(u0, v),

thus u0 ∈ E2v, hence we get E1v ⊂ E2v.
Take

δ2 = min
u∈E2v

[A∗
2(u) +R1(u, v)− 1].

Similarly we can obtain E2v ⊂ E1v if dT (A
∗
1, A

∗
2) < δ2.

Choose
δ0 = min{δ1, δ2},

thus E1v ⊂ E2v and E2v ⊂ E1v if dT (A
∗
1, A

∗
2) < δ0. Consequently, we obtain that if

dT (A
∗
1, A

∗
2) < δ0 then E1v = E2v.

(ii) For the case of d = dH , we employ

δ3 = min
u∈E1v

[A∗
1(u) +R1(u, v)− 1]/(2m+ 1).

Obviously

[A∗
1(u) +R1(u, v)− 1]/(2m+ 1) ≥ δ3 > 0 (u ∈ E1v, v ∈ V ). (14)

Suppose that dH(A∗
1, A

∗
2) < δ3. Then∑

u∈U

|A∗
1(u)−A∗

2(u)|/m < δ3

and thus
|A∗

1(u)−A∗
2(u)| < mδ3 (u ∈ U),

so we get
A∗

1(u)−mδ3 < A∗
2(u) < A∗

1(u) +mδ3 (u ∈ U). (15)
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For any u0 ∈ E1v, we get A∗
1(u0) +R1(u0, v) > 1, and it follows from (14), (15) that

A∗
2(u0) > A∗

1(u0)−mδ3

≥ A∗
1(u0)−m[A∗

1(u0) +R1(u0, v)− 1]/(2m+ 1)

= [(m+ 1)A∗
1(u0)−mR1(u0, v) +m]/(2m+ 1)

> [(m+ 1)(1−R1(u0, v))−mR1(u0, v) +m]/(2m+ 1)

= 1−R1(u0, v).

Thus u0 ∈ E2v, hence we get E1v ⊂ E2v.

Take

δ4 = min
u∈E2v

[A∗
2(u) +R1(u, v)− 1]/(2m+ 1).

Similarly we can obtain E2v ⊂ E1v if dH(A∗
1, A

∗
2) < δ4.

Choose

δ0 = min{δ3, δ4},

thus we obtain that if dH(A∗
1, A

∗
2) < δ0 then E1v = E2v. �

Theorem 3.7. If →2 takes I0, then the entropy-based differently implicational al-
gorithm for FMP is uniformly continuous in d ∈ {dT , dH}, and thus continuous in
d ∈ {dT , dH}.

P r o o f . (i) It follows from Proposition 3.6 that there exists δ0 > 0 such that E1v = E2v

if dT (A
∗
1, A

∗
2) < δ0 (u ∈ U). For any ε > 0, take

δ = min{δ0, ε}.

Suppose that dT (A
∗
1, A

∗
2) < δ. Then

E1v = E2v (v ∈ V ),

and

|A∗
1(u)−A∗

2(u)| < δ (u ∈ U).
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Thus from Example 2.17(ii), Lemma 2.10 and Lemma 2.11 we get

dT (B
∗
1 , B

∗
2)

= max
v∈V

∣∣∣B∗
1(v)−B∗

2(v)
∣∣∣

= max
v∈V

∣∣∣0.5 ∨ sup
u∈E1v

{A∗
1(u) ∧R1(u, v)} − 0.5 ∨ sup

u∈E2v

{A∗
2(u) ∧R1(u, v)}

∣∣∣
= max

v∈V

∣∣∣0.5 ∨ sup
u∈E1v

{A∗
1(u) ∧R1(u, v)} − 0.5 ∨ sup

u∈E1v

{A∗
2(u) ∧R1(u, v)}

∣∣∣
≤ max

v∈V

∣∣∣ sup
u∈E1v

{A∗
1(u) ∧R1(u, v)} − sup

u∈E1v

{A∗
2(u) ∧R1(u, v)}

∣∣∣
≤ max

v∈V
sup

u∈E1v

∣∣∣(A∗
1(u) ∧R1(u, v))− (A∗

2(u) ∧R1(u, v))
∣∣∣

≤ max
v∈V

sup
u∈E1v

∣∣∣A∗
1(u)−A∗

2(u)
∣∣∣

< max
v∈V

sup
u∈E1v

δ

= δ

≤ ε.

There exists δ > 0 such that dT (B
∗
1 , B

∗
2) < ε if dT (A

∗
1, A

∗
2) < δ, therefore the entropy-

based differently implicational algorithm for FMP is uniformly continuous in dT , and
thus it is also continuous in dT .

(ii) We get from Proposition 3.6 that there exists δ0 > 0 such that E1v = E2v if
dH(A∗

1, A
∗
2) < δ0 (u ∈ U). For any ε > 0, take

δ = min{δ0/(m+ 1), ε/(m+ 1)}.

Suppose that dH(A∗
1, A

∗
2) < δ. Then

E1v = E2v (v ∈ V ),

and ∑
u∈U

|A∗
1(u)−A∗

2(u)|/m < δ

and thus

|A∗
1(u)−A∗

2(u)| < mδ (u ∈ U).
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Thus it follows from Example 2.17(ii), Lemma 2.10 and Lemma 2.11 that

dH(B∗
1 , B

∗
2)

=
1

n

∑
v∈V

∣∣∣0.5 ∨ sup
u∈E1v

{A∗
1(u) ∧R1(u, v)} − 0.5 ∨ sup

u∈E2v

{A∗
2(u) ∧R1(u, v)}

∣∣∣
≤ 1

n

∑
v∈V

∣∣∣ sup
u∈E1v

{A∗
1(u) ∧R1(u, v)} − sup

u∈E1v

{A∗
2(u) ∧R1(u, v)}

∣∣∣
≤ 1

n

∑
v∈V

sup
u∈E1v

∣∣∣(A∗
1(u) ∧R1(u, v))− (A∗

2(u) ∧R1(u, v))
∣∣∣

≤ 1

n

∑
v∈V

sup
u∈E1v

∣∣∣A∗
1(u)−A∗

2(u)
∣∣∣

<
1

n

∑
v∈V

sup
u∈E1v

mδ

= mδ

≤ mε/(m+ 1)

< ε.

As a result, the entropy-based differently implicational algorithm for FMP is uniformly
continuous in dH , and thus it is also continuous in dH . �

4. CONTINUITY OF ENTROPY-BASED DIFFERENTLY IMPLICATIONAL AL-
GORITHM FOR FMT

Theorem 4.1. Assume that the R-implication →2 satisfies
(Q10) I is continuous w.r.t. the second variable,

then the entropy-based differently implicational algorithm for FMT expressed as (8) is
uniformly continuous in d ∈ {dT , dH}, and thus continuous in d ∈ {dT , dH}.

P r o o f . For any inputs B∗
1 , B

∗
2 ∈ F (V ), we verify the continuous property of the

entropy-based differently implicational algorithm for FMT. Since →2 satisfies (Q10), it
follows that →2 is uniformly continuous w.r.t. its second variable on [0,1]. Therefore,
for any ε > 0, there exists δ1 > 0 making the relationship

|(R1(u, v) →2 B∗
1(v))− (R1(u, v) →2 B∗

2(v))| < ε (16)

holds for any u ∈ U if |B∗
1(v)−B∗

2(v)| < δ1 (v ∈ V ).
(i) Here we prove the case of d = dT . We set

δ = δ1.

Suppose that
dT (B

∗
1 , B

∗
2) < δ.

Then
max
v∈V

|B∗
1(v)−B∗

2(v)| < δ
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and

|B∗
1(v)−B∗

2(v)| < δ = δ1 (v ∈ V ).

So (16) holds, and according to Lemma 2.10 and Lemma 2.11, we get

dT (A
∗
1, A

∗
2)

= max
u∈U

∣∣∣A∗
1(u)−A∗

2(u)
∣∣∣

= max
u∈U

∣∣∣0.5 ∧ inf
v∈V

{R1(u, v) →2 B∗
1(v)} − 0.5 ∧ inf

v∈V
{R1(u, v) →2 B∗

2(v)}
∣∣∣

≤ max
u∈U

∣∣∣ inf
v∈V

{R1(u, v) →2 B∗
1(v)} − inf

v∈V
{R1(u, v) →2 B∗

2(v)}
∣∣∣

≤ max
u∈U

sup
v∈V

∣∣∣(R1(u, v) →2 B∗
1(v))− (R1(u, v) →2 B∗

2(v))
∣∣∣

< max
u∈U

sup
v∈V

ε

= ε.

That is, there exists δ > 0 such that dT (A
∗
1, A

∗
2) < ε if dT (B

∗
1 , B

∗
2) < δ, therefore the

entropy-based differently implicational algorithm for FMT expressed as (8) is uniformly
continuous in dT . And thus it is also continuous in dT .

(ii) Furthermore, we verify the case of d = dH . We employ

δ = δ1/n.

Suppose that

dH(B∗
1 , B

∗
2) < δ.

Then

∑
v∈V

|B∗
1(v)−B∗

2(v)|/n < δ

and

|B∗
1(v)−B∗

2(v)| < nδ = δ1 (v ∈ V ).
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So (16) holds, and according to Lemma 2.10 and Lemma 2.11, we get

dH(A∗
1, A

∗
2)

=
1

m

∑
u∈U

∣∣∣A∗
1(u)−A∗

2(u)
∣∣∣

=
1

m

∑
u∈U

∣∣∣0.5 ∧ inf
v∈V

{R1(u, v) →2 B∗
1(v)} − 0.5 ∧ inf

v∈V
{R1(u, v) →2 B∗

2(v)}
∣∣∣

≤ 1

m

∑
u∈U

∣∣∣ inf
v∈V

{R1(u, v) →2 B∗
1(v)} − inf

v∈V
{R1(u, v) →2 B∗

2(v)}
∣∣∣

≤ 1

m

∑
u∈U

sup
v∈V

∣∣∣(R1(u, v) →2 B∗
1(v))− (R1(u, v) →2 B∗

2(v))
∣∣∣

<
1

m

∑
u∈U

sup
v∈V

ε

= ε.

That is, there exists δ > 0 such that dH(A∗
1, A

∗
2) < ε if dH(B∗

1 , B
∗
2) < δ, so the entropy-

based differently implicational algorithm for FMT computed as (8) is uniformly contin-
uous in dH . And then it is also continuous in dH . �

For →2∈ {IL, IGo, Iep, Iy−0.5}, it is easy to find that →2 satisfies (Q10). We can get
Corollary 4.2 from Theorem 4.1.

Corollary 4.2. If →2∈ {IL, IGo, Iep, Iy−0.5}, then the entropy-based differently impli-
cational algorithm for FMT is uniformly continuous in d ∈ {dT , dH}, and thus continuous
in d ∈ {dT , dH}.

Moreover, when →2 is only right-continuous w.r.t. the second variable, whether is the
entropy-based differently implicational algorithm for FMT continuous? Here we analyze
the typical case of →2∈ {I0, IG}.

Proposition 4.3. For any B∗
1 , B

∗
2 ∈ F (V ), there exists δ0 > 0 such that if d(B∗

1 , B
∗
2) <

δ0 where d ∈ {dT , dH}, then F1u = F2u (u ∈ U), in which

F1u = {v ∈ V | R1(u, v) > B∗
1(v)}, F2u = {v ∈ V | R1(u, v) > B∗

2(v)}.

P r o o f . For any u ∈ U , we research the relationship between F1u and F2u.
(i) For the case of d = dT , we choose

δ1 = min
v∈F1u

[R1(u, v)−B∗
1(v)].

Evidently
R1(u, v)−B∗

1(v) ≥ δ1 > 0 (u ∈ U, v ∈ F1u). (17)

Suppose that dT (B
∗
1 , B

∗
2) < δ1. Then

max
v∈V

|B∗
1(v)−B∗

2(v)| < δ1,
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and so we have
B∗

1(v)− δ1 < B∗
2(v) < B∗

1(v) + δ1 (v ∈ V ). (18)

For any v0 ∈ F1u, we obtain
R1(u, v0) > B∗

1(v0),

and it follows from (17), (18) that

B∗
2(v0) < B∗

1(v0) + δ1 ≤ B∗
1(v0) +R1(u, v0)−B∗

1(v0) = R1(u, v0),

thus v0 ∈ F2u, hence we have F1u ⊂ F2u.
Take

δ2 = min
v∈F2u

[R1(u, v)−B∗
2(v)].

Similarly we can achieve F2u ⊂ F1u if dT (B
∗
1 , B

∗
2) < δ2.

Take
δ0 = min{δ1, δ2},

thus F1u ⊂ F2u and F2u ⊂ F1u if dT (B
∗
1 , B

∗
2) < δ0. As a result, we obtain that if

dT (B
∗
1 , B

∗
2) < δ0 then F1u = F2u.

(ii) For the case of d = dH , we take

δ3 = min
v∈F1u

[R1(u, v)−B∗
1(v)]/(2n+ 1).

Obviously
[R1(u, v)−B∗

1(v)]/(2n+ 1) ≥ δ3 > 0 (u ∈ U, v ∈ F1u). (19)

Suppose that dH(B∗
1 , B

∗
2) < δ3. Then∑

v∈V

|B∗
1(v)−B∗

2(v)|/n < δ3

and thus
|B∗

1(v)−B∗
2(v)| < nδ3 (v ∈ V ),

so we get
B∗

1(v)− nδ3 < B∗
2(v) < B∗

1(v) + nδ3 (v ∈ V ). (20)

For any v0 ∈ F1u, we obtain

R1(u, v0) > B∗
1(v0),

and it follows from (19), (20) that

B∗
2(v0) < B∗

1(v0) + nδ3

≤ B∗
1(v0) +

n[R1(u, v0)−B∗
1(v0)]

2n+ 1

=
1

2n+ 1
[(n+ 1)B∗

1(v0) + nR1(u, v0)]

<
1

2n+ 1
[(n+ 1)R1(u, v0) + nR1(u, v0)]

= R1(u, v0).
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Thus v0 ∈ F2u, hence we get F1u ⊂ F2u.
Take

δ4 = min
v∈F2u

[R1(u, v)−B∗
2(v)]/(2n+ 1).

Similarly we can obtain F2u ⊂ F1u if dH(B∗
1 , B

∗
2) < δ4.

Choose

δ0 = min{δ3, δ4},

thus we can get that if dH(B∗
1 , B

∗
2) < δ0 then F1u = F2u. �

Theorem 4.4. If →2∈ {I0, IG}, then the entropy-based differently implicational al-
gorithm for FMT is uniformly continuous in d ∈ {dT , dH}, and thus continuous in
d ∈ {dT , dH}.

P r o o f . Here we only prove the case of I0 while the case of IG can be obtained similarly.
(i) We get from Proposition 4.3 that there exists δ0 > 0 such that F1u = F2u if

dT (B
∗
1 , B

∗
2) < δ0 (u ∈ U). For any ε > 0, take

δ = min{δ0, ε}.

Suppose that dT (B
∗
1 , B

∗
2) < δ. Then

F1u = F2u (u ∈ U),

and

|B∗
1(v)−B∗

2(v)| < δ (v ∈ V ).

Thus from Example 2.22(ii), Lemma 2.10 and Lemma 2.11 one has

dT (A
∗
1, A

∗
2)

= max
u∈U

∣∣∣A∗
1(u)−A∗

2(u)
∣∣∣

= max
u∈U

∣∣∣0.5 ∧ inf
v∈F1u

{(1−R1(u, v)) ∨B∗
1(v)} − 0.5 ∧ inf

v∈F2u

{(1−R1(u, v)) ∨B∗
2(v)}

∣∣∣
= max

u∈U

∣∣∣0.5 ∧ inf
v∈F1u

{(1−R1(u, v)) ∨B∗
1(v)} − 0.5 ∧ inf

v∈F1u

{(1−R1(u, v)) ∨B∗
2(v)}

∣∣∣
≤ max

u∈U

∣∣∣ inf
v∈F1u

{(1−R1(u, v)) ∨B∗
1(v)} − inf

v∈F1u

{(1−R1(u, v)) ∨B∗
2(v)}

∣∣∣
≤ max

u∈U
sup

v∈F1u

∣∣∣[(1−R1(u, v)) ∨B∗
1(v)]− [(1−R1(u, v)) ∨B∗

2(v)]
∣∣∣

≤ max
u∈U

sup
v∈F1u

∣∣∣B∗
1(v)−B∗

2(v)
∣∣∣

< max
u∈U

sup
v∈F1u

δ

= δ

≤ ε.
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As a result, there exists δ > 0 such that dT (A
∗
1, A

∗
2) < ε if dT (B

∗
1 , B

∗
2) < δ. In the sequel

the entropy-based differently implicational algorithm for FMT is uniformly continuous
in dT . And thus it is also continuous in dT .

(ii) It follows from Proposition 4.3 that there exists δ0 > 0 such that F1u = F2u if
dH(B∗

1 , B
∗
2) < δ0 (u ∈ U). For any ε > 0, choose

δ = min{δ0/(n+ 1), ε/(n+ 1)}.

Suppose that dH(B∗
1 , B

∗
2) < δ. Then

F1u = F2u (u ∈ U),

and ∑
v∈V

|B∗
1(v)−B∗

2(v)|/n < δ

and thus

|B∗
1(v)−B∗

2(v)| < nδ (v ∈ V ).

Thus it follows from Example 2.22(ii), Lemma 2.10 and Lemma 2.11 that we get

dH(A∗
1, A

∗
2)

=
1

m

∑
u∈U

∣∣∣0.5 ∧ inf
v∈F1u

{(1−R1(u, v)) ∨B∗
1(v)} − 0.5 ∧ inf

v∈F2u

{(1−R1(u, v)) ∨B∗
2(v)}

∣∣∣
=

1

m

∑
u∈U

∣∣∣0.5 ∧ inf
v∈F1u

{(1−R1(u, v)) ∨B∗
1(v)} − 0.5 ∧ inf

v∈F1u

{(1−R1(u, v)) ∨B∗
2(v)}

∣∣∣
≤ 1

m

∑
u∈U

∣∣∣ inf
v∈F1u

{(1−R1(u, v)) ∨B∗
1(v)} − inf

v∈F1u

{(1−R1(u, v)) ∨B∗
2(v)}

∣∣∣
≤ 1

m

∑
u∈U

sup
v∈F1u

∣∣∣[(1−R1(u, v)) ∨B∗
1(v)]− [(1−R1(u, v)) ∨B∗

2(v)]
∣∣∣

≤ 1

m

∑
u∈U

sup
v∈F1u

∣∣∣B∗
1(v)−B∗

2(v)
∣∣∣

<
1

m

∑
u∈U

sup
v∈F1u

nδ

≤ nε/(n+ 1)

< ε

Therefore, the entropy-based differently implicational algorithm for FMT is uniformly
continuous in dH . And thus it is also continuous in dH . �

5. EXAMPLES

The entropy-based differently implicational algorithm was proposed in [26], which in-
cluded its solving process and analysis of reversibility property. However, in [26], we
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did not show any specific computing example of the entropy-based differently implica-
tional algorithm. As a result, in order to help reader to understand this algorithm in a
deeper level, we add some examples here. Besides, these examples also verifies that the
entropy-based differently implicational algorithm is better than the fuzzy entropy full
implication algorithm (see what follows).

Example 5.1. Suppose U = {u1, u2, · · · , u7}, V = {v1, v2, · · · , v6}, and

A =
0.3

u1
+

0.9

u2
+

0.3

u3
+

0.5

u4
+

0.8

u5
+

0

u6
+

0.6

u7
,

B =
0.6

v1
+

0.8

v2
+

0.4

v3
+

0.7

v4
+

0.2

v5
+

0.85

v6
,

A∗ =
0.2

u1
+

1.0

u2
+

0.6

u3
+

0

u4
+

0.75

u5
+

0.3

u6
+

0.5

u7
.

Here →2 takes IGo, →1 takes IG. Then it follows from Example 2.17 that the formal
entropy-inference solution of FMP is as follows:

B∗
1(v) = 0.5 ∨ sup

u∈U
{A∗(u)× (A(u) →1 B(v))}.

Thus we obtain:

B∗
1(v1) = 0.5 ∨ sup

u∈U
{A∗(u)× (A(u) →1 B(v1))},

= 0.5 ∨ [A∗(u1)× (A(u1) →1 B(v1))] ∨ [A∗(u2)× (A(u2) →1 B(v1))]∨
· · · ∨ [A∗(u7)× (A(u7) →1 B(v1))],

= 0.5 ∨ [0.2× (0.3 →1 0.6)] ∨ [1.0× (0.9 →1 0.6)] ∨ [0.6× (0.3 →1 0.6)]

∨ [0× (0.5 →1 0.6)] ∨ [0.75× (0.8 →1 0.6)] ∨ [0.3× (0 →1 0.6)]

∨ [0.5× (0.6 →1 0.6)]

= 0.5 ∨ 0.2 ∨ 0.6 ∨ 0.6 ∨ 0 ∨ 0.45 ∨ 0.3 ∨ 0.5 = 0.6.

Similarly, we obtain:

B∗
1(v2) = 0.5 ∨ 0.2 ∨ 0.8 ∨ 0.6 ∨ 0 ∨ 0.75 ∨ 0.3 ∨ 0.5 = 0.8.

B∗
1(v3) = 0.5 ∨ 0.2 ∨ 0.4 ∨ 0.6 ∨ 0 ∨ 0.3 ∨ 0.3 ∨ 0.2 = 0.6.

B∗
1(v4) = 0.5 ∨ 0.2 ∨ 0.7 ∨ 0.6 ∨ 0 ∨ 0.525 ∨ 0.3 ∨ 0.5 = 0.7.

B∗
1(v5) = 0.5 ∨ 0.04 ∨ 0.2 ∨ 0.12 ∨ 0 ∨ 0.15 ∨ 0.3 ∨ 0.1 = 0.5.

B∗
1(v6) = 0.5 ∨ 0.2 ∨ 0.85 ∨ 0.6 ∨ 0 ∨ 0.75 ∨ 0.3 ∨ 0.5 = 0.85.

Together we get that the formal entropy-inference solution of FMP is as follows:

B∗
1 =

0.6

v1
+

0.8

v2
+

0.6

v3
+

0.7

v4
+

0.5

v5
+

0.85

v6
.

Example 5.2. Aiming at the same U, V,A,B,A∗ as Example 5.1, →2 takes IGo, and
→1 employs IGo. According to Example 2.17, we obtain the formal entropy-inference
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solution of FMP as follows:

B∗
2(v1) = 0.5 ∨ sup

u∈U
{A∗(u)× (A(u) →1 B(v1))},

= 0.5 ∨ [A∗(u1)× (A(u1) →1 B(v1))] ∨ [A∗(u2)× (A(u2) →1 B(v1))]∨
· · · ∨ [A∗(u7)× (A(u7) →1 B(v1))],

= 0.5 ∨ [0.2× (0.3 →1 0.6)] ∨ [1.0× (0.9 →1 0.6)] ∨ [0.6× (0.3 →1 0.6)]

∨ [0× (0.5 →1 0.6)] ∨ [0.75× (0.8 →1 0.6)] ∨ [0.3× (0 →1 0.6)]

∨ [0.5× (0.6 →1 0.6)]

= 0.5 ∨ 0.2 ∨ 2

3
∨ 0.6 ∨ 0 ∨ 9

16
∨ 0.3 ∨ 0.5 =

2

3
.

Furthermore, we have:

B∗
2(v2) = 0.5 ∨ 0.2 ∨ 8

9
∨ 0.6 ∨ 0 ∨ 0.75 ∨ 0.3 ∨ 0.5 =

8

9
.

B∗
2(v3) = 0.5 ∨ 0.2 ∨ 4

9
∨ 0.6 ∨ 0 ∨ 3

8
∨ 0.3 ∨ 1

3
= 0.6.

B∗
2(v4) = 0.5 ∨ 0.2 ∨ 7

9
∨ 0.6 ∨ 0 ∨ 21

32
∨ 0.3 ∨ 0.5 =

7

9
.

B∗
2(v5) = 0.5 ∨ 2

15
∨ 2

9
∨ 0.4 ∨ 0 ∨ 3

16
∨ 0.3 ∨ 1

6
= 0.5.

B∗
2(v6) = 0.5 ∨ 0.2 ∨ 17

18
∨ 0.6 ∨ 0 ∨ 0.75 ∨ 0.3 ∨ 0.5 =

17

18
.

Together we have

B∗
2 =

2/3

v1
+

8/9

v2
+

0.6

v3
+

7/9

v4
+

0.5

v5
+

17/18

v6
.

Remark 5.3. In Example 5.2, →1,→2 employ the same fuzzy implication, then the
entropy-based differently implicational algorithm degenerates into the fuzzy entropy full
implication algorithm. From Example 5.1, Example 5.2, it is easy to find B∗

1 ≤F B∗
2 ,

then it follows from Definition 2.12 that (noting that B∗
1(v) ∧B∗

2(v) ≥ 0.5, v ∈ V )

E(B∗
2) ≤ E(B∗

1),

that is, the fuzzy entropy of B∗
2 is smaller than the one of B∗

1 . Therefore, according to the
entropy-based differently implicational principle for FMP, the entropy-based differently
implicational algorithm can get better solution than the fuzzy entropy full implication
algorithm.

Example 5.4. Suppose U = {u1, u2, · · · , u6}, V = {v1, v2, · · · , v7}, and

A =
0.9

u1
+

0.3

u2
+

0.95

u3
+

0.5

u4
+

0.85

u5
+

0.6

u6
,

B =
0.6

v1
+

0.8

v2
+

0.85

v3
+

0.5

v4
+

0.4

v5
+

0.55

v6
+

0.3

v7
,

B∗ =
0.75

v1
+

0.2

v2
+

0.3

v3
+

0.9

v4
+

0.05

v5
+

0.1

v6
+

0.4

v7
.
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Here →2 takes IL, →1 takes IGo. Then we get from Example 2.22 that the formal
entropy-inference solution of FMT is as follows:

A∗
1(u) = 0.5 ∧ inf

v∈Fu

{1− (A(u) →1 B(v)) +B∗(v)}, u ∈ U,

where Fu = {v ∈ V | A(u) →1 B(v) > B∗(v)}.
For u1, we can get

Fu1 = {v ∈ V | A(u1) →1 B(v) > B∗(v)} = {v2, v3, v5, v6}.

Then it follows that

A∗
1(u1) = 0.5 ∧ inf

v∈Fu1

{1− (A(u1) →1 B(v)) +B∗(v)}

= 0.5 ∧ [1− (0.9 →1 0.8) + 0.2] ∧ [1− (0.9 →1 0.85) + 0.3]

∧ [1− (0.9 →1 0.4) + 0.05] ∧ [1− (0.9 →1 0.55) + 0.1]

= 0.5 ∧ 14

45
∧ 16

45
∧ 109

180
∧ 22

45
=

14

45
.

Similarly, we can obtain

A∗
1(u2) = 0.5 ∧ 0.75 ∧ 0.2 ∧ 0.3 ∧ 0.9 ∧ 0.05 ∧ 0.1 ∧ 0.4 = 0.05.

A∗
1(u3) = 0.5 ∧ 34

95
∧ 77

190
∧ 239

380
∧ 99

190
=

34

95
.

A∗
1(u4) = 0.5 ∧ 0.75 ∧ 0.2 ∧ 0.3 ∧ 0.9 ∧ 0.25 ∧ 0.1 ∧ 0.8 = 0.1.

A∗
1(u5) = 0.5 ∧ 22

85
∧ 0.3 ∧ 197

340
∧ 77

170
=

22

85
.

A∗
1(u6) = 0.5 ∧ 0.75 ∧ 0.2 ∧ 0.3 ∧ 23

60
∧ 11

60
∧ 0.9 =

11

60
.

The formal entropy-inference solution of FMT is as follows:

A∗
1 =

14/45

u1
+

0.05

u2
+

34/95

u3
+

0.1

u4
+

22/85

u5
+

11/60

u6
.

Example 5.5. Aiming at the same U, V,A,B,B∗ as Example 5.4, →2 takes IGo, and
→1 employs IGo. According to Example 2.22, we obtain the formal entropy-inference
solution of FMT as follows:

A∗
2(u) = 0.5 ∧ inf

v∈Fu

{B∗(v)/(A(u) →1 B(v))}, u ∈ U.

where Fu = {v ∈ V | A(u) →1 B(v) > B∗(v)}.
For u1, we can get

Fu1 = {v ∈ V | A(u1) →1 B(v) > B∗(v)} = {v2, v3, v5, v6}.
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Then

A∗
2(u1) = 0.5 ∧ inf

v∈Fu1

{B∗(v)/(A(u1) →1 B(v))}

= 0.5 ∧ [0.2/(0.9 →1 0.8)] ∧ [0.3/(0.9 →1 0.85)]

∧ [0.05/(0.9 →1 0.4)] ∧ [0.1/(0.9 →1 0.55)]

= 0.5 ∧ 9

40
∧ 27

85
∧ 9

80
∧ 9

55
=

9

80
.

Similarly, we can obtain

A∗
2(u2) = 0.5 ∧ 0.75 ∧ 0.2 ∧ 0.3 ∧ 0.9 ∧ 0.05 ∧ 0.1 ∧ 0.4 = 0.05.

A∗
2(u3) = 0.5 ∧ 19

80
∧ 57

170
∧ 19

160
∧ 19

110
=

19

160
.

A∗
2(u4) = 0.5 ∧ 0.75 ∧ 0.2 ∧ 0.3 ∧ 0.9 ∧ 1

16
∧ 0.1 ∧ 2

3
=

1

16
.

A∗
2(u5) = 0.5 ∧ 17

80
∧ 0.3 ∧ 17

160
∧ 17

110
=

17

160
.

A∗
2(u6) = 0.5 ∧ 0.75 ∧ 0.2 ∧ 0.3 ∧ 3

40
∧ 6

55
∧ 0.8 =

3

40
.

Together we get

A∗
2 =

9/80

u1
+

0.05

u2
+

19/160

u3
+

1/16

u4
+

17/160

u5
+

3/40

u6
.

Remark 5.6. In Example 5.5, →1,→2 both take IGo, then the entropy-based differently
implicational algorithm degenerates into the fuzzy entropy full implication algorithm. It
follows from Example 5.4 and Example 5.5 that A∗

1 ≥F A∗
2, then we get from Definition

2.12 that (noting that A∗
1(u) ∨A∗

2(u) ≤ 0.5, u ∈ U)

E(A∗
2) ≤ E(A∗

1).

As a result, in the light of the entropy-based differently implicational principle for FMT,
the entropy-based differently implicational algorithm can obtain better solution than
the fuzzy entropy full implication algorithm.

6. DISCUSSION

Here we should point out that the results obtained above can be generalized for the case
of p rules and q inputs. We give the interpretation for the case of FMP (while the case
of FMT can be similarly verified).

When there are p rules, (1) is changed into

FMP: from Ai → Bi (i = 1, 2, . . . , p) and input A∗, compute B∗, (21)

where Ai, A
∗ ∈ F (U), Bi, B

∗ ∈ F (V ) (i = 1, 2, . . . , p).
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Similar to [17][34], the inference relation of the i-th rule can be considered as a fuzzy
relation from U to V (i = 1, · · · , p), which is represented by Ai(u) →1 Bi(v). And such
p rules can be connected by “or” relation, so the whole rule should be

ρ1(u, v) , ∨p
i=1(Ai(u) →1 Bi(v)).

Given A∗ ∈ F (U), the inference conclusion B∗ ∈ F (V ) can be achieved by the
entropy-based differently implicational algorithm. Thus (4) should be transformed into:

ρ1(u, v) →2 (A∗(u) →2 B∗(v)). (22)

Obviously, the previous R1(u, v) for (1) is changed into ρ1(u, v) for (21). Then it is
similar to Theorem 2.16, we can obtain the following theorem:

Theorem 6.1. Suppose that →2 is an R-implication, and that T is a left-continuous
t-norm, and that →2 is a residual of T , then the formal entropy-inference solution for
(22) of FMP can be computed as follows:

B∗(v) = 0.5 ∨ sup
u∈U

{T (A∗(u), ρ1(u, v))}, v ∈ V. (23)

For (4) and (22), the proving process for continuity is same for R1(u, v) and ρ1(u, v),
so the change from R1(u, v) to ρ1(u, v) does not influence the continuity. Then, it is
obvious to know that all the results for continuity obtained above (for one rule) are also
correct for the case of p rules.

Furthermore, for the case of p rules and q inputs, here we use q = 2 to explain the
problem (noting that the conclusion is similar when q employs other value). Then (1)
is changed into

FMP: from Ai, Bi → Ci (i = 1, 2, . . . , p) and input A∗, B∗, compute C∗, (24)

where Ai, A
∗ ∈ F (U), Bi, B

∗ ∈ F (V ), Ci, C
∗ ∈ F (W ) (i = 1, 2, . . . , p).

Similarly the inference relation of i−th rule can be transformed into (Ai(u)∧Bi(v)) →1

Ci(w), and we obtain the whole rule

ϱ1(u, v, w) , ∨p
i=1((Ai(u) ∧Bi(v)) →1 Ci(w)).

Thus (4) should be changed into:

ϱ1(u, v, w) →2 ((A∗(u) ∧B∗(v)) →2 C∗(w)). (25)

Obviously, the previous R1(u, v) for (1) is changed into ϱ1(u, v, w) for (24). Then it
is similar to Theorem 2.16, we can obtain the following theorem:

Theorem 6.2. Suppose that →2 is an R-implication, and that T is a left-continuous
t-norm, and that I is a residual of T , then the formal entropy-inference solution for (25)
of FMP can be computed as follows:

B∗(v) = 0.5 ∨ sup
u∈U

{T ((A∗(u) ∧B∗(v)), ϱ1(u, v, w))}, v ∈ V. (26)
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Due to the input is changed, then Definition 3.1 is adjusted into the following Defi-
nition 6.3:

Definition 6.3. A fuzzy inference algorithm for FMP (24) is a mapping f : F (U) ×
F (V ) → F (W ), i.e., there exists an output C∗ = f(A∗, B∗) ∈ F (W ) for any input
A∗ ∈ F (U), B∗ ∈ F (V ).

(i) For any ε > 0, if there exists δ > 0 making d(f(A∗
1, B

∗
1), f(A

∗
2, B

∗
2)) < ε whenever

d(A∗
1, A

∗
2) < δ and d(B∗

1 , B
∗
2) < δ for any A∗

1, A
∗
2 ∈ F (U), B∗

1 , B
∗
2 ∈ F (V ), then f is said

to be uniformly continuous in metric d;
(ii) For any ε > 0, if there exists δ > 0 making d(f(A∗, B∗), f(A,B)) < ε whenever

d(A∗, A) < δ and d(B∗, B) < δ for any A∗ ∈ F (U), B∗ ∈ F (V ), then f is said to be
continuous at A ∈ F (U), B ∈ F (V ) in metric d.

Here we compare (4) with (25). The verifying process for continuity is same for
R1(u, v) and ϱ1(u, v, w). Moreover, the operation ∧ keeps the continuity, then the al-
ternation from A∗(u) to A∗(u) ∧ B∗(v) does not affect the continuity. Consequently, it
is evident to find that all the results for continuity mentioned above are also correct for
the case of p rules and q inputs.

Finally, we discuss the duty of first fuzzy implication→1 and second fuzzy implication
→2 in the entropy-based differently implicational algorithm. On the one hand, it is
easy to find that the form of the solution of the entropy-based differently implicational
algorithm is basically determined only if →2 employs a fuzzy implication, and thus →2

determines the inference mechanism (see Theorem 2.16, Theorem 6.1, Theorem 6.2). On
the other hand, →1 frequently exists as the form of R1(u, v) (or ρ1(u, v), ϱ1(u, v, w)),
which reflects the effect of rule base. Moreover, →2 has leading status for the entropy-
based differently implicational algorithm due to its effect on direction of inference.

To sum up, →2 and→1 respectively reflects the inference mechanism and effect of rule
base. As a result, the mode which makes →1,→2 employ different fuzzy implications,
indicates separating of the rule base and reasoning mechanism, which further shows the
reasonability of the entropy-based differently implicational algorithm.

7. CONCLUSIONS

We previously proposed the entropy-based differently implicational algorithm of fuzzy
inference, and obtained some preliminary results. Following this, here we investigated
its continuity for the FMP and FMT problems. In detail, the continuous together with
uniformly continuous properties of the entropy-based differently implicational algorithm
are verified for six typical R-implications in the Tchebyshev metric and Hamming metric.
Moreover, some numerical fuzzy inference examples are shown, which demonstrate that
the entropy-based differently implicational algorithm can achieve better solution than
the fuzzy entropy full implication algorithm. Lastly, it is pointed out that →2 and →1

respectively reflects the inference mechanism and effect of rule base. These works would
accelerate the development of the fields of fuzzy inference, fuzzy logic, fuzzy controller
as well as related applications. In the future, it is worth studying the entropy-based
differently implicational algorithm and other fuzzy inference strategies in the frame of
Granular Computing (see [22][23][24]).
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In [36], we proposed the symmetric implicational method which was derived from

(A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)). (27)

The main advantage of the symmetric implicational method is to consider the factors
of both the logic system and the reasoning model, thus it is better than the differently
implicational algorithm from this angle. However, from another viewpoint (e.g. fuzzy
controllers), the differently implicational algorithm may have better performance than
the symmetric implicational method. Then a question arise: Whether does the symmet-
ric implicational method perform better than the differently implicational algorithm?
A direct conclusion about this cannot be easily reached, and it is our next topic to be
discovered.
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