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Abstract

On account of the idea of maximum fuzzy entropy and symmetric implicational mechanism under the environment
of intuitionistic fuzzy sets, we come up with the intuitionistic fuzzy entropy derived symmetric implicational (IFESI)
algorithm. Above all, novel symmetric implicational principles are presented, and the unified solutions of the IFESI
algorithm are acquired for IFMP (intuitionistic fuzzy modus ponens) and IFMT (intuitionistic fuzzy modus ponens),
which build upon in view of residual intuitionistic implications. Thereafter, the reductive properties and continuity of
the IFESI algorithm are validated for IFMP and IFMT. In addition, the IFESI algorithm is extended to the α-IFESI
algorithm, and the unified solutions of the α-IFESI algorithm are obtained for IFMP and IFMT. Finally, two examples
of fuzzy classification for the α-IFESI algorithm are presented to demonstrate the detailed computing process of the
IFESI algorithm.

Keywords: Fuzzy reasoning, intuitionistic fuzzy entropy, compositional rule of inference, symmetric implicational al-
gorithm, reductive property, continuity.

1 Introduction

The research of fuzzy set [23, 26, 33] has been carried out by scholars all over the world, and has made rapid development
in just a few decades. Fuzzy set theory has many important directions, it is worth mentioning that fuzzy reasoning
[1, 25], as an indispensable part of the theory, is a top priority of research. There are two kinds of reasoning processes
in fuzzy sets, namely fuzzy modus ponens (FMP) and fuzzy modus tollens (FMT):

FMP: from given rule A → B, and input A∗, calculate B∗(output), (1)

FMP: from given rule A → B, and input B∗, calculate A∗(output), (2)

Here A and A∗ are fuzzy sets on domain X, while B and B∗ are fuzzy sets on domain Y .
To deal with the FMP and FMT problems, the compositional rule of inference (CRI) was proposed by Zadeh in

1973 [2, 34]. Fuzzy reasoning by using CRI method has been applied in many fields. Enlightened by the idea of the
CRI method, Wang proposed a new algorithm called the full implication method in 1999 [29].
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The core idea of the full implication method is to find the smallest B∗ ∈ F (Y ) for FMP (or largest A∗ ∈ F (X) for
FMT) so that the following equation

(A(x) → B(y)) → (A∗(x) → B∗(y)), (3)

is maximized for all x ∈ X, y ∈ Y , where F (X) and F (Y ) represent the sets of all fuzzy sets on X and Y , respectively.
Since then, many scholars have carried out studies on the properties and improvements of the full implication method,

and they have made many valuable contributions to the important improvements of the full implication method. Wang
solved the formalization problem of the full implication method for general fuzzy reasoning [30]. Wang and Fu presented
the unified form of the solution of the full implication method based on regular implication [32]. Pei [20] systematically
discussed the full implication method with unified forms. Zhang and Yang [35] provided the concept of generalized
roots of theories, and then investigated the full implication method in four kinds of propositional logic systems. Pei
discussed the same problem based on the first-order logic system, and proposed a perfect unified full implication method
in logic reasoning system [21]. Wang and Duan came up with a finer measure for appraising robustness, and researched
the robustness of the full implication method related to the finer measurements [31]. Luo and Liu [15] put forward
the sensitivity interval-valued fuzzy connectives, and then discussed the robustness of interval-valued full implication
method. Luo and Wang [16] proposed general reasoning algorithms on the basis of interval-valued fuzzy sets, that
was the interval-valued full implication method based on the left-continuous t-representable t-norm. Based on such
researches, it is found that the full implication method has a strict logical basis, reducibility, continuity, robustness and
many other advantages.

From a quite different viewpoint, the first and third fuzzy implications in (3) of the full implication method can be
deemed as the implication connective in a logic system; and the second fuzzy implication in (3) reflects “if-then” relation
of fuzzy inference model “if A implies B, then A∗ implies B∗”. In consideration of such idea, in [27], we generalized (3)
into the following structure:

(A(u) →1 B(v)) →2 (A∗(u) →1 B∗(v)). (4)

Here →1,→2 are two fuzzy implications. The corresponding fuzzy reasoning method is referred to as the symmetric
implicational method. It was validated in [27] that the symmetric implicational method has achieved remarkable results.
In [24], we further researched the α(u, v)-symmetric implicational method, in which the R- and (S, N)-implications were
used. Dai [8] established the predicate formal representation of the symmetric implication method in the formal logic
system, which provided a solid logical foundation for the symmetric implication method.

However, there are many phenomena in the real world that cannot be expressed formally by fuzzy sets [28]. As a
generalization of fuzzy sets, intuitionistic fuzzy sets introduce the concepts of membership and non-membership, which
have a better ability to express the fuzziness of everyday things. Here we show an example. Let us analyze a traveling
salesman who has a limit on how far he can travel and cannot arrive at all cities, but he has some information about
the cities where the biggest sales can occur. As a result, the goal here is to maximize entire sales within a limited travel
distance. Suppose that A is a collection of all the cities that the salesman can reach, and that x ∈ A denotes a city
reached by the salesman, then the membership degree of the cities reached by the salesman can be characterized by
πA(x). On this occasion, an ordinary fuzzy set is able to be utilized, however it cannot represent the case where we need
to appraise the quantity of cities that a salesman cannot reach. Aiming at such situation, we demand the intuitionistic
fuzzy set, in which the degree of non-membership can be computed as τA(x). In addition, it can occur that the salesman
reaches a city but is unable to sell his product because the customers are unavailable or the store is closed, which can
be indicated by the hesitancy degree (as 1−πA(x)−τA(x)) of the intuitionistic fuzzy set. Furthermore, some operators,
such as the modal operators, can be designed for intuitionistic fuzzy sets, but not for fuzzy sets. These operators exhibit
a detailed evaluation for the existing information. Intuitionistic fuzzy set theory proposed by Atanassov has been widely
used in cluster analysis, pattern recognition and group decision making [7], [14]. When the objects involved by fuzzy
reasoning needs to be characterized by the intuitionistic fuzzy sets, fuzzy reasoning evolves into intuitionistic fuzzy
reasoning, which is similar to ordinary fuzzy reasoning in its research methods. The core problem of intuitionistic fuzzy
reasoning is to solve the IFMP (intuitionistic FMP) and IFMT (intuitionistic FMT) problem. Therefore, it is reasonable
to include fuzzy reasoning into intuitionistic fuzzy reasoning. In recent years, some scholars have tried to construct the
logical basis of intuitionistic fuzzy reasoning. Deschrijver [9, 10] completed a preliminary study of the relevant theories
of intuitionistic fuzzy implication, and put forward the intuitionistic fuzzy triangle norm and triangle conorm. In [17],
the interval-valued fuzzy reasoning method based on similarity measure for FMP and FMT was proposed, and the
solutions of interval-valued fuzzy reasoning method based on similarity measure were given. Zheng et al. put forward
residual intuitionistic implication, then established the full implication method based on intuitionistic fuzzy sets [36].

In addition, there are usually more than a single fuzzy set that satisfies the maximum of (3), but only the minimum
is taken as the inference result for FMP. Similarly, there are usually more than one fuzzy set that satisfies the maximum
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(3), but only the maximum is taken as the inference result for FMT. Are they the most reasonable solutions? Aiming at
such kinds of problems, Jaynes proposed the maximum entropy principle in 1975 to deal with uncertainty information
problems. The central idea is that “in the process of reasoning with incomplete information, we must use the maximum
distribution of entropy under the constraints of known conditions, which is the only unbiased dispatch we can do, and
any other dispatch is equivalent to any assumption of our unknown information”. Burillo and Bustince [6] presented
the intuitionistic fuzzy entropy and gave the axiomatic definition and the calculation formula of intuitionistic fuzzy
entropy. Szmidt and Kacprzyk [22] proposed an entropy measure with a geometric interpretation of intuitionistic fuzzy
sets. To solve the problem of group decision making in which the criteria weight and the weight of decision makers
were completely unknown in the intuitionistic fuzzy environment, Melo-Pinto et al. [19] proposed a multi-criteria group
decision method based on improved intuitionistic fuzzy entropy and information integration operator. From the point
of view of this maximum entropy principle, we found that the criterion of maximum entropy can offer an excellent
interpretation for how to select the optimal outcome of the fuzzy reasoning strategy.

As a result, in this study, we combine the symmetric implicational idea with maximum entropy under the environment
of intuitionistic fuzzy sets, and we propose the intuitionistic fuzzy entropy derived symmetric implicational (IFESI)
algorithm, and then we extend it to the α-version.

The innovation points of the IFESI algorithm are reflected by the following aspects. First of all, the maximum
entropy principle is introduced into the symmetric implicational idea, and new fuzzy reasoning principles are presented.
Second, unified structures of optimal solutions of the IFESI algorithm are established for IFMP, IFMT together with
the case of α-version. Finally, the reductive properties and continuity are validated for both IFMP and IFMT under
the category of the IFESI algorithm.

2 Preliminaries

Definition 2.1. [5] A fuzzy implication on L = [0, 1] is a function → from L2 to L such that the following conditions
hold:

(P1) 0 → 0 = 1, 1 → 1 = 1, 1 → 0 = 0,
(P2) x → z ≥ y → z if x ≤ y,
(P3) x → y ≥ x → z if y ≥ z.

According to Definition 2.1, the relationship
(P4) 0 → x = x → 1 = 1 (x ∈ [0, 1])

holds for any fuzzy implication → (noting 0 → 1 = 1 obviously holds).

Definition 2.2. [13] Suppose that ⊗,→ are two L2 → L mappings, (⊗,→) is said to be a residual pair (or ⊗ and →
are residual to each other), if x ⊗ y ≤ z ⇐⇒ y ≤ x → z holds for any x, y, z ∈ [0, 1], which is called the residual
condition.

Definition 2.3. [13] A fuzzy negation is a decreasing function N : [0, 1] → [0, 1] which satisfies N(0) = 1, N(1) = 0.

For example, N(x) = 1− x is the classical negation.

Definition 2.4. [13] A binary operation ⊗ is called the triangular norm (t-norm for short) if ⊗ satisfies the following
four properties (x, y, z ∈ L):

(P5) x⊗ y = y ⊗ x,
(P6) (x⊗ y)⊗ z = x⊗ (y ⊗ z),
(P7) x⊗ y ≤ x⊗ z iff (if and only if) y ≤ z,
(P8) x⊗ 1 = x.
A binary operation ⊕ is said to be the triangular conorm (t-conorm for short) if ⊕ satisfies (P5), (P6), (P7) and
(P9) x⊕ 0 = 0.
For a triangular norm ⊗, if x ⊕ y = N(N(x) ⊗N(y)) (x, y ∈ L), then the t-conorm ⊕ is called the dual t-conorm

of ⊗. Similarly, if x⊗ y = N(N(x)⊕N(y)) (x, y ∈ L), then ⊗ is called the dual t-conorm of ⊕.

Definition 2.5. [13] A t-norm ⊗ is left-continuous, if ⊗ satisfies for any xi, y ∈ L (where Q is a set of subscripts),

( ∨
i∈Q

xi)⊗ y = ∨
i∈Q

(xi ⊗ y). (5)

The t-conorm ⊕ is right-continuous, if ⊕ meets for any xi, y ∈ L,

( ∧
i∈Q

xi)⊕ y = ∧
i∈Q

(xi ⊕ y). (6)
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Proposition 2.6. [13] A t-conorm is left-continuous iff its dual t-conorm is right-continuous.

Definition 2.7. [18] A mapping → from L2 to L is called an R-implication, if there exists a left-continuous t-norm ⊗
such that

x → y = sup{z ∈ [0, 1] | x⊗ z ≤ y}, x, y ∈ L. (7)

Proposition 2.8. [36] If the t-conorm ⊕ is right-continuous, then there is a binary operation ⊖ (the ⊕-the coresiduum),
so that (⊕,⊖) constructs a co-adjoint pair, that is,

x ≤ y ⊕ z iff x⊖ z ≤ y, (8)

where ⊖ is given by
x⊖ y = ∧{z ∈ L|x ≤ z ⊕ y}. (9)

Definition 2.9. [36] The operations →, ⊕, ⊖ are referred to as associative operators of t-norm ⊗, whenever (⊗,→)
is an adjoint pair, and (⊕,⊖) is a co-adjoint pair, and ⊕ is the dual t-conorm of ⊗.

Proposition 2.10. [36] If →, ⊕, ⊖ are associative operators of the t-norm ⊗, then x⊖ y = 1− (1− y) → (1− x).

Example 2.11. Here are four important t-norms. The first three are continuous, while the last one is left-continuous.
(i) a⊗G b = a ∧ b (Gödel t-norm),
(ii) a⊗Lu b = (a+ b− 1) ∨ 0 (Lukasiewicz t-norm),
(iii) a⊗π = ab (Product t-norm)

(iv) a⊗0 b =

{
0, a+ b ≤ 1;

a ∧ b, a+ b > 1.
(Nilpotent minimum t-norm).

The associate operators of these four t-norms are in turn as follows:

(i) a →G b =

{
1, a ≤ b;
b, a > b.

a⊕G b = a ∨ b. b⊖G a =

{
0, b ≤ a,
b, b > a.

(ii) a →Lu b = (1− a+ b) ∧ 1. a⊕Lu b = (a+ b) ∧ 1. b⊖Lu a = (b− a) ∨ 0.

(iii) a →π b =

{
1, a ≤ b;
b
a , a > b.

a⊕π b = a+ b− ab. b⊖π a =

{
0, b ≤ a;

b−a
1−a , b > a.

(iv) a →0 b =

{
1, a ≤ b;

(1− a) ∨ b, a > b.
a⊕0 b =

{
1, a+ b ≥ 1;

a ∨ b, a+ b < 1.
b⊖0 a =

{
0, b ≤ a;

b ∧ (1− a), b > a.

Lemma 2.12. [11, 32] Let → be an R-implication obtained from a left-continuous t-norm ⊗, then → satisfies (P1),
(P2), (P3), (P4) as well as the following conditions:

(P10) x ≤ y ⇐⇒ x → y = 1,
(P11) 1 → x = x,
(P12) → is left-continuous w.r.t. the first variable and right-continuous w.r.t. the second variable,
(P13) x → (y → z) = y → (x → z),
(P14) (x⊗ y) → z = x → (y → z),
(P15) x ≤ y → z ⇐⇒ y ≤ x → z,
(P16) (supx∈X x) → y = infx∈X(x → y),
(P17) y → (infx∈X x) = infx∈X(y → x),

in which x, y, z ∈ [0, 1] and X ⊂ [0, 1], X ̸= ∅.

Definition 2.13. [3] An intuitionistic fuzzy set A over the non-empty domain X is characterized by A = {⟨x, πA(x),
τA(x) | x inX⟩}, in which πA : X → [0, 1], τA : X → [0, 1] and 0 ≤ πA(x) + τA(x) ≤ 1, x ∈ X. Here πA(x) and τA(x)
represent a membership function and a non-membership function from X to A in turn. Obviously the intuitionistic
fuzzy set A on X is rewritten as A(x) = (a, b), 0 ≤ a+ b ≤ 1, a, b ∈ [0, 1], x ∈ X.

As an extension of fuzzy sets, intuitionistic fuzzy sets extend the domain from [0,1] to the triangular domain L∗ =
{(a, b) ∈ [0, 1]2|a+ b ≤ 1}.

We denote IF (X) as the set of all of the intuitions fuzzy sets on X. When πA(x) = 1− τA(x) , the intuitional fuzzy
set becomes a fuzzy set.

Definition 2.14. [36] For a, b ∈ L∗ where a = (a1, a2) and b = (b1, b2), we define the partial order relation on L∗ as
a ≤ b ⇐⇒ a1 ≤ b1, a2 ≥ b2. Obviously, a ∧ b = (a1 ∧ b1, a2 ∨ b2), a ∨ b = (a1 ∨ b1, a2 ∧ b2).
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0∗ = (0, 1) and 1∗ = (1, 0) are the smallest and largest elements on L∗, in turn. It is easy to show that (L∗,≤) is a
complete lattice.

Definition 2.15. [36] For a, b ∈ L∗ where a = (a1, a2) and b = (b1, b2), the binary operator ⊗L∗ and ⊕L∗ are
characterized as follows:

a⊗L∗ b = (a1 ⊗ b1, a2 ⊕ b2), (10)

a⊕L∗ b = (a1 ⊕ b1, a2 ⊗ b2), (11)

in which ⊕ is the dual t-conorm of the t-norm ⊗. Then ⊗L∗ is said to be an intuitionistic t-norm derived from t-norm
⊗, while ⊕L∗ is known as an intuitionistic t-conorm derived from t-norm ⊕.

Proposition 2.16. [36] (L∗,⊗L∗ , 1∗) is a commutative monoid, and ⊗L∗ is isotone; (L∗,⊕L∗ , 0∗) is a commutative
monoid, and ⊕L∗ is isotone.

Proposition 2.17. [36] If the t-norm ⊗ is left-continuous, then
(i) ⊗L∗ is a left-continuous intuitionistic t-norm on L∗, that is (where I is a set of subscripts), (∨i∈Iai) ⊗L∗ c =
∨i∈I(ai ⊗L∗ c), ai, c ∈ L∗;
(ii) ⊕L∗ is a right-continuous intuitionistic t-conorm on L∗, that is (where I is a set of subscripts), (∧i∈Iai) ⊕L∗ c =
∧i∈I(ai ⊕L∗ c), ai, c ∈ L∗.

Proposition 2.18. [10] Suppose that ⊗L∗ is an intuitionistic t-norm generated by a left-continuous t-norm ⊗, then
there is a binary operator →L∗ to make

a⊗L∗ b ≤ c ⇐⇒ a ≤ b →L∗ c, (12)

in which →L∗ is computed by
a →L∗ b = ∨{d ∈ L∗|d⊗L∗ a ≤ b}. (13)

Definition 2.19. [36] If (⊗L∗ ,→L∗) meets (12), then (⊗L∗ ,→L∗) is called an intuitionistic adjoint pair, and →L∗ is
called a residual intuitionistic implication.

Proposition 2.20. [36] Suppose that ⊗L∗ is an intuitionistic t-norm and (⊗L∗ ,→L∗) is an intuitionistic adjoint pair,
then (a, b, c, ai, bi ∈ L∗)

(P18) a →L∗ b = 1∗ ⇐⇒ a ≤ b,
(P19) c ≤ a →L∗ b ⇐⇒ a ≤ c →L∗ b,
(P20) c →L∗ (a →L∗ b) = a →L∗ (c →L∗ b),
(P21) 1∗ →L∗ a = a,
(P22) b →L∗ (∧i∈Iai) = ∧i∈I(b →L∗ ai),
(P23) ∨i∈Ibi →L∗ a = ∨i∈I(bi →L∗ a),
(P24) →L∗ decreases w.r.t. the first variable and increases w.r.t. the second variable.

Proposition 2.21. [36] If →L∗ is a residual intuitionistic implication generated by a left-continuous t-norm ⊗, then
(a, b ∈ L∗, a = (a1, a2), b = (b1, b2),)

a →L∗ b = ((a1 → b1) ∧ (1− (b2 ⊖ a2)), b2 ⊖ a2). (14)

Proposition 2.22. [36] If →L∗ is a residual intuitionistic implication reduced by a left-continuous t-norm ⊗, then
a ≤ (a →L∗ 0∗) →L∗ 0∗ (a ∈ L∗).

Definition 2.23. [22] E is an entropy measure of IF (U) if it meets the following axiomatic requirements:
(i) E(A) = 0 iff A is a crisp set;
(ii) E(A) = 1 iff πA(u) = τA(u) for any u ∈ U ;
(iii) E(A) = E(Ac), where Ac is the complement of A (i.e.,Ac = {< u, τA(u), πA(u) > |u ∈ U});
(iv) E(A) ≤ E(B), if for any u ∈ U ,

πA(u) ≥ πB(u), τB(u) ≥ τA(u) for πB(u) ≥ τB(u),

or
πA(u) ≤ πB(u), τB(u) ≤ τA(u) for πB(u) ≤ τB(u).

There are many examples of fuzzy entropies. For example, the following is a commonly encountered fuzzy entropy:

EZL (A) = 1− 1

n

n∑
i=1

|πA (ui)− τA (ui)| . (15)
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3 The IFESI algorithm for IFMP

The IFMP problem is described as follows:

Assuming A(x) →∗ B(y) · · · Major premise

Given A∗(x) · · · Minor premise

−−−−−− −−−−−−−−− −−−−−−−−−−
Calculate B∗(y) · · · Conclusion

Here A and A∗ are two intuitionistic fuzzy sets onX. B and B∗ are two intuitionistic fuzzy sets on Y . →∗ is a residual
intuitionistic fuzzy implication on L∗. Besides, A(x) = (πA(x), τA(x)), B(y) = (πB(y), τB(y)), A

∗(x) = (π∗
A(x), τ

∗
A(x)).

From the idea of the IFESI algorithm for IFMP, we establish the following principle:
Basic IFESI principle for IFMP: The result B∗ of the IFMP problem is the intuitionistic fuzzy set with maximum

entropy such that
(A(x) →∗1 B(y)) →∗2 (A∗(x) →∗1 B∗(y)), (16)

gets its maximum for any x ∈ X, y ∈ Y , in which →∗1,→∗2 are two residual intuitionistic fuzzy implications.

Definition 3.1. Let A,A∗ ∈ IF (X), B ∈ IF (Y ), if B∗ (in IF (Y )) makes (16) take its maximum for any x ∈ X, y ∈ Y .
Then B∗ is said to be an IFESI solution for IFMP.

Definition 3.2. Assume that A,A∗ ∈ IF (X), B ∈ IF (Y ), and that nonempty set B is the set of all IFESI solutions
for IFMP, and finally that D∗ is the intuitionistic fuzzy set with maximum entropy in B. Then D∗ is said to be a formal
IFESI solution for IFMP.

Theorem 3.3. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, then the formal IFESI solution for IFMP is as follows (y ∈ Y ):

B∗(y) = ∨
x∈X

{A∗(x)⊗∗1 (A(x) →∗1 B(y))} ∨ (0.5, 0.5). (17)

Proof. Denote D∗(y) = ∨
x∈X

{A∗(x) ⊗∗1 (A(x) →∗1 B(y))} for y ∈ Y . Let us first prove that D∗ is the intuitionistic

fuzzy set that maximizes (16). Obviously the maximum of (16) is 1∗.
Note that (⊗∗1,→∗1) is an intuitionistic adjoint pair. According to the expression of D∗, Proposition 2.18, and

Proposition 2.20, it is known that (x ∈ X, y ∈ Y )

A∗(x)⊗∗1 (A(x) →∗1 B(y)) ≤ D∗(y), (A(x) →∗1 B(y))⊗∗1 A
∗(x) ≤ D∗(y),

A(x) →∗1 B(y) ≤ A∗(x) →∗1 D∗(y), (A(x) →∗1 B(y)) →∗2 (A∗(x) →∗1 D∗(y)) = 1∗.

So D∗ is an IFESI solution.
Furthermore, we prove that D∗ is the minimum of all IFESI solutions for IFMP.
Suppose that C is any IFESI solution for IFMP. Notice that (⊗∗1,→∗1) is an intuitionistic adjoint pair. Then from

Proposition 2.18 and Proposition 2.20, one has

(A(x) →∗1 B(y)) →∗2 (A∗(x) →∗1 C(y)) = 1∗, A(x) →∗1 B(y) ≤ A∗(x) →∗1 C(y),

(A(x) →∗1 B(y))⊗∗1 A
∗(x) ≤ C(y), A∗(x)⊗∗1 (A(x) →∗1 B(y)) ≤ C(y).

It can be known that C(y) is an upper bound of {A∗(x)⊗∗1 (A(x) →∗1 B(y)) | x ∈ X}, y ∈ Y.
So D∗(y) ≤ C(y) (y ∈ Y ) and D∗ is the minimum of B.
Because D∗(y) ≤ B∗(y) (y ∈ Y ), we have B∗ ∈ B.
Finally, we further prove that B∗ is the solution with maximum entropy in B. Suppose that Bk is any intuitionistic

fuzzy set in B. Obviously D∗(y) ≤ Bk(y) (y ∈ Y ).
It can be split into the following three scenarios (y ∈ Y ).
(i) D∗(y) ≤ Bk(y) ≤ (0.5, 0.5). Note that B∗(y) = D∗(y)∨ (0.5, 0.5). At this time we have B∗(y) = (0.5, 0.5). Then

we can view it as πB∗ ≤ τB∗ . Hence we have πBk
≤ πB∗ , τB∗ ≤ τBk

, for πB∗ ≤ τB∗ .
(ii) D∗(y) ≤ (0.5, 0.5) ≤ Bk(y). Here we also have B∗(y) = (0.5, 0.5). Then we can view it as πB∗ ≥ τB∗ . So we get

πBk
≥ πB∗ , τB∗ ≥ τBk

, for πB∗ ≥ τB∗ .
(iii) (0.5, 0.5) ≤ D∗(y) ≤ Bk(y). Then one has B∗ = D∗ , so we can get 0.5 ≤ πB∗ ≤ πBk

, 0.5 ≥ τB∗ ≥ τBk
, then

πB∗ ≥ τB∗ . So we have πBk
≥ πB∗ , τB∗ ≥ τBk

, for πB∗ ≥ τB∗ .
For these three scenarios, it follows from Definition 2.12 that one has E(Bk) ≤ E(B∗).
To sum up, B∗ is the solution with maximum entropy in B, i.e., the formal IFESI solution for IFMP.
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Proposition 3.4. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, and that ⊗∗1 corresponds to ⊗1, and that →1, ⊕1, ⊖1 are associative operators of ⊗1,
then the formal IFESI solution B∗(y) = (πB∗(y), τB∗(y)) for IFMP can be expressed as (y ∈ Y ):

πB∗(y) = ∨x∈X{πA∗(x)⊗1 ((πA(x) →1 πB(y)) ∧ (1− (τB(y)⊖1 τA(x))))} ∨ 0.5,

τB∗(y) = ∧x∈X{τA∗(x)⊕1 (τB(y)⊖1 τA(x))} ∧ 0.5.
(18)

Proof. From Proposition 2.21, we have A(x) →∗1 B(y) = ((πA(x) →1 πB(y))∧ (1− (τB(y)⊖1 τA(x))), τB(y)⊖1 τA(x)).
From Definition 2.9 and Definition 2.10, we know that a ∨ b = (a1 ∨ b1, a2 ∧ b2) and a ⊗L∗ b = (a1 ⊗ b1, a2 ⊕ b2)

(a, b ∈ L∗).
From Theorem 3.3, the formal IFESI solution for IFMP is B∗(y) = ∨

x∈X
{A∗(x) ⊗∗1 (A(x) →∗1 B(y))} ∨ (0.5, 0.5)

(y ∈ Y ).
Together we get that (18) holds.

Definition 3.5. Aiming at an algorithm to deal with IFMP problem, when the condition (C) is met, if A∗ = A means
B∗ = B , then the algorithm is said to be C-reductive.

Theorem 3.6. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, when the following two conditions are satisfied:

(P25) Ey = {x ∈ X | (0.5, 0.5) ≤ A(x)⊗∗1 (A(x) →∗1 B(y))} ̸= ∅ holds for any y ∈ Y ,
(P26) there exists x0 ∈ Ey to let A(x0) = 1∗,

then the IFESI algorithm for IFMP is C-reductive, in which

C means (P25) + (P26).

Proof. Suppose that A∗ = A. It follows from Theorem 3.3 that the formal IFESI solution for IFMP is

B∗(y) = ∨
x∈X

{A∗(x)⊗∗1 (A(x) →∗1 B(y))} ∨ (0.5, 0.5) = ∨
x∈Ey

{A(x)⊗∗1 (A(x) →∗1 B(y))}. (19)

On the one hand, we prove B(y) ≤ B∗(y) (y ∈ Y ).
Note that (⊗∗1,→∗1) is an intuitionistic adjoint pair and that there exists x0 ∈ Ey such that A(x0) = 1∗. According

to the expression of (19), Proposition 2.18, and Proposition 2.20, one has (y ∈ Y )

A(x0)⊗∗1 (A(x0) →∗1 B(y)) ≤ B∗(y), (A(x0) →∗1 B(y))⊗∗1 A(x0) ≤ B∗(y),

A(x0) →∗1 B(y) ≤ A(x0) →∗1 B∗(y), 1∗ →∗1 B(y) ≤ 1∗ →∗1 B∗(y), B(y) ≤ B∗(y).

On the other hand, we validate B∗(y) ≤ B(y) (y ∈ Y ).
From another viewpoint, A(x) →∗1 B(y) ≤ A(x) →∗1 B(y) obviously holds for any x ∈ X, y ∈ Y . Because

(⊗∗1,→∗1) is an intuitionistic adjoint pair, we have (A(x) →∗1 B(y)) ⊗∗1 A(x) ≤ B(y) (x ∈ X, y ∈ Y ). That is
A(x)⊗∗1 (A(x) →∗1 B(y)) ≤ B(y). Then we get from (19) that B∗(y) ≤ B(y) (y ∈ Y ).

Together we have B∗(y) = B(y) (y ∈ Y ). As a result, the IFESI algorithm for IFMP is C-reductive.

4 The IFESI algorithm for IFMT

The IFMT problem is described as follows:

Assuming A(x) →∗ B(y) · · · Major premise

Given B∗(y) · · · Minor premise

−−−−−− −−−−−−−−− −−−−−−−−−−
Calculate A∗(x) · · · Conclusion

Here A and A∗ are the intuitionistic fuzzy sets on X. B and B∗ are the intuitionistic fuzzy sets on Y . →∗ is
the residual intuitionistic fuzzy implication on L∗. Besides, A(x) = (πA(x), τA(x)), B(y) = (πB(y), τB(y)), B∗(y) =
(π∗

B(y), τ
∗
B(y)).

From the idea of the IFESI algorithm for IFMT, we formulate the following principle:
Basic IFESI principle for IFMT: The result A∗ of the IFMT problem is the intuitionistic fuzzy set with maximum

entropy such that (16)
gets its maximum for any x ∈ X, y ∈ Y , in which →∗1,→∗2 are two residual intuitionistic fuzzy implications.
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Definition 4.1. Let A ∈ IF (X), B,B∗ ∈ IF (Y ), if A∗ (in IF (X)) makes (16) take its maximum for any x ∈ X, y ∈ Y .
Then A∗ is said to be an IFESI solution for IFMT.

Definition 4.2. Assume that A ∈ IF (X), B,B∗ ∈ IF (Y ), and that nonempty set A is the set of all IFESI solutions
for IFMT, and finally that C∗ is the intuitionistic fuzzy set with maximum entropy in A. Then C∗ is said to be a formal
IFESI solution for IFMT.

Theorem 4.3. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, then the formal IFESI solution for IFMT is as follows (x ∈ X):

A∗(x) = ∧
y∈Y

{(A(x) →∗1 B(y)) →∗1 B∗(y)} ∧ (0.5, 0.5). (20)

Proof. Denote C∗(x) = ∧
y∈Y

{(A(x) →∗1 B(y)) →∗1 A∗(x)} (x ∈ X).

Let us first prove that A∗ is the intuitionistic fuzzy set that maximizes (16). Note that the maximum of (16) is
1∗. Note that (⊗∗1,→∗1) is an intuitionistic adjoint pair. According to the expression of C∗, Proposition 2.18, and
Proposition 2.20, one has (x ∈ X, y ∈ Y )

C∗(x) ≤ (A(x) →∗ B(y)) →∗1 B∗(y),

A(x) →∗1 B(y) ≤ C∗(x) →∗1 B∗(y),

(A(x) →∗1 B(y)) →∗2 (C∗(x) →∗1 B∗(y)) = 1∗.

Furthermore, we validate that C∗ is the maximum of all IFESI solutions for IFMT.
Suppose that C is any IFESI solution for IFMT. Notice that (⊗∗1,→∗1) is an intuitionistic adjoint pair. Then from

Proposition 2.18 and Proposition 2.20, one has

(A(x) →∗1 B(y)) →∗2 (C(x) →∗1 B∗(y)) = 1∗,

A(x) →∗1
B(y) ≤ C(x) →∗1

B∗(y),

C(x) ≤ (A(x) →∗1 B(y)) →∗1 B∗(y).

We can find that C(x) is a lower bound of {(A(x) →∗1 B(y)) →∗1 B∗(y) | y ∈ Y }, x ∈ X.
Then C(x) ≤ C∗(x) (x ∈ X) and C∗ is the maximum of A.
Since A∗(x) ≤ C∗(x) (x ∈ X), then A∗(x) ∈ A .
Finally, we further prove that A∗ is the solution with maximum entropy in A. Suppose that Ak is any intuitionistic

fuzzy set in A. Obviously Ak(x) ≤ C∗(x) (x ∈ X).
It can be split into the following three scenarios (x ∈ X).
(i) (0.5, 0.5) ≤ Ak(x) ≤ C∗(x). Note that A∗(x) = C∗(x)∧ (0.5, 0.5). Here we have A∗(x) = (0.5, 0.5). Then we can

view it as πA∗ ≥ τA∗ . Hence we have πAk
≥ πA∗ , τA∗ ≥ τAk

, for πA∗ ≥ τA∗ .
(ii) Ak(x) ≤ (0.5, 0.5) ≤ C∗(x). Here we also have A∗(x) = (0.5, 0.5). Then we can view it as πA∗ ≤ τA∗ . So we get
πAk

≤ πA∗ , τA∗ ≤ τAk
, for πA∗ ≤ τA∗ .

(iii) Ak(x) ≤ C∗(x) ≤ (0.5, 0.5). Then one has A∗ = C∗, so we can get πAk
≤ πA∗ ≤ 0.5, τAk

≥ τA∗ ≥ 0.5, then
πA∗ ≤ τA∗ . So we have πAk

≤ πA∗ , τA∗ ≤ τAk
, for πA∗ ≤ τA∗ .

For these three scenarios, it follows from Definition 2.12 that one has E(Ak) ≤ E(A∗).
To sum up, A∗ is the solution with maximum entropy in A, i.e., the formal IFESI solution for IFMT.

Proposition 4.4. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, and that ⊗∗1 corresponds to ⊗1, and that →1, ⊕1, ⊖1 are associative operators of ⊗1,
then the formal IFESI solution A∗(x) = (πA∗(x), τA∗(x)) for IFMT can be expressed as (x ∈ X):

πA∗(x) = ∧y∈Y {[((πA(x) →1 πB(y)) ∧ (1− (τB(y)⊖1 τA(x)))) →1 πB∗(y)] ∧ [1− (τB∗(y)⊖1 (τB(y)⊖1 τA(x)))]} ∧ 0.5,

τA∗(x) = ∨y∈Y {τB∗(y)⊖1 (τB(y)⊖1 τA(x))} ∨ 0.5.

(21)

Proof. It follows from Proposition 2.21 that A(x) →∗1 B(y) = ((πA(x) →1 πB(y)) ∧ (1 − (τB(y) ⊖1 τA(x))), τB(y) ⊖1

τA(x)).
From Definition 2.14, Definition 2.15, we know a∨ b = (a1 ∨ b1, a2 ∧ b2), and a⊗L∗ b = (a1 ⊗ b1, a2 ⊕ b2) (a, b ∈ L∗).
From Theorem 4.3, the formal IFESI solution for IFMT is A∗(x) = ∧

y∈Y
{(A(x) →∗1 B(y)) →∗1 B∗(y)} ∧ (0.5, 0.5)

(x ∈ X).
Together we get that (21) holds.
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Definition 4.5. Aiming at an algorithm to deal with IFMT problem, when the condition (C) is met, if B∗ = B implies
A∗ = A , then the algorithm is said to be C-reductive.

Theorem 4.6. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, when the following two conditions are satisfied:

(P27) Ex = {y ∈ Y | (0.5, 0.5) ≥ (A(x) →∗1 B(y)) →∗1 B(y)} ̸= ∅ holds for any x ∈ X,
(P28) there exists y0 ∈ Ex to let B(y0) = 0∗,
(P29) a →∗1 0∗ = 1− a holds for any a ∈ L∗,

then the IFESI algorithm for IFMT is C-reductive, in which

C means (P27) + (P28) + (P29).

Proof. Suppose that B∗ = B. It follows from Theorem 4.3 that the formal IFESI solution for IFMT is

A∗(x) = ∧
y∈Y

{(A(x) →∗1 B(y)) →∗1 B∗(y)} ∧ (0.5, 0.5) = ∧
y∈Ex

{(A(x) →∗1 B(y)) →∗1 B(y)}. (22)

From one point of view, we prove A(x) ≥ A∗(x) (x ∈ X).
Note that (⊗∗1,→∗1) is an intuitionistic adjoint pair and that there exists y0 ∈ Ex such that B(y0) = 0∗.
Then we get from the expression of (22), Proposition 2.18 and Proposition 2.20 that (x ∈ X)

(A(x) →∗1 B(y0)) →∗1 B(y0) ≥ A∗(x),

(A(x) →∗1 0∗) →∗1 0∗ ≥ A∗(x),

A(x) ≥ A∗(x).

From another point of view, we validate A(x) ≤ A∗(x) (x ∈ X).
Notice that A(x) →∗1 B(y) ≤ A(x) →∗1 B(y) obviously holds for any x ∈ X, y ∈ Y .
From Proposition 2.20, we have A(x) ≤ (A(x) →∗1 B(y)) →∗1 B(y) (x ∈ X, y ∈ Y ).
Then we get from (22) that A(x) ≤ A∗(x) (x ∈ X).
Together we have A∗(x) = A(x) (x ∈ X). As a result, the IFESI algorithm for IFMT is C-reductive.

5 Continuity of the IFESI algorithm

In this section we assume that the universes X, Y are finite sets, i.e., X = {x1, x2, · · · , xm}, Y = {y1, y2, · · · , yn}.
Based on the distance of fuzzy sets, Atanassov introduced the distance metric NHD [4] of intuitionistic fuzzy set as

follows:

NHD(A,A∗) =
1

2m

m∑
i=1

[|πA(xi)− πA∗(xi)|+ |τA(xi)− τA∗(xi)|].

Definition 5.1. Assuming that X, Y are two nonempty finite fields, A∗, A ∈ IF (X), A →∗ B is the given rule, then
the IFESI algorithm of IFMP problem can be regarded as a mapping h from IF (X) to IF (Y ).

(i) For any ε > 0, if there exists δ > 0 such that d(h(A∗
1), h(A

∗
2)) < ε whenever d(A∗

1, A
∗
2) < δ for any A∗

1, A
∗
2 ∈

IF (X), then the algorithm is uniformly continuous in metric d.
(ii) For any ε > 0, if there exists δ > 0 such that d(h(A∗

1), h(A
∗)) < ε whenever d(A∗

1, A
∗) < δ for any A∗

1 ∈ IF (X),
then the algorithm is continuous in metric d.

Definition 5.2. Assuming that X,Y are two nonempty finite fields, B∗, B ∈ IF (Y ) , A →∗ B is the given rule , then
the IFESI algorithm of IFMT problem can be regarded as a mapping h from IF (Y ) to IF (X).

(i) For any ε > 0, if there exists δ > 0 such that d(h(B∗
1), h(B

∗
2)) < ε whenever d(B∗

1 , B
∗
2) < δ for any B∗

1 , B
∗
2 ∈

IF (Y ), then the algorithm is uniformly continuous in metric d.
(ii) For any ε > 0, if there exists δ > 0 such that d(h(B∗

1), h(B
∗)) < ε whenever d(B∗

1 , B
∗) < δ for any B∗

1 ∈ IF (Y ),
then the algorithm is uniformly continuous in metric d.

It is easy to prove Lemma 5.3 and Lemma 5.4.

Lemma 5.3. |a ∧ c− b ∧ c| ≤ |a− b|, |a ∨ c− b ∨ c| ≤ |a− b|, where a, b, c ∈ [0, 1].

Lemma 5.4. |a ∧ c− b ∧ d| ≤ |a− b|+ |c− d|, where a, b, c, d ∈ [0, 1].
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Lemma 5.5. [12] If the functions f, g : U → R are bounded, U is a non-empty set, and R is a set of real numbers,
then for any u ∈ U , one has (i) | ∨

u∈U
f(u)− ∨

u∈U
g(u)| ≤ ∨

u∈U
|f(u)−g(u)|; (ii) | ∧

u∈U
f(u)− ∧

u∈U
g(u)| ≤ ∨

u∈U
|f(u)−g(u)|.

Theorem 5.6. For the same condition of Theorem 3.3, (⊗∗1,→∗1) is the intuitionistic adjoint pair generated by an
t-norm ⊗1. If the t-norm ⊗1 is continuous, then the IFESI algorithm of IFMP is uniformly continuous in NHD.

Proof. Note that the t-norm ⊗1 is continuous, it follows that ⊗1 is uniformly continuous w.r.t. its first variable in [0,1].
As a result, for any ε > 0, there exists δ1 > 0, such that |(πA∗

1
(x) ⊗1 ((πA(x) →1 πB(yi)) ∧ (1 − τB(yi) ⊖1 τA(x)))) −

(πA∗
2
(x)⊗1 ((πA(x) →1 πB(yi)) ∧ (1− τB(yi)⊖1 τA(x))))| < ε holds if |πA∗

1
(x)− πA∗

2
(x)| < δ1 (x ∈ X, i = 1, 2, · · · , n).

Since the t-norm ⊗1 is continuous, it is easy to find that the corresponding t-conorm ⊕1 is also continuous (noting
that x⊕1 y = 1− (1− x)⊗1 (1− y) holds for any x, y ∈ L), and then ⊕1 is uniformly continuous w.r.t. its first variable
in [0,1]. For ε > 0, there exists δ2 > 0, such that |(τA∗

1
(x) ⊕1 (τB(yi) ⊖1 τA(x))) − (τA∗

2
(x) ⊕1 (τB(yi) ⊖1 τA(x)))| < ε

holds if |τA∗
1
(x)− τA∗

2
(x)| < δ2 (x ∈ X, i = 1, 2, · · · , n).

We take δ = min{ δ1
2m , δ2

2m}.
Suppose that NHD(A∗

1, A
∗
2) < δ. Then we know from the formula of NHD that |πA∗

1
(x) − πA∗

2
(x)| < δ1 and that

|τA∗
1
(x)− τA∗

1
(x)| < δ2 (x ∈ X).

By virtue of Proposition 3.4, Lemma 5.3, Lemma 5.4, Lemma 5.5, we obtain

NHD(B∗
1 , B

∗
2) =

1

2n

n∑
i=1

[|πB∗
1
(yi)− πB∗

2
(yi)|+ |τB∗

1
(yi)− τB∗

2
(yi)|]

=
1

2n

n∑
i=1

[| ∨
x∈X

(πA∗
1
(x)⊗1 ((πA(x) →1 πB(yi)) ∧ (1− τB(yi)⊖1 τA(x)))) ∨ 0.5

− ∨
x∈X

(πA∗
2
(x)⊗1 ((πA(x) →1 πB(yi)) ∧ (1− τB(yi)⊖1 τA(x)))) ∨ 0.5|]

+
1

2n

n∑
i=1

[| ∧
x∈X

(τA∗
1
(x)⊕1 (τB(yi)⊖1 τA(x))) ∧ 0.5− ∧

x∈X
(τA∗

2
(x)⊕1 (τB(yi)⊖1 τA(x))) ∧ 0.5|]

≤ 1

2n

n∑
i=1

[| ∨
x∈X

(πA∗
1
(x)⊗1 ((πA(x) →1 πB(yi)) ∧ (1− τB(yi)⊖1 τA(x))))

− ∨
x∈X

(πA∗
2
(x)⊗1 ((πA(x) →1 πB(yi)) ∧ (1− τB(yi)⊖1 τA(x))))|]

+
1

2n

n∑
i=1

[| ∧
x∈X

(τA∗
1
(x)⊕1 (τB(yi)⊖1 τA(x)))− ∧

x∈X
(τA∗

2
(x)⊕1 (τB(yi)⊖1 τA(x)))|]

≤ 1

2n

n∑
i=1

[ ∨
x∈X

|(πA∗
1
(x)⊗1 ((πA(x) →1 πB(yi)) ∧ (1− τB(yi)⊖1 τA(x))))

− (πA∗
2
(x)⊗1 ((πA(x) →1 πB(yi)) ∧ (1− τB(yi)⊖1 τA(x))))|]

+
1

2n

n∑
i=1

[ ∨
x∈X

|(τA∗
1
(x)⊕1 (τB(yi)⊖1 τA(x)))− (τA∗

2
(x)⊕1 (τB(yi)⊖1 τA(x)))|]

<
1

2n

n∑
i=1

∨
x∈X

ε+
1

2n

n∑
i=1

∨
x∈X

ε =
ε

2
+

ε

2
= ε.

To sum up, there exists δ > 0 such that NHD(B∗
1 , B

∗
2) < ε if NHD(A∗

1, A
∗
2) < δ. Then the IFESI algorithm of

IFMP is uniformly continuous in NHD.

It is easy to find that if f is uniformly continuous then it is continuous, thus we obtain Theorem 5.7 from Theorem
5.6.

Theorem 5.7. For the same condition of Theorem 3.3, (⊗∗1,→∗1) is the intuitionistic adjoint pair generated by a
t-norm ⊗1. If the t-norm ⊗1 is continuous, then the IFESI algorithm of IFMP is continuous in NHD.

Theorem 5.8. For the same condition of Theorem 4.3, (⊗∗1,→∗1) is the intuitionistic adjoint pair generated by a
t-norm ⊗1, and →1, ⊕1, ⊖1 are associative operators of ⊗1. If →1 is continuous w.r.t. the second variable, then the
IFESI algorithm of IFMT is uniformly continuous in NHD.



Symmetric implicational algorithm derived from intuitionistic fuzzy entropy 37

Proof. Note that →1 is continuous w.r.t. the second variable, then it follows that →1 is uniformly continuous w.r.t. its
second variable in [0,1]. As a result, for any ε > 0, there exists δ1 > 0, such that |(((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1

τA(xi))) →1 πB∗
1
(y))− (((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1 τA(xi))) →1 πB∗

2
(y))| < ε

3 holds if |πB∗
1
(y)− πB∗

2
(y)| < δ1

(y ∈ Y ).
Since →1 is continuous w.r.t. the second variable, it is easy to find that the corresponding ⊖1 is also continuous

w.r.t. the first variable (noting that x⊖1 y = 1− (1− y) →1 (1− x) holds for any x, y ∈ L), and then ⊖1 is uniformly
continuous w.r.t. its first variable in [0,1]. For ε > 0, there exists δ2 > 0 such that |(τB∗

1
(y) ⊖1 (τB(y) ⊖1 τA(xi))) −

(τB∗
2
(y)⊖1 (τB(y)⊖1 τA(xi)))| < ε

3 holds if |τB∗
1
(y)− τB∗

2
(y)| < δ2 (y ∈ Y ).

We take δ = min{ δ1
2n ,

δ2
2n}.

Suppose that NHD(B∗
1 , B

∗
2) < δ. Then we know from the formula of NHD that |πB∗

1
(y) − πB∗

2
(y)| < δ1 and that

|τB∗
1
(y)− τB∗

1
(y)| < δ2 (y ∈ Y ).

By virtue of Proposition 4.4, Lemma 5.3, Lemma 5.4, Lemma 5.5, we obtain

NHD(A∗
1, A

∗
2) =

1

2m

m∑
i=1

[|πA∗
1
(xi)− πA∗

2
(xi)|+ |τA∗

1
(xi)− τA∗

2
(xi)|]

=
1

2m

m∑
i=1

[| ∧
y∈Y

((((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1 τA(xi))) →1 πB∗
1
(y)) ∧ ((1− τB∗

1
(y)⊖1 (τB(y)⊖1 τA(xi))))) ∧ 0.5

− ∧
y∈Y

((((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1 τA(xi))) →1 πB∗
2
(y)) ∧ ((1− τB∗

2
(y)⊖1 (τB(y)⊖1 τA(xi))))) ∧ 0.5|]

+
1

2m

m∑
i=1

[| ∨
y∈Y

(τB∗
1
(y)⊖1 (τB(y)⊖1 τA(xi))) ∨ 0.5− ∨

y∈Y
(τB∗

2
(y)⊖1 (τB(y)⊖1 τA(xi))) ∨ 0.5|]

≤ 1

2m

m∑
i=1

[| ∧
y∈Y

((((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1 τA(xi))) →1 πB∗
1
(y)) ∧ ((1− τB∗

1
(y)⊖1 (τB(y)⊖1 τA(xi)))))

− ∧
y∈Y

((((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1 τA(xi))) →1 πB∗
2
(y)) ∧ ((1− τB∗

2
(y)⊖1 (τB(y)⊖1 τA(xi)))))|]

+
1

2m

m∑
i=1

[| ∨
y∈Y

(τB∗
1
(y)⊖1 (τB(y)⊖1 τA(xi)))− ∨

y∈Y
(τB∗

2
(y)⊖1 (τB(y)⊖1 τA(xi)))|]

≤ 1

2m

m∑
i=1

[ ∨
y∈Y

|((((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1 τA(xi))) →1 πB∗
1
(y)) ∧ ((1− τB∗

1
(y)⊖1 (τB(y)⊖1 τA(xi)))))

− ((((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1 τA(xi))) →1 πB∗
2
(y)) ∧ ((1− τB∗

2
(y)⊖1 (τB(y)⊖1 τA(xi)))))|]

+
1

2m

m∑
i=1

[ ∨
y∈Y

|(τB∗
1
(y)⊖1 (τB(y)⊖1 τA(xi)))− (τB∗

2
(y)⊖1 (τB(y)⊖1 τA(xi)))|]

≤ 1

2m

m∑
i=1

[ ∨
y∈Y

|(((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1 τA(xi))) →1 πB∗
1
(y))

− (((πA(xi) →1 πB(y)) ∧ (1− τB(y)⊖1 τA(xi))) →1 πB∗
2
(y))|]

+
1

2m

m∑
i=1

[ ∨
y∈Y

|(1− τB∗
1
(y)⊖1 (τB(y)⊖1 τA(xi)))− (1− τB∗

2
(y)⊖1 (τB(y)⊖1 τA(xi)))|] +

1

2m

m∑
i=1

∨
y∈Y

ε

3

≤ 1

2m

m∑
i=1

∨
y∈Y

ε

3
+

1

2m

m∑
i=1

[ ∨
y∈Y

|τB∗
1
(y)⊖1 (τB(y)⊖1 τA(xi))− τB∗

2
(y)⊖1 (τB(y)⊖1 τA(xi))|] +

ε

6

≤ ε

6
+

ε

6
+

ε

6
=

ε

2
< ε.

Summarizing above, there exists δ > 0 such that NHD(A∗
1, A

∗
2) < ε if NHD(B∗

1 , B
∗
2) < δ. Then the IFESI

algorithm of IFMT is uniformly continuous in NHD.

We similarly obtain Theorem 5.9 from Theorem 5.8.

Theorem 5.9. For the same condition of Theorem 4.3, (⊗∗1,→∗1) is the intuitionistic adjoint pair generated by a
t-norm ⊗1, and →1, ⊕1, ⊖1 are associative operators of ⊗1. If →1 is continuous w.r.t. the second variable, then the
IFESI algorithm of IFMT is continuous in NHD.
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6 The α-IFESI algorithm of IFMP

α-IFESI principle for IFMP: The result B∗ of the IFMP problem is the intuitionistic fuzzy set with maximum
entropy such that

(A(x) →∗1 B(y)) →∗2 (A∗(x) →∗1 B∗(y)) ≥ α, (23)

for any x ∈ X, y ∈ Y , in which →∗1,→∗2 are two residual intuitionistic fuzzy implications and α = (α1, α2) ∈ L∗.

Definition 6.1. Let A,A∗ ∈ IF (X), B ∈ IF (Y ), if B∗ (in IF (Y )) makes (23) hold for any x ∈ X, y ∈ Y . Then B∗

is said to be an α-IFESI solution for IFMP.

Definition 6.2. Assume that A,A∗ ∈ IF (X), B ∈ IF (Y ), and that nonempty set Bα is the set of all α-IFESI solutions
for IFMP, and finally that D∗ is the intuitionistic fuzzy set with maximum entropy in Bα. Then D∗ is said to be a
formal α-IFESI solution for IFMP.

Theorem 6.3. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, then the formal α-IFESI solution for IFMP is as follows (y ∈ Y ):

B∗(y) = ∨
x∈X

{A∗(x)⊗∗1 ((A(x) →∗1 B(y))⊗∗2 α)} ∨ (0.5, 0.5). (24)

Proof. Denote D∗(y) = ∨
x∈X

{A∗(x)⊗∗1 ((A(x) →∗1 B(y))⊗∗2 α)} (y ∈ Y ).

Let us first validate that D∗ is the intuitionistic fuzzy set that lets (23) hold.
Note that (⊗∗1,→∗1), (⊗∗2,→∗2) are two intuitionistic adjoint pairs. According to the expression of D∗, Proposition

2.18, and Proposition 2.20, it can be known that (x ∈ X, y ∈ Y )

A∗(x)⊗∗1 ((A(x) →∗1 B(y))⊗∗2 α) ≤ D∗(y),

((A(x) →∗1 B(y))⊗∗2 α)⊗∗1 A
∗(x) ≤ D∗(y),

(A(x) →∗1 B(y))⊗∗2 α ≤ A∗(x) →∗1 D∗(y),

α⊗∗2 (A(x) →∗1 B(y)) ≤ A∗(x) →∗1 D∗(y),

α ≤ (A(x) →∗1 B(y)) →∗2 (A∗(x) →∗1 D∗(y)).

So D∗ is an α-IFESI solution.
Furthermore, we prove that D∗ is the minimum of all α-IFESI solutions for IFMP.
Suppose that C is any α-IFESI solution for IFMP. Notice that (⊗∗1,→∗1), (⊗∗2,→∗2) are two intuitionistic adjoint

pairs. Then from Proposition 2.18 and Proposition 2.20, one has

α ≤ (A(x) →∗1 B(y)) →∗2 (A∗(x) →∗1 C(y)),

α⊗∗2 (A(x) →∗1 B(y)) ≤ A∗(x) →∗1 C(y),

(α⊗∗2 (A(x) →∗1 B(y)))⊗∗1 A
∗(x) ≤ C(y),

A∗(x)⊗∗1 ((A(x) →∗1 B(y))⊗∗2 α) ≤ C(y).

It can be known that C(y) is an upper bound of {A∗(x)⊗∗1 ((A(x) →∗1 B(y))⊗∗2 α) | x ∈ X}, y ∈ Y.
So D∗(y) ≤ C(y) (y ∈ Y ) and D∗ is the minimum of Bα.
Because D∗(y) ≤ B∗(y) (y ∈ Y ), we have B∗ ∈ Bα.
Finally, we further prove that B∗ is the solution with maximum entropy in Bα. Suppose that Bk is any intuitionistic

fuzzy set in Bα. Obviously D∗(y) ≤ Bk(y) (y ∈ Y ).
It can be split into the following three scenarios (y ∈ Y ).
(i) D∗(y) ≤ Bk(y) ≤ (0.5, 0.5). Note that B∗(y) = D∗(y) ∨ (0.5, 0.5). Then we have B∗(y) = (0.5, 0.5). Then we

can view it as πB∗ ≤ τB∗ . Hence one has πBk
≤ πB∗ , τB∗ ≤ τBk

, for πB∗ ≤ τB∗ .
(ii) D∗(y) ≤ (0.5, 0.5) ≤ Bk(y). Here we also have B∗(y) = (0.5, 0.5). Then we can view it as πB∗ ≥ τB∗ . So we get

πBk
≥ πB∗ , τB∗ ≥ τBk

, for πB∗ ≥ τB∗ .
(iii) (0.5, 0.5) ≤ D∗(y) ≤ Bk(y). Then one has B∗ = D∗, so we can get 0.5 ≤ πB∗ ≤ πBk

, 0.5 ≥ τB∗ ≥ τBk
, then

πB∗ ≥ τB∗ . So we have πBk
≥ πB∗ , τB∗ ≥ τBk

, for πB∗ ≥ τB∗ .
For these three scenarios, it follows from Definition 2.12 that we get E(Bk) ≤ E(B∗).
Summarizing above, B∗ is the solution with maximum entropy in Bα, i.e., the formal α-IFESI solution for IFMP.
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Proposition 6.4. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, and that ⊗∗1 corresponds to ⊗1, and that →1, ⊕1, ⊖1 are associative operators of ⊗1,
then the formal α-IFESI solution B∗(y) = (πB∗(y), τB∗(y)) for IFMP can be expressed as (y ∈ Y ):

πB∗(y) = ∨x∈X{πA∗(x)⊗1 (((πA(x) →1 πB(y)) ∧ (1− (τB(y)⊖1 τA(x))))⊗∗2 α1)} ∨ 0.5,

τB∗(y) = ∧x∈X{τA∗(x)⊕1 ((τB(y)⊖1 τA(x))⊕2 α2)} ∧ 0.5.
(25)

Proof. From Proposition 2.21, we have A(x) →∗1 B(y) = ((πA(x) →1 πB(y))∧ (1− (τB(y)⊖1 τA(x))), τB(y)⊖1 τA(x)).
From Definition 2.9 and Definition 2.10, we know that a∨ b = (a1 ∨ b1, a2 ∧ b2), a⊗∗1 b = (a1⊗1 b1, a2⊕1 b2), a⊗∗2 b =
(a1 ⊗2 b1, a2 ⊕2 b2) (a, b ∈ L∗). From Theorem 6.3, the formal α-IFESI solution for IFMP is B∗(y) = ∨

x∈X
{A∗(x) ⊗∗1

((A(x) →∗1 B(y))⊗∗2 (α1, α2))} ∨ (0.5, 0.5) (y ∈ Y ). Together we achieve that (25) holds.

7 The α-IFESI algorithm of IFMT

α-IFESI principle for IFMT: The result A∗ of the IFMT problem is the intuitionistic fuzzy set with maximum
entropy such that (23) holds for any x ∈ X, y ∈ Y , in which →∗1,→∗2 are two residual intuitionistic fuzzy implications
and α = (α1, α2) ∈ L∗.

Definition 7.1. Let A ∈ IF (X), B,B∗ ∈ IF (Y ), if A∗ (in IF (X)) makes (23) hold for any x ∈ X, y ∈ Y . Then A∗

is said to be an α-IFESI solution for IFMT.

Definition 7.2. Assume that A ∈ IF (X), B,B∗ ∈ IF (Y ), and that nonempty set Aα is the set of all α-IFESI solutions
for IFMT, and finally that C∗ is the intuitionistic fuzzy set with maximum entropy in Aα. Then C∗ is referred to as a
formal α-IFESI solution for IFMT.

Theorem 7.3. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, then the formal α-IFESI solution for IFMT is as follows (x ∈ X):

A∗(x) = ∧
y∈Y

{((A(x) →∗1 B(y))⊗∗2 α) →∗1 B∗(y)} ∧ (0.5, 0.5). (26)

Proof. Denote C∗(x) = ∧
y∈Y

{((A(x) →∗1 B(y))⊗∗2 α) →∗1 B∗(y)} (x ∈ X).

Let us first validate that A∗ is the intuitionistic fuzzy set that lets (23) hold. Note that (⊗∗1,→∗1), (⊗∗2,→∗2) are
two intuitionistic adjoint pairs. In the light of the expression of C∗, Proposition 2.18, and Proposition 2.20, it can be
known that (x ∈ X, y ∈ Y )

C∗(x) ≤ ((A(x) →∗1 B(y))⊗∗2 α) →∗1 B∗(y),

C∗(x)⊗∗1 ((A(x) →∗1 B(y))⊗∗2 α) ≤ B∗(y),

((A(x) →∗1 B(y))⊗∗2 α)⊗∗1 C
∗(x) ≤ B∗(y),

α⊗∗2 (A(x) →∗1 B(y)) ≤ C∗(x) →∗1 B∗(y),

α ≤ (A(x) →∗1 B(y)) →∗2 (C∗(x) →∗1 B∗(y)).

Furthermore, we validate that C∗ is the maximum of all α-IFESI solutions for IFMT.
Suppose that C is any α-IFESI solution for IFMT. Notice that (⊗∗1,→∗1), (⊗∗2,→∗2) are two intuitionistic adjoint

pairs. Then from Proposition 2.18 and Proposition 2.20, one has

α ≤ (A(x) →∗1 B(y)) →∗2 (C(x) →∗1 B∗(y)),

α⊗∗2 (A(x) →∗1 B(y)) ≤ C(x) →∗1 B∗(y),

(A(x) →∗1 B(y))⊗∗2 α ≤ C(x) →∗1 B∗(y),

((A(x) →∗1 B(y))⊗∗2 α)⊗∗1 C(x) ≤ B∗(y),

C(x)⊗∗1 ((A(x) →∗1 B(y))⊗∗2 α) ≤ B∗(y),

C(x) ≤ ((A(x) →∗1 B(y))⊗∗2 α) →∗1 B∗(y).

We can find that C(x) is a lower bound of {((A(x) →∗1 B(y))⊗∗2 α) →∗1 B∗(y) | y ∈ Y }, x ∈ X.
Then C(x) ≤ C∗(x) (x ∈ X) and C∗ is the maximum of Aα.
Since A∗(x) ≤ C∗(x) (x ∈ X), then A∗ ∈ Aα .
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Finally, we further prove that A∗ is the solution with maximum entropy in Aα. Suppose that Ak is any intuitionistic
fuzzy set in Aα. Obviously Ak(x) ≤ C∗(x) (x ∈ X).

It can be split into the following three scenarios (x ∈ X).
(i) (0.5, 0.5) ≤ Ak(x) ≤ C∗(x). Note that A∗(x) = C∗(x)∧ (0.5, 0.5). Here we have A∗(x) = (0.5, 0.5). Then we can

view it as πA∗ ≥ τA∗ . Hence we have πAk
≥ πA∗ , τA∗ ≥ τAk

, for πA∗ ≥ τA∗ .
(ii) Ak(x) ≤ (0.5, 0.5) ≤ C∗(x). Here we also have A∗(x) = (0.5, 0.5). Then we can view it as πA∗ ≤ τA∗ . So we get
πAk

≤ πA∗ , τA∗ ≤ τAk
, for πA∗ ≤ τA∗ .

(iii) Ak(x) ≤ C∗(x) ≤ (0.5, 0.5). Then one has A∗ = C∗, so we can get πAk
≤ πA∗ ≤ 0.5, τAk

≥ τA∗ ≥ 0.5, then
πA∗ ≤ τA∗ . So we have πAk

≤ πA∗ , τA∗ ≤ τAk
, for πA∗ ≤ τA∗ .

For these three scenarios, it follows from Definition 2.12 that one has E(Ak) ≤ E(A∗).
In brief, A∗ is the solution with maximum entropy in Aα, i.e., the formal α-IFESI solution for IFMT.

Similar to Proposition 6.4, we get the following Proposition 7.4 from Theorem 7.3.

Proposition 7.4. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, and that ⊗∗1 corresponds to ⊗1, and that →1, ⊕1, ⊖1 are associative operators of ⊗1,
then the formal α-IFESI solution A∗(x) = (πA∗(x), τA∗(x)) for IFMT can be expressed as (x ∈ X):

πA∗(x) = ∧y∈Y {[(((πA(x) →1 πB(y)) ∧ (1− (τB(y)⊖1 τA(x))))⊗∗2 α1) →1 πB∗(y)]

∧ [1− (τB∗(y)⊖1 ((τB(y)⊖1 τA(x))⊕2 α2))]} ∧ 0.5,

τA∗(x) = ∨y∈Y {τB∗(y)⊖1 ((τB(y)⊖1 τA(x))⊕2 α2)} ∨ 0.5.

(27)

8 Examples

Here we provide two illustrative examples to demonstrate the process of the proposed algorithm.
When we face up with n rules, (1) and (2) become:

FMP: from n rules Ai →∗ Bi and A∗, compute B∗, (28)

FMT: from n rules Ai →∗ Bi and B∗, compute A∗, (29)

We utilize the strategy of FITA (First-Inference-Then-Aggregation). That is, we use each Ai →∗ Bi and A∗ to get
B∗

i ; then we employ these B∗
i to get the final IFMP solution B∗. For IFMT, we employ each Ai →∗ Bi and B∗ to get

A∗
i ; then we employ these A∗

i to get the final IFMT solution A∗.
From the idea of the α-IFESI algorithm for IFMP and IFMT with multiple rules, we establish the following principles:
α-IFESI principle for IFMP with multiple rules: The result B∗ of the IFMP problem is the intuitionistic

fuzzy set with maximum entropy such that

(Ai(x) →∗1 Bi(y)) →∗2 (A∗(x) →∗1 B∗(y)) ≥ α, (30)

holds for any x ∈ X, y ∈ Y, i = 1, · · · , n, in which →∗1,→∗2 are two residual intuitionistic fuzzy implications.
α-IFESI principle for IFMT with multiple rules: The result A∗ of the IFMT problem is the intuitionistic

fuzzy set with maximum entropy such that

(Ai(x) →∗1 Bi(y)) →∗2 (A∗(x) →∗1 B∗(y)) ≥ α, (31)

holds for any x ∈ X, y ∈ Y, i = 1, · · · , n, in which →∗1,→∗2 are two residual intuitionistic fuzzy implications.

Theorem 8.1. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, then the formal α-IFESI solution for IFMP with FITA is as follows (y ∈ Y ):

B∗(y) = ∨
i=1,··· ,n

∨
x∈X

{A∗(x)⊗∗1 ((Ai(x) →∗1 Bi(y))⊗∗2 α)} ∨ (0.5, 0.5). (32)

Proof. For each Ai →∗ Bi and A∗, we get the solution B∗
i (y) = ∨

x∈X
{A∗(x)⊗∗1 ((Ai(x) →∗1 Bi(y))⊗∗2 α)} ∨ (0.5, 0.5).

Then we need that (Ai(x) →∗1 Bi(y)) →∗2 (A∗(x) →∗1 B∗(y)) ≥ α holds for any x ∈ X, y ∈ Y, i = 1, · · · , n. From
Proposition 2.20, we know that →∗1 is increasing w.r.t. the second variable. So we should take B∗ = ∨n

i=1B
∗
i . As a

result, the formal α-IFESI solution for IFMP with FITA is expressed as (32).



Symmetric implicational algorithm derived from intuitionistic fuzzy entropy 41

Theorem 8.2. Assuming that →∗1,→∗2 are residual intuitionistic implications respectively generated by left-continuous
intuitionistic t-norms ⊗∗1,⊗∗2, then the formal α-IFESI solution for IFMT with FITA is as follows (x ∈ X):

A∗(x) = ∧
i=1,··· ,n

∧
y∈Y

{((Ai(x) →∗1 Bi(y))⊗∗2 α) →∗1 B∗(y)} ∧ (0.5, 0.5). (33)

Proof. For each Ai →∗ Bi and B∗, we get the solution A∗
i (x) = ∧

y∈Y
{((Ai(x) →∗1 Bi(y))⊗∗2 α) →∗1 B∗(y)}∧ (0.5, 0.5).

Then we need that (Ai(x) →∗1 Bi(y)) →∗2 (A∗(x) →∗1 B∗(y)) ≥ α holds for any x ∈ X, y ∈ Y, i = 1, · · · , n. From
Proposition 2.20, we know that →∗1 is decreasing w.r.t. the first variable. So we should take A∗ = ∧n

i=1A
∗
i . As a result,

the formal α-IFESI solution for IFMT with FITA is expressed as (33).

Example 8.3. Let X = {x1, x2, x3, x4, x5},Y = {y1}, α = (0.6, 0.2). Suppose that →∗1 corresponds to →0 and →∗2
corresponds to →Lu in the α-IFESI algorithm for IFMP. The rules and input are as follows:

A1 = {(0.8, 0.0), (0.1, 0.7), (0.2, 0.8), (0.2, 0.7), (0.4, 0.4)}, B1 = {(0.1, 0.7)},
A2 = {(0.6, 0.2), (0.4, 0.4), (0.2, 0.7), (0.3, 0.5), (0.9, 0.0)}, B2 = {(0.1, 0.7)},
A3 = {(0.5, 0.3), (0.6, 0.2), (0.8, 0.0), (0.7, 0.1), (0.2, 0.6)}, B3 = {(0.4, 0.4)},
A4 = {(0.4, 0.4), (0.5, 0.3), (0.5, 0.5), (0.5, 0.3), (0.4, 0.4)}, B4 = {(0.4, 0.4)},
A5 = {(0.0, 0.8), (0.7.0.1), (0.9, 0.1), (0.9, 0.0), (0.5, 0.3)}, B5 = {(0.7, 0.1)},
A6 = {(0.2, 0.6), (0.9, 0.0), (1.0, 0.0), (0.8, 0.2), (0.7, 0.1)}, B6 = {(0.7, 0.1)},
A∗ = {(0.6, 0.3), (0.4, 0.4), (0.6, 0.2), (0.7, 0.1), (0.3, 0.5)}.
This exhibits an example for fuzzy classification based upon fuzzy expert system, where three classes respectively

correspond to (0.1, 0.7), (0.4, 0.4), (0.7, 0.1).
From Theorem 8.1, we can get B∗(y) = ∨

i=1,··· ,n
∨

x∈X
{A∗(x)⊗∗1 ((Ai(x) →∗1 Bi(y))⊗∗2 α)} ∨ (0.5, 0.5) (y ∈ Y ). We

denote ζi(xj , yk) = A∗(xj)⊗∗1 ((Ai(xj) →∗1 Bi(yk))⊗∗2 α).
So we can calculate that ζ1(x1, y1) = (0.6, 0.3) ⊗∗1 (((0.8, 0.0) →∗1 (0.1, 0.7)) ⊗∗2 (0.6, 0.2)) = (0.5, 0.3) ⊗∗1

((0.2, 0.7)⊗∗2 (0.6, 0.2)) = (0.6, 0.3)⊗∗1 (0.0, 0.9) = (0.0, 1.0).
Similarly we get ζ2(x1, y1) = (0.0, 1.0), ζ3(x1, y1) = (0.0, 0.6), ζ4(x1, y1) = (0.6, 0.3), ζ5(x1, y1) = (0.6, 0.3),

ζ6(x1, y1) = (0.6, 0.3).
Then we have ∨

i=1,··· ,6
ζi(x1, y1) = (0.0, 1.0) ∨ (0.0, 1.0) ∨ (0.0, 0.6) ∨ (0.6, 0.3) ∨ (0.6, 0.3) ∨ (0.6, 0.3) = (0.6, 0.3).

In a similar way, we obtain ∨
i=1,··· ,6

ζi(x2, y1) = (0.0, 0.4), ∨
i=1,··· ,6

ζi(x3, y1) = (0.0, 0.2), ∨
i=1,··· ,6

ζi(x4, y1) = (0.4, 0.2),

∨
i=1,··· ,6

ζi(x5, y1) = (0.0, 0.5).

Finally we achieve the formal α-IFESI solution for IFMP with FITA is B∗(y1) = (0.6, 0.3) ∨ (0.0, 0.4) ∨ (0.0, 0.2) ∨
(0.4, 0.2) ∨ (0.0, 0.5) ∨ (0.5, 0.5) = (0.6, 0.2).

Because (0.6,0.2) is nearest to (0.7,0.1), the third class is what is required.

Example 8.4. Let X = {x1}, Y = {y1, y2, y3, y4, y5}, α = (0.6, 0.2). Suppose that →∗1 corresponds to →0 and →∗2
corresponds to →Lu in the α-IFESI algorithm for IFMT. The rules and input are as follows:

A1 = {(0.1, 0.7)}, B1 = {(0.8, 0.0), (0.1, 0.7), (0.2, 0.8), (0.2, 0.7), (0.4, 0.4)},
A2 = {(0.1, 0.7)}, B2 = {(0.6, 0.2), (0.4, 0.4), (0.2, 0.7), (0.3, 0.5), (0.9, 0.0)},
A3 = {(0.4, 0.4)}, B3 = {(0.5, 0.3), (0.6, 0.2), (0.8, 0.0), (0.7, 0.1), (0.2, 0.6)},
A4 = {(0.4, 0.4)}, B4 = {(0.4, 0.4), (0.5, 0.3), (0.5, 0.5), (0.5, 0.3), (0.4, 0.4)},
A5 = {(0.7, 0.1)}, B5 = {(0.0, 0.8), (0.7.0.1), (0.9, 0.1), (0.9, 0.0), (0.5, 0.3)},
A6 = {(0.7, 0.1)}, B6 = {(0.2, 0.6), (0.9, 0.0), (1.0, 0.0), (0.8, 0.2), (0.7, 0.1)},
B∗ = {(0.3, 0.5), (0.4, 0.4), (0.2, 0.6), (0.8, 0.0), (0.5, 0.3)}.
This is also an example for fuzzy classification, in which three classes respectively correspond to (0.1, 0.7), (0.4, 0.4),

(0.7, 0.1).
From Theorem 8.2, we can get A∗(x) = ∧

i=1,··· ,n
∧

y∈Y
{((Ai(x) →∗1 Bi(y))⊗∗2 α) →∗1 B∗(y)} ∧ (0.5, 0.5) (x ∈ X).

We denote ςi(xj , yk) = ((Ai(xj) →∗1 Bi(yk))⊗∗2 α) →∗1 B∗(yk).
So we can calculate that ς1(x1, y1) = ((((0.1, 0.7) →∗1 (0.8, 0.0)) ⊗∗2 (0.6, 0.2)) →∗1 (0.3, 0.5)) = (((1.0, 0.0) ⊗∗2

(0.6, 0.2)) →∗1 (0.3, 0.5)) = ((0.6, 0.2)) →∗1 (0.3, 0.5)) = (0.4, 0.5), Similarly we get ς2(x1, y1) = (0.4, 0.5), ς3(x1, y1) =
(0.4, 0.5), ς4(x1, y1) = (0.4, 0.5), ς5(x1, y1) = (1.0, 0.0), ς6(x1, y1) = (1.0, 0.0).

Then we get ∨
i=1,··· ,6

ςi(x1, y1) = (0.4, 0.5) ∧ (0.4, 0.5) ∧ (0.4, 0.5) ∧ (0.4, 0.5) ∧ (1.0, 0.0) ∧ (1.0, 0.0) = (0.4, 0.5).

In a similar mode, we obtain ∨
i=1,··· ,6

ςi(x1, y2) = (0.4, 0.4), ∨
i=1,··· ,6

ςi(x1, y3) = (0.4, 0.6), ∨
i=1,··· ,6

ςi(x1, y4) = (1.0, 0.0),

∨
i=1,··· ,6

ςi(x1, y5) = (0.4, 0.5).
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Together we achieve the formal α-IFESI solution for IFMT with FITA is as follows: A∗(x1) = (0.4, 0.5)∧(0.4, 0.4)∧
(0.4, 0.6)∧ (1.0, 0.0)∧ (0.4, 0.5)∧ (0.5, 0.5) = (0.4, 0.6). Because (0.4,0.6) is nearest to (0.4,0.4), the second class is what
is required.

9 Discussions

The special properties of the proposed IFESI algorithms are mainly reflected in three ways.
First of all, the idea of the proposed IFESI algorithms is special. Fuzzy reasoning should consider the factors of both

the logic system and the inference model. In (16), →∗1 reflects the implication connective in a logic system, while →∗2
characterizes the “if-then” relation of fuzzy inference model “if A implies B, then A∗ implies B∗”. Moreover, aiming
at the environment of intuitionistic fuzzy sets, we synthetically take the maximum fuzzy entropy, the logic system and
the reasoning model into consideration, and then the IFESI algorithms are derived.

Moreover, the IFESI algorithm is C-reductive for IFMP, in which

C means (P25) + (P26).

Meanwhile, the IFESI algorithm is C-reductive for IFMT, where

C means (P27) + (P28) + (P29).

Lastly, if the t-norm ⊗1 is continuous, then the IFESI algorithm of IFMP is continuous and uniformly continuous
in NHD. In the meantime, if →1 is continuous w.r.t. the second variable, then the IFESI algorithm of IFMT is
continuous and uniformly continuous in NHD.

Here we show some practical applications of the proposed IFESI algorithms.
To begin with, the proposed IFESI algorithms can be applied to fuzzy classification based on fuzzy expert systems.

Actually, Examples 8.3 and 8.4 are the examples of fuzzy classification. Many classification problems in reality can be
solved in this way.

Furthermore, as an important branch of affective computing, emotion deduction (which discovers how to generate
proper values of other emotions from some basic emotions) is also an important application point for the IFESI
algorithms. The values of basic emotions are regarded as Ai and the values of other emotions are modeled by Bi

in (28) under the environment of intuitionistic fuzzy sets. Then we can realize the emotion deduction process via the
IFESI algorithms.

Finally, the IFESI algorithms can also be used to build fuzzy controllers, which incorporate fuzzifier, fuzzy reasoning
method, and defuzzifier. In detail, we employ the IFESI algorithms to carry on fuzzy reasoning, and select appropriate
fuzzifier and defuzzifier. Then we can establish corresponding fuzzy controllers. Through these fuzzy controllers, there
can be a wider range of practical applications.

In fact, there are many other practical applications however they are not listed here.

10 Conclusions and Prospect

In this study, we come up with the IFESI algorithm, and then extend it to the α-version. The main contributions and
conclusions are outlined as follows.

(i) New symmetric implicational principles are presented. Then the unified solutions of the IFESI algorithm are
obtained for IFMP and IFMT, which are based on residual intuitionistic implications.

(ii) The reductive properties of the IFESI algorithm are validated for IFMP and IFMT.
(iii) The continuity of the IFESI algorithm is analyzed for IFMP and IFMT.
(iv) The IFESI algorithm is extended into the α-IFESI algorithm, and the unified solutions of the α-IFESI algorithm

are obtained for IFMP and IFMT.
(v) Two examples of fuzzy classification for the α-IFESI algorithm are provided to reveal the detailed computing

process of the IFESI algorithm.
In the future, it would be of interest to investigate the fuzzy controllers based on the proposed fuzzy reasoning

algorithm, and analyze corresponding performance.
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[5] M. Baczyński, B. Jayaram, On the characterizations of (S,N)-implications, Fuzzy Sets and Systems, 158 (2007),
1713-1727.

[6] P. Burillo, H. Bustince, Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy Sets and Systems,
78 (1996), 305-316.

[7] C. Cornelis, G. Deschrijver, E. E. Kerre, Implication in intuitionistic fuzzy and interval-valued fuzzy set theory:
Construction, classification, application, International Journal of Approximate Reasoning, 35 (2004), 55-95.

[8] S. S. Dai, Logical foundation of symmetric implicational methods for fuzzy reasoning, Journal of Intelligent and
Fuzzy Systems, 39 (2020), 1089-1095.

[9] G. Deschrijver, C. Cornelis, E. E. Kerre, Class of intuitionistic fuzzy t-norms satisfying the residuation principle,
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11 (2003), 691-709.

[10] G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and t-conorms, IEEE
Transactions on Fuzzy Systems, 12 (2004), 45-61.

[11] J. Fodor, M. Roubens, Fuzzy preference modeling and multicriteria decision support, Kluwer Academic Publishers,
Dordrecht, 1994.

[12] D. H. Hong, S. Y. Hwang, A note on the value similarity of fuzzy systems variable, Fuzzy Set and Systems, 66
(1994), 383-386.

[13] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000.

[14] H. W. Liu, New similarity measures between intuitionistic fuzzy sets and between elements, Mathematical and
Computer Modelling, 42 (2005), 61-70.

[15] M. X. Luo, B. Liu, Robustness of interval-valued fuzzy inference triple I algorithms based on normalized Minkowski
distance, Journal of Logical and Algebraic Methods, 86 (2017), 298-307.

[16] M. X. Luo, Y. J. Wang, Interval-valued fuzzy reasoning full implication algorithms based on the t-representable
t-norm, International Journal of Approximate Reasoning, 122 (2020), 1-8.

[17] M. X. Luo, Y. J. Wang, R. R. Zhao, Interval-valued fuzzy reasoning method based on similarity measure, Journal
of Logical and Algebraic Methods, 113 (2020), 100541.

[18] M. Mas, M. Monserrat, J. Torrens, E. Trillas, A survey on fuzzy implication functions, IEEE Transactions on Fuzzy
Systems, 15 (2007), 1107-1121.



44 Y. M. Tang, L. Zhang, G. Q. Bao, F. J. Ren, W. Pedrycz

[19] P. Melo-Pinto, P. Couto, H. Bustince, et al., Image segmentation using Atanassov’s intuitionistic fuzzy sets, Expert
Systems and Applications, 40 (2013), 15-26.

[20] D. W. Pei, Unified full implication algorithms of fuzzy reasoning, Information Sciences, 178 (2008), 520-530.

[21] D. W. Pei, Formalization of implication based fuzzy reasoning method, International Journal of Approximate Rea-
soning, 53 (2012), 837-846.

[22] E. Szmidt, J. Kacprzyk, Entropy for intuitionistic fuzzy sets, Fuzzy Sets and Systems, 118 (2001), 467-477.

[23] Y. M. Tang, X. H. Hu, W. Pedrycz, X. C. Song, Possibilistic fuzzy clustering with high-density viewpoint, Neuro-
computing, 329 (2019), 407-423.

[24] Y. M. Tang, W. Pedrycz, On the α(u,v)-symmetric implicational method for R- and (S, N)-implications, Interna-
tional Journal of Approximate Reasoning, 92 (2018), 212-231.

[25] Y. M. Tang, W. Pedrycz, Oscillation bound estimation of perturbations under Bandler-Kohout subproduct, IEEE
Transactions on Cybernetics, (2021). DOI: 10.1109/TCYB.2020.3025793.

[26] Y. M. Tang, F. J. Ren, W. Pedrycz, Fuzzy c-means clustering through SSIM and patch for image segmentation,
Applied Soft Computing, 87 (2020), 1-16.

[27] Y. M. Tang, X. Z. Yang, Symmetric implicational method of fuzzy reasoning, International Journal of Approximate
Reasoning, 54 (2013), 1034-1048.

[28] M. Verma, K. K. Shukla, Fuzzy metric space induced by intuitionistic fuzzy points and its application to the
orienteering problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 483-488.

[29] G. J. Wang, On the logic foundation of fuzzy reasoning, Information Sciences, 117 (1999), 47-88.

[30] G. J. Wang, Formalized theory of general fuzzy reasoning, Information Sciences, 160 (2004), 251-266.

[31] G. J. Wang, J. Y. Duan, On robustness of the full implication triple I inference method with respect to finer
measurements, International Journal of Approximate Reasoning, 55 (2014), 787-796.

[32] G. J. Wang, L. Fu, Unified forms of triple I method, Computers and Mathematics with Applications, 49 (2005),
923-932.

[33] X. Y. Yang, F. S. Yu, W. Pedrycz, Long-term forecasting of time series based on linear fuzzy information granules
and fuzzy inference system, International Journal of Approximate Reasoning, 81 (2017), 1-27.

[34] L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transac-
tions on Systems, Man, and Cybernetics, 3 (1973), 28-44.

[35] J. C. Zhang, X. Y. Yang, Some properties of fuzzy reasoning in propositional fuzzy logic systems, Information
Sciences, 180 (2010), 4661-4671.

[36] M. C. Zheng, Z. K. Shi, Y. Liu, Triple I methods of approximate reasoning on Atanassov’s intuitionistic fuzzy sets,
International Journal of Approximate Reasoning, 55 (2014), 1369-1382.


	Introduction
	Preliminaries
	The IFESI algorithm for IFMP
	The IFESI algorithm for IFMT
	Continuity of the IFESI algorithm
	The -IFESI algorithm of IFMP
	The -IFESI algorithm of IFMT
	Examples
	Discussions
	Conclusions and Prospect

