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a b s t r a c t

In this study, we propose a new robust Fuzzy C-Means (FCM) algorithm for image segmentation called
the patch-based fuzzy local similarity c-means (PFLSCM). First of all, the weighted sum distance of
image patch is employed to determine the distance of the image pixel and the cluster center, where
the comprehensive image features are considered instead of a simple level of brightness (gray value).
Second, the structural similarity (SSIM) index takes into account similar degrees of luminance, contrast,
and structure of image. The DSSIM (distance for structural similarity) metric is developed on a basis
of SSIM in order to characterize the distance between two pixels in the whole image. Next a new
similarity measure is proposed. Furthermore, a new fuzzy coefficient is proposed via the new similarity
measure together with the weighted sum distance of image patch, and then the PFLSCM algorithm is
put forward based on the idea of image patch and this coefficient. Through a collection of experimental
studies using synthetic and publicly available images, we demonstrate that the proposed PFLSCM
algorithm achieves improved segmentation performance in comparison with the results produced by
some related FCM-based algorithms.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Image segmentation is embodied as a key task in many fields
such as computer vision, pattern recognition, affective comput-
ing, and multimedia [1–5]. For example, Hernández et al. [6]
extended the idea of residue properties, which helped to generate
the image quantization table with regard to an arithmetic ap-
proach. Kushwaha and Welekar [7] investigated feature selection
for content-based image retrieval, in which optimal features were
obtained from the feature selection process realized by means
of the genetic algorithm. Rezaie and Habiboghli [8] proposed
a strategy for the detection of malignant and benign tumors
on the CT scan images, where fractal segmentation was used.
Image segmentation aims to divide image pixels into several
non-overlapping regions, where the pixels in a given region ex-
hibit similar characteristics while pixels positioned in different
regions are different. Fuzzy sets [9–11], especially Fuzzy C-Means
(FCM) clustering algorithms [12,13], have been extensively em-
ployed to carry out image segmentation leading to the improved
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performance of the segmentation process. The ‘‘standard’’ FCM
algorithm works well for most noise-free images, however it is
sensitive to noise, outliers and other imaging artifacts. The main
reasons behind these drawbacks lie in neglecting spatial context
information.

Since the introduction of the FCM algorithm, it has attracted
growing interest in the area of image segmentation. Tolias and
Panas [14] presented a hierarchical fuzzy clustering-based image
segmentation algorithm that was able to cope with nonstation-
arity and high correlations between pixels. Its performance was
better than the possibilistic c-means (PCM) algorithm. Pham and
Prince [15] introduced a multiplier field to propose a fuzzy seg-
mentation algorithm for images that were subject to multiplica-
tive intensity inhomogeneities. Wang et al. [16] incorporated the
information-theoretic framework and adaptive spatial weighting
factors into the FCM-type algorithms to enhance its robustness
for image segmentation. Zhou et al. [17] presented a modified
mode of the FCM algorithm for image segmentation, in which one
used a simple way to update the cluster centers and partitioned
the pixels by adding a new bias term into the FCM method. Ji
et al. [18] proposed a novel fuzzy clustering approach for brain
MR image segmentation. It employed the negative log-posterior
regarded as the dissimilarity function, and introduced a new
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factor with the spatial direction, and finally incorporated the
bias field estimation model into the optimized objective function.
Adhikari et al. [19] presented a conditional spatial FCM algorithm
for MRI image segmentation. It was constructed by the intro-
duction of conditioning effects imposed by an auxiliary variable
related to each pixel as well as spatial information into the
membership functions. Chatzis and Varvarigou [20] combined the
benefits of the hidden Markov random field (HMRF) with FCM,
and established the HMRF-FCM algorithm for image segmenta-
tion, which utilized the spatial coherency expressing abilities of
HMRF to enhance the FCM segmentation effect. Following the
HMRF-FCM algorithm, Liu et al. [21] emphasized the treatment of
local information, and introduced region-level information to ad-
just the range and strength of interactive image pixels. This work
was mainly aimed at segmentation of natural color images, and
synthetic aperture radar images. In some studies, regularization
terms were considered to control the effect of the membership
functions. Li et al. [22] employed regularization with the entropy
for the membership function. In [23], Miyamoto and Umayahara
regularized the FCM function with a quadratic term. But, similar
to the classical FCM algorithm, they are only related to the image
intensity. Hou et al. [24] regarded a moving-average filter as the
regularizer, so it adjusted the main function with the window
average of neighborhoods. In [25], the FCM algorithm was im-
proved by a regularizing functional via total variation (TV) related
to gradient sparsity, and a regularization parameter was utilized
to balance clustering and smoothing. This algorithm was found
to be effective and robust in testing images affected by noise and
missing data.

1.1. Related work

As an important improvement of FCM, the spatial and gray-
level information were introduced into the generic FCM algo-
rithm. Pham [26] employed a spatial penalty based on cross-
validation for the FCM objective functions. The corresponding
iterative algorithm was only slightly different from the FCM al-
gorithm and allowed the estimation of spatially smooth mem-
bership functions. Ahmed et al. [27] proposed FCM_S, in which
the basic formula of the FCM was adjusted to compensate for
the intensity inhomogeneity and to determine the pixel labeling
according to its immediate neighborhood. Furthermore, Chen and
Zhang [28] put forward the FCM_S1 and FCM_S2 algorithms as
simplified versions of FCM_S, which led to acceptable segmenta-
tion results. To speed up the image segmentation process, Szilagyi
et al. [29] presented the enhanced FCM (EnFCM) algorithm. In this
algorithm, a new image was generated from linearly weighted
sum of the original image, and then the gray level histogram of
the new image was used for further fuzzy clustering. Similar to
EnFCM, Cai et al. [30] proposed a fast generalized FCM (FGFCM)
clustering algorithm. This algorithm employed a local similarity
measure according to local spatial closeness as well as intensity
information, which formed a non-linearly weighted sum image
and thus also was characterized by high computational speed.
Following it, by virtue of simple local similarity measures, the
FGFCM_S1 and FGFCM_S2 algorithms were also presented. Zhao
et al. [31] presented a FCM algorithm with non-local spatial
information obtained from a large image domain to form the
spatial constraint term, in which the non-local spatial information
of a pixel was achieved by employing the pixels with a similar
configuration of the given pixel. Ma et al. [32] proposed an
improved FGFCM algorithm with non-local spatial information,
where local and non-local similarity measures were employed
with an adaptive weight to balance their impact.

In the previous FCM algorithms, hyper parameters were usu-
ally required to control the balance of eliminating noise and

retain image details. The values of these hyper parameters were
selected experimentally through a trial-and-error method. To
solve such problem, Krinidis and Chatzis [33] proposed the fuzzy
local information c-means (FLICM) algorithm. FLICM is a special
method with a sound and convincing idea, which incorporates the
local spatial information and gray level information in a coherent
manner. For the first time, FLICM puts forward a fuzzy coefficient
Gki which is regarded as a fuzzy local (both spatial and gray level)
similarity measure in order to guarantee noise robustness as well
as retention of details. Moreover, FLICM is free from empirically
adjustable parameters whose tuning usually creates a certain
challenge. Based on these observations, FLICM is effective and
efficient in the sense that it exhibits robustness in case of noisy
images. However, it exhibits some disadvantages:

• In the fuzzy clustering algorithm, one important issue is how
to characterize the relationship between the image pixel xi
and the cluster center vk. It is embodied as the key problem
to deliver ideal segmentation result. Actually, FLICM only
utilizes the distance d(xi, vk) to capture this dependency,
which is the same as in the FCM algorithm. Strictly speaking,
d(xi, vk) cannot adequately characterize such relationship,
which only involves two values xi, vk without consider-
ing the overall characteristics of a more comprehensive
character.

• Another important factor is how to characterize the rela-
tionship between two pixels xi and xj. In the FLICM method,
one uses only the spatial Euclidean distance dij between
two pixels i and j to reflect this relationship. By looking
more carefully at the essence of the problem, we should
establish a general similarity measure between i and j vis-
à-vis the entire image. Here dij is not sufficient to grasp the
generalized characteristics of the segmented image.

Following the FLICM algorithm, some further improvements
were proposed. Li et al. [34] presented the FCM algorithm with
edge and local information (FELICM), which reduced the edge
degradation by incorporating the weights of pixels within local
neighbor windows. Gong et al. [35] put forward an improve-
ment of FLICM algorithm (RFLICM), which employed the local
coefficient of variation to replace the spatial distance as a local
similarity measure. Then Gong et al. [36] proposed FCM clustering
with local information and kernel metric (KWFLICM) algorithm
by setting up a tradeoff weight fuzzy coefficient and a kernel
metric, in which the fuzzy coefficient was simultaneously deter-
mined in the space distance of all neighboring pixels and their
gray-level difference. Verma et al. [37] presented an improved
intuitionistic FCM (IIFCM), which was concerned with the local
spatial information under the intuitionistic fuzzy environment. Ji
et al. [38] proposed FCM clustering with weighted image patch
(WIPFCM), which considered image patches to replace pixels with
a weighting scheme. Table 1 shows the main idea and highlights
its merits along with shortcoming of the related fuzzy clustering
algorithms such as FCM, FCM_S, FCM_S1, FCM_S2, EnFCM, FGFCM,
FGFCM_S1, FGFCM_S2, FLICM, KWFLICM, IIFCM and WIPFCM.

Although there are some algorithms [34–38] enhancing the
performance of the FLICM algorithm to some extent. However,
they all employ the computing mechanism similar to FLICM, and
it should be pointed out that these two disadvantages still exist.
To alleviate them, we elaborate on further enhancements for this
issue. In this paper, we will investigate the overall characteristics
to characterize the relationship between xi and vk, and discover
the general similarity measure between i and j, and develop a new
image segmentation algorithm.
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Table 1
Related fuzzy clustering algorithms.
Algorithm Main idea Merit Shortcoming

FCM Generic FCM Simple Use only the gray value of central pixel
FCM_S Use of neighbor factor to improve FCM Neighbor factor considered Only the gray values considered
FCM_S1 Simplified FCM_S;

Refers to mean-filtered image
Neighbor factor considered;
Better for Gaussian noise

Only the gray values considered

FCM_S2 Simplified FCM_S;
Refers to median-filtered image

Neighbor factor considered;
Better for salt-and-pepper noise

Only the gray values considered

EnFCM Use of a linearly-weighted sum image Neighbor factor considered;
High computational speed

Only the gray values considered;
Information loss;
Ordinary linearly-weighted sum image

FGFCM Use of a linearly-weighted sum image from a
local similarity measure

High computational speed;
Combination of spatial and gray level
information

Information loss

FGFCM_S1 Simplified FGFCM;
Use of a linearly-weighted sum image derived
from neighbor average gray value

Combination of spatial and gray level
information;
Better for Gaussian noise

Information loss;
Ordinary local similarity measure

FGFCM_S2 Simplified FGFCM;
Use of a linearly-weighted sum image derived
from neighbor median gray value

Combination of spatial and gray level
information;
Better for salt-and-pepper noise

Information loss;
Ordinary local similarity measure

FLICM Use of a fuzzy coefficient as a fuzzy local
similarity measure

No parameter;
Use of fuzzy coefficient to combine spatial and
gray level information

Ordinary fuzzy coefficient for characterizing
the relationship of image elements

KWFLICM Use of a fuzzy coefficient and kernel metric No parameter;
Use of fuzzy coefficient to combine spatial and
gray level information

Huge computing cost;
Distance depending on the gray values of two
points

IIFCM Under intuitionistic fuzzy environment;
Use of a fuzzy coefficient

Use of intuitionistic fuzzy expressions;
Use of fuzzy coefficient to combine spatial and
gray level information

Large computing cost;
Ordinary intuitionistic fuzzy value only related
to image gray

WIPFCM Use of image patch Use of image patch;
Local spatial information

Ordinary mechanism similar to FCM

1.2. Main contributions

In order to solve such key problem, in this study, we put
forward a new FCM algorithm, referred to as the patch-based
fuzzy local similarity c-means (PFLSCM) algorithm. First, since the
image patches incorporate more general information than image
pixels, we use image patch to analyze the relationship between
the image pixel and the cluster center, and then employ the
weighted sum distance of image patch to measure the distance
of the image pixel and the cluster center. Second, we propose a
new local distance measure derived from the structural similarity
(SSIM) index to compute the distance between two image pixels
in the overall image, and then put forward a novel similarity
measure. The new one conveys not only the spatial relationship
of two image pixels but also the relationship related to luminance
and contrast as well as structure of two patches revolved around
them. Third, the PFLSCM algorithm is designed based on the
idea of image patch, the novel similarity measure as well as the
corresponding fuzzy coefficient. Lastly, we carry on experiments
using synthetic, real-world and medical images with several types
of noises, and it is found that the PFLSCM algorithm has better
performance than other seven algorithms in terms of evaluation
indicators and visualization effects.

2. Proposed method

First of all, we explore how to adequately utilize the charac-
teristics of image pixels. From the general viewpoint, using the
image patch can reveal more structure of image than individual
pixels. As a result, the basic distance d(xi, vk) can be restructured
into a weighted sum of image patch:
p∑

r=1

ωrd(xir , vkr ). (1)

Here xir is the value of the point in an image patch (e.g., a
window) located around xi, and p stands for the number of points
in the image patch, while vkr is the new cluster centers (i =

1, . . . ,N , k = 1, . . . , c , r = 1, . . . , p). Here
∑p

r=1 ωr = 1, in which
ωr is the weight associated with the distance d(xir , vkr ) (in which
ωr ≥ 0). Note that the idea of image patch works not only for the
image pixel but also the cluster center.

It is intuitive to assume that ωr can be determined by looking
at the coordinate distance dr between xir and xi, Hence the center
pixel xi should have the highest weight. Therefore, we introduce
the weights in the form

ω′

r =
1

(1 + dr )C0
, (2)

where C0 is a certain control parameter. Finally we obtain:

ωr =
ω′

r∑p
r=1 ω′

r
. (3)

Furthermore, we propose a novel method to represent the
relationships between pixels. As the similarity measure is a sound
way to express it, then we put emphasis on this issue.

The SSIM [39–41] was proposed to measure structural sim-
ilarity of images. It considers similarity degrees of luminance,
contrast, and structure of two images (or image patches). The
SSIM index between two image patches (or images) X1, X2 is
defined as

SSIM(X1, X2) =
(2µX1µX2 + a1)(2σX1X2 + a2)

(µ2
X1

+ µ2
X2

+ a1)(σ 2
X1

+ σ 2
X2

+ a2)
, (4)

where µ, σ and σX1X2 act as the mean, standard deviation, and
cross correlation between X1, X2, respectively. Furthermore a1, a2
are positive constants.

Recall that a distance is a mapping D: X × X → R, which
satisfies three obvious conditions (x, y, z ∈ X):

(C1) D(x, y) ≥ 0, and D(x, y) = 0 ⇔ x = y;
(C2) D(x, y) = D(y, x);
(C3) D(x, z) ≤ D(x, y) + D(y, z),

We define

DSSIM(X1, X2) = C1(1 − SSIM(X1, X2)), (5)
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where C1 is a positive constant. It is easy to note that the DSSIM
(Distance from SSIM) is a distance measure.

For the FLICM algorithm, 1/(dij +1) is actually used to express
a spatial similarity degree between two image pixels xi and xj,
which aims to characterize the relationship between xi and xj.
In fact, the spatial Euclidean distance dij only reflects the point-
to-point position relationship of xi and xj. In contrast, the DSSIM
distance expresses the relationship between the two patches
located around xi and xj.

In the sequel, we come up with a new similarity measure:

Rij =
1

1 + dij + DSSIM(xi, xj)
. (6)

Here the similarity measure Rij reflects not only the spatial rela-
tionship of two pixels xi and xj but also the relationship related
to luminance and contrast together with structure of two image
patches localized around xi and xj. Therefore, Rij adequately cap-
tures the generalized characteristics of the segmented image, and
thus emerges as a more suitable similarity measure.

After that, we propose a novel FCM algorithm based upon
the idea of image patch as well as the new similarity measure
mentioned above.

The new objective function Jm comes in the form (involving a
fuzzy coefficient Hki):

Jm =

N∑
i=1

c∑
k=1

[
um
ki

p∑
r=1

ωrd(xir , vkr ) + Hki

]
. (7)

Here N denotes the number of image pixels. xi is the gray value
of the ith pixel (i = 1, 2, . . . ,N). c is the number of clusters.
uki represents the membership grade of xi with regard to the kth
cluster. vk is the prototype of the kth cluster. Here ωr , xir , vkr have
been already described in part A (i = 1, . . . ,N , k = 1, . . . , c ,
r = 1, . . . , p). The parameter m is embodied as a weighting
exponent (fuzzification coefficient) of the partition matrix U =

[uki]. Commonly, we assume that m = 2. Recall that the partition
matrix satisfies the following obvious requirements:

U ∈ {uki|

c∑
k=1

uki = 1, ∀i; 0 <

N∑
i=1

uki < N, ∀k}. (8)

Based on the above discussion, we define the fuzzy coefficient Hki
in the following form:

Hki =

∑
j∈Ni

Rij(1 − ukj)m
p∑

r=1

ωrd(xjr , vkr ). (9)

Here Ni denotes the set of neighbors (pixels) located in a window
around xi, while xj stands for the neighboring pixel falling into
the window around xi. The fuzzy coefficient Hki is obtained as
the improvement of the fuzzy coefficient Gki used in the FLICM
algorithm (expressed as Gki =

∑
j∈Ni

1
dij+1 (1 − ukj)md(xj, vk)). In

detail, 1
dij+1 is extended to more reasonable similarity measure

Rij expressed as (6). Moreover, d(xj, vk) is transformed into the
corresponding expression from the viewpoint of image patch,
i.e.,

∑p
r=1 ωrd(xjr , vkr ). It is similar to

∑p
r=1 ωrd(xir , vkr ), where

only the center xi has been changed to xj. By using the simi-
larity measure Rij and the weighted sum of image patch, it is
easy to find that the fuzzy coefficient Hki provides more detailed
characterization than Gki.

By virtue of (8), we use the Lagrange multipliers so that we
arrive at the unconstrained minimization of J ′:

J ′ = Jm + λ(1 −

c∑
k=1

uki). (10)

The necessary conditions that lead to the minimum of (10) are
expressed as follows:

∂ J ′

∂uki
= 0,

∂ J ′

∂vkr
= 0, i = 1, . . . ,N, k = 1, . . . , c,

r = 1, . . . , p.
(11)

By setting the gradient of J ′ to zero with respect to uki and vkr ,
we obtain from (11) that

um−1
ki =

−λ

m[
∑p

r=1 ωrd(xir , vkr ) + Hki]
, (12)

N∑
i=1

[
um
ki(xir − vkr )

]
= 0, (13)

From (12) and (8) we can get (14), and from (13) we obtain
(15); that is, the iterative updates of the partition matrix and the
prototypes come in the form:

uki =

(∑p
r=1 ωrd(xir , vkr ) + Hki

)−1/(m−1)∑c
j=1

(∑p
r=1 ωrd(xir , vjr ) + Hji

)−1/(m−1) , (14)

vkr =

∑N
i=1 u

m
kixir∑N

i=1 u
m
ki

. (15)

The resulting FCM algorithm is referred to as the Patch-based
Fuzzy Local Similarity C-Means (PFLSCM). The details are de-
scribed in the form of Algorithm 1.

Algorithm 1. The PFLSCM Algorithm.
Step 1. Set values for c , m, ε, iter . Determine the size of image

patch, and p is obtained.
Step 2. Initialize the fuzzy partition matrix U (0).
Step 3. Compute ωr by (3), where r = 1, . . . , p.
Step 4. Set the loop counter b = 0.
Step 5. Calculate the cluster centers v

(b)
kr by (15).

Step 6. Calculate U (b+1) by (14).
Step 7. If {U (b) − U (b+1)

} < ε or b > iter then stop; otherwise
set b = b+1 and go to step 5.

Step 8. Assign the pixel xi to the class Ck by virtue of the
biggest membership, i.e., Ck = arg{max{uki}}, which is employed
to transform the fuzzy image into the crisp segmented image.

The main characteristics of the PFLSCM algorithm are outlined
as follows:

• We use the idea of image patch, which is realized as the
weighted sum of image patch and is used to quantify the
underlying distance between two pixels.

• A new distance measure DSSIM is derived from SSIM, and
then this similarity measure for image pixels is established,
which combines spatial distance with the DSSIM distance
(as gray distance).

• The fuzzy coefficient standing in (9) is incorporated into the
PFLSCM algorithm.

A graphical illustration is given to visualize the main charac-
teristics of the PFLSCM algorithm, see Fig. 1.

Finally, as for the proposed PFLSCM algorithm, let us analyze
its effect for three kinds of situations involving noise or outliers.

• Case 1: The central pixel is corrupted by noise while other
pixels are not affected by noise, see Fig. 2. Here a 3×3
window (as illustrated in Fig. 2(a)) has been selected in a
noisy image with two classes, which lies in the left part
of this image. Employing the PFLSCM algorithm, after five
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Fig. 1. The main characteristics of the proposed PFLSCM algorithm.

iterations the membership value of the noisy pixel has been
changed into the similar value as the neighboring pixels
located in this window. The correct classification result is
obtained since all of these values are smaller than 0.5. Thus
the influence of noise has been eliminated. More precisely,
the central noisy pixel has different level of brightness from
other pixels in this window, and thus the PFLSCM algo-
rithm makes their membership values gradually converge to
exhibit higher resemblance.

• Case 2: The central position is noise-free while some other
pixels within this local window have been impacted by
noise. Fig. 3 illustrates this situation. Here a 3×3 window
with two noisy pixels (Fig. 3(a)) is selected positioned on the
right part of the image. After five iterations of the PFLSCM
algorithm, all of these pixels in this window come with
similar membership grades. The correct classification result
is achieved as all these values are higher than 0.5. Thus the
impact of noise has been suppressed.

• Case 3: The central position is affected by noise and some
other pixels located within its local window are also noisy.
Fig. 4 is an illustrative example. Following five iterations of
the PFLSCM algorithm, all of these pixels in this window
converge to the similar membership value, while the correct
classification result is gained.

These three cases and the corresponding examples illustrate
some intuition behind robustness of the proposed algorithm. By
integrating the idea of image patch, the novel similarity measure
expressed as (6) together with the fuzzy coefficient denoted as
(9), the robustness of the algorithm is reinforced. As a result, this
is a preliminary validation of which the PFLSCM algorithm helps
tolerate noise and becomes robust to outliers. Moreover, Section 3
will show more evidence to verify this point.

3. Experimental studies

All experiments include a comprehensive comparative analy-
sis where we engage a number of clustering algorithms studied
in the literature. Here we concentrate on the strategy, which
incorporates the spatial and gray-level information together in
the FCM algorithms. Therefore we compare the PFLSCM algo-
rithm with several representative algorithms including EnFCM,
FGFCM, FGFCM_S1, FGFCM_S2, and FLICM. Moreover, in several
improvements of the FLICM, the KWFLICM algorithm becomes a
successful alternative (see [36] for the details), while the IIFCM

Fig. 2. 3×3 window with central noise (signed with a rectangle), their corre-
sponding membership values and cluster centers (as CL and CR). (a) The chosen
window, (b) the initial membership values, (c) after 1 iteration, (d) after 3
iterations, and (e) after 5 iterations.

Fig. 3. 3×3 window with two noises around the center, their corresponding
membership values and cluster centers. (a) The chosen window, (b) initial
membership values, (c) after 1 iteration, (d) after 3 iterations, and (e) after 5
iterations.

algorithm [37] is the latest one. Thus we also compare the pro-
posed algorithm with KWFLICM and IIFCM. Besides, WIPFCM is
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Fig. 4. 3×3 window with noises, their corresponding membership values to-
gether the cluster centers. (a) The chosen window, (b) the initial membership
values, (c) after 1 iteration, (d) after 3 iterations, and (e) after 5 iterations.

also considered as a reference method. Default values of hyperpa-
rameters were used. We investigate the quality of the proposed
algorithm by testing it using various synthetic and real images,
with different types of noise and characteristics.

3.1. Performance indexes

Here we introduce some performance indexes used to assess
the quality of the method. For the testing images with reference
results of segmentation, five indexes (i.e., the SA, S, PR, SP and SE)
are considered. For the testing images without reference result,
two indexes (E and SNR) is employed.

There are four well-used criteria for segmentation methods,
which are accuracy (SA), precision (PR), sensitivity (SE) and speci-
ficity (SP). The segmentation accuracy (SA) [27] is the ratio of the
number of correctly classified pixels to the total number of pixels.
True positives (TP) is the number of positive examples correctly
divided. False positives (FP) is the number of positive examples
incorrectly classified. False negatives (FN) is the number of in-
stances incorrectly classified as negative. True negatives (TN) is
the number of instances correctly classified as negative. Then PR,
SE and SP are defined as follows [42]

PR =
TP

TP + FP
, (16)

SE =
TP

TP + FN
, (17)

SP =
TN

TN + FP
. (18)

The higher the value of SA (or PR, SE, SP) , the better the segmen-
tation results.

We also employ the following index [30,43]:

S =

c∑
i=1

|Ai ∩ Ci|

|Ai ∪ Ci|
. (19)

In (19), c denotes the number of clusters, and Ai stands for the set
of pixels belonging to the ith class obtained by the segmentation
algorithm, while Ci represented the set of pixels belonging to the
ith class in the reference segmented image. The higher the values
of S are, the better segmentation performance is.

In [44], an objective evaluation index E with entropy-based
information was established to assess the performance of image
segmentation. Note that E = Hl(I) + Hr (I), which includes the
expected region entropy Hr (I) and the layout entropy Hl(I). The

essence of E is that the segmentation should maximize the unifor-
mity of image pixels in every segmented region, while minimize
the uniformity in different regions. So the better segmentation
performance is characterized by smaller values of E.

Signal-to-noise ratio (SNR) [45] is a parameter used to com-
pare the quality of the evaluated image with that of the original
image. The higher the SNR value is, the better the image quality
becomes.

3.2. Tests

In the PFLSCM algorithm, we used the 3 × 3 image patch, and
C0 = 2.0, C1 = 0.2, while other algorithms assumed the default
values of the parameters. Below we show the process of running
the experiments. This is divided by these kinds of image types,
which include synthetic images, real-world images and medical
images.

To begin with, we evaluate these algorithms with a synthetic
two-cluster test image shown in Fig. 5(a). It has the size of
128 × 128 pixels, and contain two clusters with two intensity
values of 20 and 120. Different levels of noise, including Gaussian
noise, salt-and-pepper noise and impulse noise, are added to the
images. Gaussian noise is a kind of noise whose probability den-
sity function obeys Gaussian distribution. Salt-and-pepper noise
is embodied as random white or black dots. Impulse noise is
similar to the salt-and-pepper noise, but its dot values ranges
from 0 to 255. They are typical noise types in the area of image
segmentation.

Fig. 5 shows the segmentation results of different algorithms
with regard to the 15% salt-and-pepper noise impacted synthetic
image. As shown in Fig. 5(c)–(g), the EnFCM, FGFCM, FGFCM_S1,
FGFCM_S2, FLICM algorithms are affected by noise to different ex-
tent. Among them, the EnFCM and FGFCM_S1 algorithms exhibit
the worst performance due to the impact of the salt-and-pepper
noise, where some misclassification becomes present for the two
parts of image. Visually, Fig. 5(f), (g) supports an observation that
the FGFCM_S2 and FLICM achieve better performance than the
EnFCM, FGFCM and FGFCM_S1. It follows from Fig. 5(h), (i), (j)
that the KWFLICM, IIFCM and WIPFCM algorithms yield better
performance than FLICM, in which the KWFLICM is better than
the IIFCM while IIFCM is greater than WIPFCM. Moreover, it is
found from Fig. 5(k) that the proposed PFLSCM algorithm can
eliminate almost all the noise.

Table 2 provides the SA and S values obtained for different
algorithms, and Table 3 provides the PR, SP and SE values. Here,
5%, 10%, 15% and 20% of Gaussian, salt-and-pepper, and impulse
noises are used. The EnFCM algorithm exhibits the worst per-
formance for all these noises, and the FGFCM_S1 algorithm is
detrimentally impacted by the salt-and-pepper noise and impulse
noise, while the FGFCM_S2 algorithm is inferior in case of images
impacted by Gaussian noise. The FLICM algorithm produces better
performance than the EnFCM, FGFCM, FGFCM_S1, FGFCM_S2. The
values of WIPFCM is greater than FLICM, while IIFCM, KWFLICM
perform better than WIPFCM in these cases. Finally, as shown
in Tables 2 and 3 the PFLSCM algorithm comes with the highest
values achieve for different noise intensities.

Fig. 6 visualizes the effect of the parameters C0 and C1 used
in the PFLSCM algorithm. Fig. 6(a) shows the SA value obtained
by PFLSCM for 10% Gaussian-noisy synthetic image with regard
to different C0 (here C1 = 0.2). The SA value increases and
then decreases when C0 varies from 0.5 to 6.0. Among them,
C0 = 1.0 is the best case where the SA value is biggest. Fig. 6(b)
visualizes the SA values produced by PFLSCM for 10% Gaussian-
noisy synthetic image versus different C1 (for fixed C0 = 2.0). The
SA value increases and then decreases when C1 changes from 0.05
to 6.0. Here C1 = 0.1 is the best situation in which the SA value is
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Fig. 5. 15% salt-and-pepper-noised synthetic image. (a) Original image, (b) Noisy image, (c) EnFCM result, (d) FGFCM result, (e) FGFCM_S1 result, (f) FGFCM_S2 result,
(g) FLICM result, (h) KWFLICM result, (i) IIFCM result, (j) WIPFCM result, (k) PFLSCM result.

Table 2
The SA and S values of different methods applied to noisy two-cluster images.

EnFCM FGFCM FGFCM _S1 FGFCM _S2 FLICM KWFLICM IIFCM WIPFCM PFLSCM

SA for 5% Gaussian noise 0.9377 0.9863 0.9802 0.9742 0.9952 0.9968 0.9965 0.9960 0.9981
SA for 10% Gaussian noise 0.8389 0.9347 0.9255 0.9095 0.9631 0.9854 0.9667 0.9646 0.9879
SA for 15% Gaussian noise 0.7823 0.8989 0.8782 0.8609 0.9143 0.9501 0.9205 0.9171 0.9566
SA for 20% Gaussian noise 0.7451 0.8538 0.8466 0.8286 0.8855 0.8957 0.8889 0.8870 0.9202
SA for 5% salt-and-pepper noise 0.9740 0.9980 0.9881 0.9938 0.9883 0.9993 0.9982 0.9971 0.9995
SA for 10% salt-and-pepper noise 0.9517 0.9920 0.9649 0.9987 0.9882 0.9996 0.9978 0.9989 0.9998
SA for 15% salt-and-pepper noise 0.9282 0.9833 0.9379 0.9844 0.9875 0.9995 0.9972 0.9966 0.9997
SA for 20% salt-and-pepper noise 0.9027 0.9699 0.9284 0.9669 0.9843 0.9992 0.9964 0.9932 0.9994
SA for 5% impulse noise 0.9867 0.9952 0.9967 0.9947 0.9967 0.9985 0.9966 0.9937 0.9999
SA for 10% impulse noise 0.9806 0.9937 0.9903 0.9855 0.9929 0.9983 0.9962 0.9934 0.9985
SA for 15% impulse noise 0.9776 0.9936 0.9836 0.9846 0.9905 0.9963 0.9957 0.9929 0.9966
SA for 20% impulse noise 0.9675 0.9887 0.9697 0.9833 0.9894 0.9960 0.9949 0.9916 0.9963
S for 5% Gaussian noise 1.7654 1.9462 1.9226 1.8995 1.9810 1.9875 1.9861 1.9840 1.9924
S for 10% Gaussian noise 1.4438 1.7548 1.7224 1.6681 1.8578 1.9427 1.8711 1.8589 1.9524
S for 15% Gaussian noise 1.2812 1.6324 1.5654 1.5115 1.6828 1.8096 1.7054 1.6941 1.8336
S for 20% Gaussian noise 1.1840 1.4887 1.4673 1.4140 1.5855 1.6192 1.5996 1.5986 1.7033
S for 5% salt-and-pepper noise 1.8988 1.9922 1.9531 1.9982 1.9990 1.9997 1.9992 1.9997 1.9999
S for 10% salt-and-pepper noise 1.8157 1.9685 1.8642 1.9951 1.9968 1.9985 1.9978 1.9979 1.9992
S for 15% salt-and-pepper noise 1.7323 1.9346 1.7660 1.9934 1.9960 1.9982 1.9970 1.9933 1.9990
S for 20% salt-and-pepper noise 1.6455 1.8833 1.7323 1.9878 1.9926 1.9968 1.9948 1.9865 1.9978
S for 5% impulse noise 1.9755 1.9815 1.9804 1.9810 1.9869 1.9917 1.9913 1.9801 1.9998
S for 10% impulse noise 1.9627 1.9813 1.9802 1.9794 1.9857 1.9904 1.9890 1.9785 1.9969
S for 15% impulse noise 1.9123 1.9802 1.9673 1.9766 1.9841 1.9897 1.9765 1.9733 1.9933
S for 20% impulse noise 1.8741 1.9795 1.9393 1.9758 1.9834 1.9862 1.9738 1.9706 1.9855

best. Fig. 6(c) provides the SA value produced by PFLSCM for 15%
salt-and-pepper noisy impacted synthetic image with regard to
different C0 (where C1 = 0.2). The SA first increases and then
decreases in which C0 changes from 0.5 to 6.0. Among them,
C0 = 1.5 is the best case where the SA value is biggest. Fig. 6(d)
shows the SA value obtained by PFLSCM for 15% salt-and-pepper
noisy impacted synthetic image related to different C1 (where
C0 = 2.0). The SA first increases and then decreases where C1
transforms from 0.05 to 6.0. Here C0 = 0.5 is the ideal case where
the SA value is the biggest.

As shown in Fig. 7(a), we used the synthetic three-cluster
image of size 256×256 to quantify the performance of the seg-
mentation algorithms. For this image, three intensity values were
set as 10, 110 and 228, while the arc boundaries elevated the
difficulties of segmentation.

Fig. 7 shows the segmentation results produced by different
algorithms when using 10% Gaussian-noise impacted synthetic
image. Table 4 shows the values of SA and S obtained for different
algorithms; Table 5 provides the values of PR, SP and SE achieved
by these algorithms; the noise levels are set as 5%, 10%, 15% and
20% both the Gaussian, salt-and-pepper and impulse noises are

used. The EnFCM algorithm exhibits the worst performance: there
are many misclassified pixels for the three parts of the segmented
image and the resulting values of SA and S are the lowest. The
FLICM, WIPFCM and IIFCM algorithms yield acceptable result
and the KWFLICM algorithm produces the best results. For the
PFLSCM algorithm, only a small amount of noisy pixels in the left
part is visible whereas the noise in the middle and right parts is
eliminated.

Table 6 shows the values of SA, S, PR, SP and SE of differ-
ent methods applied to three-cluster images with mixed noises.
Here three kinds of mixed noises are employed, i.e., 5% Gaussian
noise & 10% salt-and-pepper noise (denoting the mixed noises
combined by 5% Gaussian noise and 10% salt-and-pepper noise),
10% Gaussian noise & 15% impulse noise, 5% salt-and-pepper
noise & 20% impulse noise. Fig. 8 shows the segmentation results
produced by different algorithms when utilizing the mixed noises
of 5% Gaussian noise & 10% salt-and-pepper noise. From Table 6
and Fig. 8, we find that EnFCM is the worst one for both the
segmented image and the five indexes. Then FGFCM, FGFCM _S1
and FGFCM _S2 also do not perform as well. Following that,
FLICM and WIPFCM algorithms are slightly better, in which only
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Fig. 6. The SA values obtained by PFLSCM. (a) Results for 10% Gaussian-noisy synthetic image w.r.t. different C0 (where C1 = 0.2), (b) Results for 10% Gaussian-noised
synthetic image w.r.t. different C1 (where C0 = 2.0). (c) Results for 15% salt-and-pepper-noised synthetic image w.r.t. different C0 (where C1 = 0.2). (d) Results for
15% salt-and-pepper-noised synthetic image w.r.t. different C1 (where C0 = 2.0).

Fig. 7. 10% Gaussian-noisy three-cluster synthetic image. (a) Original image, (b) Noisy image, (c) EnFCM result, (d) FGFCM result, (e) FGFCM_S1 result, (f) FGFCM_S2
result, (g) FLICM result, (h) KWFLICM result, (i) IIFCM result, (j) WIPFCM result, (k) PFLSCM result.
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Table 3
The PR, SP and SE values of different methods applied to noisy two-cluster images.

EnFCM FGFCM FGFCM _S1 FGFCM _S2 FLICM KWFLICM IIFCM WIPFCM PFLSCM

PR for 5% Gaussian noise 0.9673 0.9796 0.9737 0.9704 0.9856 0.9971 0.9931 0.9925 0.9972
PR for 10% Gaussian noise 0.9030 0.9204 0.9079 0.8948 0.9419 0.9755 0.9689 0.9422 0.9791
PR for 15% Gaussian noise 0.8537 0.8623 0.8583 0.8376 0.9092 0.9117 0.9110 0.9106 0.9177
PR for 20% Gaussian noise 0.7259 0.8371 0.8236 0.7990 0.8382 0.8812 0.8533 0.8439 0.8975
PR for 5% salt-and-pepper noise 0.9391 0.9894 0.9636 0.9542 0.9972 0.9996 0.9983 0.9978 0.9999
PR for 10% salt-and-pepper noise 0.9247 0.9876 0.9544 0.9521 0.9961 0.9987 0.9979 0.9971 0.9996
PR for 15% salt-and-pepper noise 0.8894 0.9865 0.9530 0.9492 0.9927 0.9975 0.9967 0.9939 0.9995
PR for 20% salt-and-pepper noise 0.8726 0.9802 0.9393 0.9488 0.9913 0.9972 0.9940 0.9922 0.9993
PR for 5% impulse noise 0.9723 0.9786 0.9579 0.9661 0.9782 0.9872 0.9862 0.9799 0.9999
PR for 10% impulse noise 0.9485 0.9782 0.9523 0.9491 0.9558 0.9820 0.9808 0.9793 0.9998
PR for 15% impulse noise 0.9472 0.9516 0.9496 0.9468 0.9539 0.9551 0.9540 0.9527 0.9998
PR for 20% impulse noise 0.9397 0.9465 0.9180 0.9288 0.9491 0.9542 0.9497 0.9503 0.9994
SP for 5% Gaussian noise 0.8451 0.9579 0.9384 0.9273 0.9745 0.9971 0.9757 0.9769 0.9972
SP for 10% Gaussian noise 0.7980 0.9165 0.9030 0.9022 0.9395 0.9750 0.9726 0.9522 0.9788
SP for 15% Gaussian noise 0.7328 0.8521 0.8459 0.8412 0.8523 0.8733 0.8574 0.8524 0.9108
SP for 20% Gaussian noise 0.6795 0.8363 0.8090 0.7755 0.8557 0.8598 0.8559 0.8557 0.8629
SP for 5% salt-and-pepper noise 0.9592 0.9895 0.9675 0.9688 0.9923 0.9996 0.9943 0.9930 0.9999
SP for 10% salt-and-pepper noise 0.9587 0.9877 0.9639 0.9636 0.9923 0.9992 0.9935 0.9925 0.9996
SP for 15% salt-and-pepper noise 0.9325 0.9856 0.9555 0.9479 0.9871 0.9903 0.9886 0.9885 0.9995
SP for 20% salt-and-pepper noise 0.9261 0.9807 0.9409 0.9441 0.9835 0.9892 0.9872 0.9843 0.9995
SP for 5% impulse noise 0.9259 0.9930 0.9782 0.9849 0.9961 0.9986 0.9969 0.9964 0.9999
SP for 10% impulse noise 0.9212 0.9909 0.9600 0.9533 0.9940 0.9955 0.9947 0.9941 0.9998
SP for 15% impulse noise 0.9143 0.9837 0.9297 0.9405 0.9874 0.9903 0.9882 0.9877 0.9998
SP for 20% impulse noise 0.8093 0.9776 0.9286 0.9389 0.9832 0.9898 0.9865 0.9841 0.9995
SE for 5% Gaussian noise 0.9425 0.9680 0.9614 0.9722 0.9855 0.9935 0.9872 0.9860 0.9990
SE for 10% Gaussian noise 0.9072 0.9661 0.9570 0.9333 0.9748 0.9780 0.9763 0.9760 0.9962
SE for 15% Gaussian noise 0.8729 0.9263 0.9230 0.8962 0.9433 0.9656 0.9488 0.9442 0.9952
SE for 20% Gaussian noise 0.8684 0.9115 0.8922 0.8922 0.9207 0.9404 0.9375 0.9324 0.9915
SE for 5% salt-and-pepper noise 0.9734 0.9982 0.9833 0.9889 0.9983 0.9996 0.9995 0.9993 0.9999
SE for 10% salt-and-pepper noise 0.9501 0.9917 0.9303 0.9870 0.9972 0.9982 0.9979 0.9977 0.9998
SE for 15% salt-and-pepper noise 0.9595 0.9747 0.8944 0.9799 0.9929 0.9956 0.9952 0.9938 0.9994
SE for 20% salt-and-pepper noise 0.9072 0.9418 0.8821 0.9738 0.9851 0.9900 0.9882 0.9864 0.9991
SE for 5% impulse noise 0.8926 0.9617 0.9274 0.9579 0.9995 0.9996 0.9705 0.9680 0.9999
SE for 10% impulse noise 0.7943 0.9598 0.9265 0.9555 0.9977 0.9986 0.9651 0.9647 0.9999
SE for 15% impulse noise 0.7792 0.9522 0.9002 0.9362 0.9928 0.9950 0.9634 0.9527 0.9993
SE for 20% impulse noise 0.7601 0.9397 0.8799 0.9090 0.8817 0.9830 0.9616 0.9345 0.9988

Table 4
The SA and S values of different methods applied to noisy three-cluster images.

EnFCM FGFCM FGFCM_S1 FGFCM_S2 FLICM KWFLICM IIFCM WIPFCM PFLSCM

SA for 5% Gaussian noise 0.9529 0.9878 0.9841 0.9794 0.9935 0.9968 0.9961 0.9952 0.9971
SA for 10% Gaussian noise 0.8629 0.9569 0.9486 0.9296 0.9767 0.9818 0.9793 0.9779 0.9870
SA for 15% Gaussian noise 0.7936 0.9201 0.9071 0.8696 0.9352 0.9552 0.9415 0.9396 0.9609
SA for 20% Gaussian noise 0.7553 0.8763 0.8576 0.8245 0.8946 0.9251 0.9056 0.8963 0.9336
SA for 5% salt-and-pepper noise 0.9705 0.9943 0.9856 0.9528 0.9982 0.9995 0.9995 0.9983 0.9997
SA for 10% salt-and-pepper noise 0.9435 0.9885 0.9686 0.9507 0.9980 0.9992 0.9991 0.9981 0.9995
SA for 15% salt-and-pepper noise 0.9132 0.9744 0.9392 0.9336 0.9875 0.9990 0.9987 0.9979 0.9992
SA for 20% salt-and-pepper noise 0.8855 0.9538 0.9093 0.8925 0.9861 0.9987 0.9977 0.9943 0.9990
SA for 5% impulse noise 0.9625 0.9894 0.9806 0.9885 0.9957 0.9990 0.9970 0.9959 0.9993
SA for 10% impulse noise 0.9471 0.9886 0.9754 0.9883 0.9918 0.9937 0.9929 0.9926 0.9992
SA for 15% impulse noise 0.9479 0.9870 0.9732 0.9655 0.9913 0.9922 0.9920 0.9914 0.9986
SA for 20% impulse noise 0.9298 0.9759 0.9595 0.9430 0.9875 0.9891 0.9888 0.9882 0.9978
S for 5% Gaussian noise 2.2438 2.8903 2.8586 2.8186 2.9613 2.9714 2.9638 2.9627 2.9741
S for 10% Gaussian noise 2.1217 2.6452 2.5895 2.4748 2.7926 2.8328 2.8095 2.7998 2.8805
S for 15% Gaussian noise 1.8493 2.4105 2.3401 2.1683 2.4801 2.5969 2.5102 2.5024 2.6499
S for 20% Gaussian noise 1.7189 2.1809 2.1047 1.9784 2.2452 2.3769 2.3215 2.2511 2.4252
S for 5% salt-and-pepper noise 2.7554 2.9480 2.8727 2.7973 2.9752 2.9962 2.9957 2.9765 2.9971
S for 10% salt-and-pepper noise 2.5699 2.8987 2.7407 2.7519 2.9717 2.9948 2.9922 2.9754 2.9958
S for 15% salt-and-pepper noise 2.3930 2.7869 2.5425 2.4602 2.9475 2.9926 2.9884 2.9616 2.9939
S for 20% salt-and-pepper noise 2.2525 2.6460 2.3756 2.4585 2.9400 2.9915 2.9835 2.9592 2.9924
S for 5% impulse noise 1.9941 2.8935 2.7065 2.8869 2.9298 2.9723 2.9699 2.9629 2.9983
S for 10% impulse noise 1.9908 2.8799 2.6833 2.8637 2.9004 2.8926 2.9476 2.9155 2.9997
S for 15% impulse noise 1.9753 2.8359 2.6740 2.8376 2.8500 2.8636 2.8592 2.8537 2.9961
S for 20% impulse noise 1.9246 2.8082 2.5677 2.7862 2.8410 2.8628 2.8543 2.8495 2.9937

one class (corresponding to right part) is well segmented. The
IIFCM and KWFLICM algorithm achieves superior results with
good results for two classes (corresponding to middle and right
parts). Finally, the PFLSCM algorithm performs best, where good
results are obtained for all three categories.

In Tables 2 to 6, we show five indexes (SA, S, PR, SP and SE) of
different methods applied to two-cluster image and three-cluster
image with one kind of noise or mixed noise. Obviously our

proposed PFLSCM algorithm and the WIPFCM algorithm (which
both use the idea of image patch) are always better than FLICM,
which means that the way of replacing a pixel with an image
patch is conducive to improving the image segmentation effect.
Moreover, the proposed PFLSCM algorithm is better than the
WIPFCM algorithm in image segmentation, which verifies that
the proposed image patch distance formula shows a positive
improvement of the segmentation algorithm.
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Table 5
The PR, SP and SE values of different methods applied to noisy three-cluster images.

EnFCM FGFCM FGFCM _S1 FGFCM _S2 FLICM KWFLICM IIFCM WIPFCM PFLSCM

PR for 5% Gaussian noise 0.9460 0.9774 0.9721 0.9661 0.9843 0.9913 0.9896 0.9885 0.9938
PR for 10% Gaussian noise 0.9207 0.9214 0.9153 0.7904 0.9599 0.9887 0.9722 0.9708 0.9929
PR for 15% Gaussian noise 0.8489 0.8697 0.8521 0.8227 0.9230 0.9679 0.9623 0.9241 0.9785
PR for 20% Gaussian noise 0.7945 0.8104 0.8014 0.7770 0.8956 0.9623 0.9598 0.9235 0.9749
PR for 5% salt-and-pepper noise 0.9631 0.9869 0.9710 0.9833 0.9885 0.9898 0.9772 0.9238 0.9991
PR for 10% salt-and-pepper noise 0.9318 0.9707 0.9406 0.9587 0.9719 0.9725 0.9551 0.9218 0.9988
PR for 15% salt-and-pepper noise 0.9114 0.9486 0.9019 0.9240 0.9566 0.9674 0.9335 0.9163 0.9990
PR for 20% salt-and-pepper noise 0.8756 0.9197 0.8883 0.7854 0.9200 0.9225 0.9108 0.9058 0.9982
PR for 5% impulse noise 0.8489 0.9891 0.9802 0.9785 0.9923 0.9970 0.9955 0.9929 0.9986
PR for 10% impulse noise 0.8014 0.9830 0.9669 0.9768 0.9882 0.9947 0.9903 0.9897 0.9983
PR for 15% impulse noise 0.6732 0.9727 0.9512 0.9609 0.9799 0.9896 0.9874 0.9853 0.9972
PR for 20% impulse noise 0.5728 0.9524 0.9271 0.9483 0.9765 0.9824 0.9782 0.9029 0.9958
SP for 5% Gaussian noise 0.9104 0.9945 0.9433 0.9212 0.9957 0.9967 0.9965 0.9958 0.9984
SP for 10% Gaussian noise 0.8872 0.9781 0.9429 0.9142 0.9821 0.9926 0.9863 0.9844 0.9954
SP for 15% Gaussian noise 0.8860 0.9629 0.9077 0.8995 0.9819 0.9922 0.9846 0.9841 0.9910
SP for 20% Gaussian noise 0.8155 0.9427 0.8731 0.8963 0.9652 0.9896 0.9828 0.9762 0.9825
SP for 5% salt-and-pepper noise 0.9326 0.9977 0.9944 0.9969 0.9980 0.9992 0.9988 0.9984 0.9998
SP for 10% salt-and-pepper noise 0.9105 0.9954 0.9875 0.9893 0.9888 0.9959 0.9975 0.9941 0.9997
SP for 15% salt-and-pepper noise 0.8791 0.9893 0.9761 0.9892 0.9886 0.9921 0.9905 0.9893 0.9996
SP for 20% salt-and-pepper noise 0.8665 0.9816 0.9635 0.9782 0.9830 0.9904 0.9889 0.9837 0.9992
SP for 5% impulse noise 0.9233 0.9428 0.9262 0.9198 0.9432 0.9931 0.9838 0.9444 0.9997
SP for 10% impulse noise 0.9215 0.9419 0.9236 0.9093 0.9429 0.9818 0.9691 0.9440 0.9997
SP for 15% impulse noise 0.9139 0.9368 0.8999 0.8989 0.9412 0.9679 0.9524 0.9428 0.9994
SP for 20% impulse noise 0.8842 0.9302 0.8980 0.8971 0.9399 0.9518 0.9365 0.9207 0.9990
SE for 5% Gaussian noise 0.9271 0.9637 0.9600 0.9329 0.9815 0.9938 0.9925 0.9864 0.9955
SE for 10% Gaussian noise 0.9297 0.9314 0.9341 0.9229 0.9783 0.9815 0.9806 0.9799 0.9825
SE for 15% Gaussian noise 0.8772 0.8941 0.8809 0.8975 0.9678 0.9800 0.9792 0.9755 0.9804
SE for 20% Gaussian noise 0.8262 0.8416 0.8342 0.8359 0.8465 0.8797 0.8609 0.8479 0.9293
SE for 5% salt-and-pepper noise 0.9325 0.9823 0.9802 0.9723 0.9865 0.9979 0.9958 0.9949 0.9994
SE for 10% salt-and-pepper noise 0.9084 0.9815 0.9717 0.9687 0.9822 0.9957 0.9863 0.9842 0.9993
SE for 15% salt-and-pepper noise 0.8950 0.9766 0.9445 0.9681 0.9820 0.9936 0.9829 0.9825 0.9991
SE for 20% salt-and-pepper noise 0.8779 0.9602 0.9138 0.9063 0.9808 0.9910 0.9827 0.9811 0.9983
SE for 5% impulse noise 0.9653 0.9958 0.9915 0.9873 0.9975 0.9990 0.9987 0.9979 0.9994
SE for 10% impulse noise 0.9579 0.9933 0.9860 0.9828 0.9964 0.9979 0.9972 0.9968 0.9992
SE for 15% impulse noise 0.9278 0.9886 0.9784 0.9805 0.9933 0.9955 0.9948 0.9935 0.9987
SE for 20% impulse noise 0.9009 0.9794 0.9651 0.9792 0.9891 0.9930 0.9915 0.9892 0.9979

Table 6
The SA, S, PR, SP and SE values of different methods applied to three-cluster images with mixed noises.

EnFCM FGFCM FGFCM _S1 FGFCM _S2 FLICM KWFLICM IIFCM WIPFCM PFLSCM

SA for 5% Gaussian noise & 10% salt-and-pepper noise 0.8085 0.8683 0.8193 0.8535 0.8787 0.9860 0.9680 0.8916 0.9927
SA for 10% Gaussian noise & 15% impulse noise 0.7887 0.8427 0.8590 0.8295 0.8641 0.9753 0.9377 0.8914 0.9924
SA for 5% salt-and-pepper noise & 20% impulse noise 0.6978 0.7823 0.7315 0.7811 0.8333 0.9232 0.9036 0.8907 0.9375
S for 5% Gaussian noise & 10 salt-and-pepper noise 2.1490 2.2564 2.1741 2.2497 2.6357 2.9242 2.9082 2.7654 2.9653
S for 10% Gaussian noise & 15% impulse noise 2.0002 2.2361 2.1533 2.0338 2.3195 2.8562 2.7117 2.6457 2.9549
S for 5% salt-and-pepper noise & 20% impulse noise 1.6384 1.8562 1.6628 1.7477 1.9751 2.7608 2.5360 2.2277 2.8971
PR for 5% Gaussian noise & 10 salt-and-pepper noise 0.7222 0.8918 0.8440 0.8810 0.8933 0.9819 0.9537 0.9126 0.9888
PR for 10% Gaussian noise & 15% impulse noise 0.6799 0.8733 0.8328 0.8210 0.8795 0.9699 0.9126 0.9044 0.9819
PR for 5% salt-and-pepper noise & 20% impulse noise 0.6636 0.8670 0.7153 0.7420 0.7945 0.9020 0.8717 0.8319 0.9449
SP for 5% Gaussian noise & 10 salt-and-pepper noise 0.9058 0.9287 0.9166 0.9251 0.9328 0.9929 0.9529 0.9425 0.9965
SP for 10% Gaussian noise & 15% impulse noise 0.8408 0.9285 0.9022 0.8891 0.9267 0.9872 0.9512 0.9323 0.9951
SP for 5% salt-and-pepper noise & 20% impulse noise 0.7782 0.8840 0.8195 0.8545 0.9131 0.9607 0.9526 0.9426 0.9683
SE for 5% Gaussian noise & 10 salt-and-pepper noise 0.6822 0.8405 0.7247 0.7499 0.8786 0.9747 0.9694 0.9218 0.9884
SE for 10% Gaussian noise & 15% impulse noise 0.6667 0.7975 0.7047 0.6779 0.7732 0.9521 0.9039 0.8819 0.9850
SE for 5% salt-and-pepper noise & 20% impulse noise 0.5721 0.6187 0.5994 0.6025 0.6584 0.9203 0.8453 0.7426 0.9657

Furthermore, for the real-world images, the ground truth
normally does not exist. Therefore, the no-reference evaluation
method is more convenient here. Thus we use the entropy-based
evaluation criterion E and signal-to-noise ratio SNR to compare
the result. Aiming at three classical real-world images, i.e., the
Coins image, the House image, and the Cameraman image [46],
we utilized the eight algorithms to carry a segmentation process.
Fig. 9 shows the segmentation results for the 5% salt-and-pepper
noise impacted Coins image. Fig. 10 shows the results for the 5%
Gaussian-noised House image. Following that, Fig. 11 provides
the results for the 10% salt-and-pepper-noisy Cameraman image.
Table 7 shows the corresponding E values for different algorithms
and images, and Table 8 provides the SNR values for different
methods on noisy real-world images.

For the 5% salt-and-pepper-noisy Coins image (see Fig. 9),
EnFCM exhibits the worst performance and FGFCM_S1 is the next
one. The structure grasped in the segmented image of FGFCM_S1
and EnFCM is rather unclear. Then, FLICM, FGFCM and FGFCM_S2
perform better than FGFCM_S1 and EnFCM. KWFLICM, IIFCM and
WIPFCM also exhibit poor performance which lose some local
structure. The proposed PFLSCM algorithm yields the best seg-
mentation results, see Fig. 9; its E values are the smallest as well,
see Table 7; its SNR values are the biggest one, see Table 8. There-
fore, the PFLSCM algorithm comes with the best segmentation
performance. For the 5% Gaussian-noise impacted House image
(Fig. 10) and the 10% salt-and-pepper noise impacted Cameraman
image (see Fig. 11), the conclusions are similar. The worst result
is reported for the EnFCM method, whereas the best is produced
by the PFLSCM.
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Fig. 8. Three-cluster synthetic image with 5% Gaussian noise & 10% salt-and-pepper noise. (a) Noisy image, (b) EnFCM result, (c) FGFCM result, (d) FGFCM_S1 result,
(e) FGFCM_S2 result, (f) FLICM result, (g) KWFLICM result, (h) IIFCM result, (i) WIPFCM result, (j) PFLSCM result.

Fig. 9. 5% salt-and-pepper-noisy Coins image. (a) Original image, (b) Noisy image, (c) EnFCM result, (d) FGFCM result, (e) FGFCM_S1 result, (f) FGFCM_S2 result, (g)
FLICM result, (h) KWFLICM result, (i) IIFCM result, (j) WIPFCM result, and (k) PFLSCM result.

Fig. 10. 5% Gaussian-noisy House image. (a) Original image, (b) Noisy image, (c) EnFCM result, (d) FGFCM result, (e) FGFCM_S1 result, (f) FGFCM_S2 result, (g) FLICM
result, (h) KWFLICM result, (i) IIFCM result, (j) WIPFCM result, and (k) PFLSCM result.

Finally, we complete experiments for medical images. Here we
use the BrainWeb image [47], which is high-resolution
T2_weighted phantom with slice thickness of 1 mm resolution,
40% intensity non-uniformity, 9% Rician noise, leading to a size
of 181×217×181 voxels. It is noted that reference images are

available on the website. We use two slices in the axial plane, as
shown in Figs. 12(a) and 13(a).

The results produced by the nine algorithms are given in
Figs. 12 and 13. Table 9 reports the SA and S values of different
methods on the noisy image. We find that the EnFCM algorithm



12 Y. Tang, F. Ren and W. Pedrycz / Applied Soft Computing Journal 87 (2020) 105928

Fig. 11. 10% salt-and-pepper-noisy Cameraman image. (a) Original image, (b) Noisy image, (c) EnFCM result, (d) FGFCM result, (e) FGFCM_S1 result, (f) FGFCM_S2
result, (g) FLICM result, (h) KWFLICM result, (i) IIFCM result, (j) WIPFCM result, and (j) PFLSCM result.

Table 7
The E values for different methods on noisy real-world images.
Image Metric EnFCM FGFCM FGFCM_S1 FGFCM_S2 FLICM KWFLICM IIFCM WIPFCM PFLSCM

Coins
E 5.7265 5.4412 5.6919 5.4342 5.4088 5.3887 5.3911 5.4078 5.3762
Hr 4.3831 4.4210 4.5339 4.4323 4.3850 4.4104 4.3970 4.3853 4.3448
Hl 1.3434 1.0202 1.1580 1.0019 1.0238 0.9783 0.9941 1.0225 1.0314

House
E 9.1160 9.0024 9.0050 8.9515 8.7962 8.7901 8.7943 8.7957 8.7886
Hr 7.1482 7.4436 7.4473 7.3671 7.2306 7.3247 7.2525 7.2385 7.2412
Hl 1.9678 1.5588 1.5577 1.5844 1.5656 1.4653 1.5418 1.5572 1.5474

Cameraman
E 7.4423 7.3798 7.4011 7.2603 7.2466 7.2424 7.2458 7.2446 7.2349
Hr 5.9032 5.8508 6.3383 5.7347 5.7144 5.6810 5.7195 5.7124 5.7081
Hl 1.5391 1.5290 1.0628 1.5256 1.5322 1.5614 1.5263 1.5322 1.5268

Table 8
The SNR values for different methods on noisy real-world images.
Image EnFCM FGFCM FGFCM_S1 FGFCM_S2 FLICM KWFLICM IIFCM WIPFCM PFLSCM

Coins 4.1583 4.5138 4.1727 4.2482 4.5284 5.2934 4.9464 4.6658 5.6970
House 2.5691 3.7201 3.0339 2.7550 4.0641 6.0840 5.8103 5.2946 6.9147
Cameraman 6.8518 7.3040 7.3011 7.3038 7.4090 8.2602 7.4383 7.4114 8.7739

comes with the worst performance and that FGFCM_S1 is the
next one. Some detailed structural features are missed by the
KWFLICM, IIFCM and WIPFCM. The proposed PFLSCM algorithm
achieves the best performance by retaining the details of the
image and eliminating noise present in the original image.

Fig. 14 illustrates the computational cost for images of differ-
ent sizes when running EnFCM, FGFCM, FGFCM_S1, FGFCM_S2,
FLICM, KWFLICM, and PFLSCM. We added Gaussian together with
salt-and-pepper noise to these testing images. All experiments
were performed on a Pentium IV (2.6 GHz) under Windows 10
Professional using MATLAB and VC++ 2008. FGFCM_S1 is much
faster than other algorithms, while KWFLICM is the slowest one
and IIFCM is the next one. The running time of the proposed
PFLSCM algorithm is similar to FLICM and shorter than KWFLICM
as well as IIFCM.

To investigate the effect of different image patches of the
PFLSCM method, Table 10 shows the SA values for the PFLSCM
method applied to noisy three-cluster synthetic images (Fig. 7(a))
with different patches. From Table 10, aiming at different salt-
and-pepper noise, the image patch with size 3*3 can let PFLSCM
produce the highest SA value. Under the same noise density
condition, with the increase of patch size, the performance of
PFLSCM algorithm decreases gradually. Especially when 20% salt
and pepper noise is added, the performance decline trend is
the most obvious. This is because as the patch size increases,

the noise which it contains increases and naturally it gradually
interferes with the PFLSCM algorithm for image segmentation.
Based on this reason, here we all use the size of 3*3 to reveal
the performance of PFLSCM.

Table 11 shows the t-test of the PFLSCM method with regard
to other algorithms, where the parameter α of t-test employs 0.05
and the index is SA. Here 3.21E−07 means 3.21*10−7 and the
others are similar. The data tested here shows that the SA value of
the proposed PFLSCM is higher than other algorithms in each im-
age. After one-tail t-test, the probability P is less than 0.01 when
PFLSCM is compared with the other 8 comparison algorithms.
That is to say, it is very significant that the SA value of PFLSCM is
higher than other algorithms, especially for FGFCM_S. Moreover,
after two-tail t-test, the probability P is less than 0.01 when
PFLSCM is compared with other eight comparison algorithms
except KWFLICM. Thus, the SA value of the PFLSCM is significantly
higher than that of EnFCM, FGFCM, FGFCM_S1, FGFCM_S2, FLICM,
IIFCM and WIPFCM. As for KWFLICM, the probability P is bigger
than 0.01 and smaller than 0.05, which means that the SA value of
the PFLSCM is also significantly better than KWFLICM. To sum up,
the t-test proves that the performance of the proposed PFLSCM
method is significantly better than other algorithms.

Table 12 shows the Monte Carlo simulation of these algo-
rithms, which depends on the SA value. Here we do 10,000
Monte Carlo simulations, and take its mean value for these nine
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Fig. 12. Medical image (I). (a) Original image, (b) EnFCM result, (c) FGFCM result, (d) FGFCM_S1 result, (e) FGFCM_S2 result, (f) FLICM result, (g) KWFLICM result,
(h) IIFCM result, (i) WIPFCM result, and (j) PFLSCM result.

Fig. 13. Medical image (II). (a) Original image, (b) EnFCM result, (c) FGFCM result, (d) FGFCM_S1 result, (e) FGFCM_S2 result, (f) FLICM result, (g) KWFLICM result,
(h) IIFCM result, (i) WIPFCM result, and (j) PFLSCM result.

Table 9
The SA and S values for different methods on noisy medical images.
Image Metric EnFCM FGFCM FGFCM_S1 FGFCM_S2 FLICM KWFLICM IIFCM WIPFCM PFLSCM

Noisy Medical Images (i) SA 0.9194 0.9328 0.9281 0.9301 0.9371 0.9395 0.9389 0.9387 0.9446
S 2.9475 3.0688 3.0321 3.0323 3.1146 3.1221 3.1152 3.1150 3.2070

Noisy Medical Images (ii) SA 0.9255 0.9388 0.9320 0.9365 0.9409 0.9420 0.9411 0.9413 0.9512
S 3.0292 3.1339 3.0704 3.1135 3.1505 3.4169 3.2061 3.1902 3.5917

Table 10
The SA values for the PFLSCM method applied to noisy three-cluster synthetic images with different patches.

Size of image patch

3*3 5*5 7*7 9*9 11*11

5% salt-and-pepper noise 0.9997 0.9996 0.9996 0.9995 0.9993
10% salt-and-pepper noise 0.9995 0.9993 0.9990 0.9985 0.9981
15% salt-and-pepper noise 0.9992 0.9991 0.9987 0.9964 0.9950
20% salt-and-pepper noise 0.9990 0.9988 0.9938 0.9882 0.9874

algorithms. It can be found that our proposed PFLSCM method
has the average SA value of 0.9858, which is the biggest one.
All algorithm performance relations satisfy EnFCM < FGFCM_S2
< FGFCM_S1 < FGFCM < FLICM < WIPFCM < IIFCM < KWFLICM <
PFLSCM. From the statistical point of view, it is reliable that our
PFLSCM method has better performance than other comparative
algorithms.

3.3. Discussion

The comprehensive experiments lead to a number of well
documented conclusions:

(i) There exists some information loss in the EnFCM algorithm,
since it uses a linearly weighted sum image to accelerate the
computing process. This new image is only obtained from gray
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Table 11
The t-test of the PFLSCM method with regard to other algorithms.
P EnFCM FGFCM FGFCM _S1 FGFCM _S2 FLICM KWFLICM IIFCM WIPFCM

One-tail test 3.21E−07 4.67E−06 6.51E−08 2.44E−06 3.3E−06 0.00111 0.00034 0.00010
Two-tail test 6.41E−07 9.33E−06 1.3E−07 4.89E−06 6.6E−06 0.00222 0.00069 0.00020

Table 12
The Monte Carlo simulation of these algorithms.
EnFCM FGFCM FGFCM _S1 FGFCM _S2 FLICM KWFLICM IIFCM WIPFCM PFLSCM

0.9101 0.9637 0.9479 0.9442 0.9728 0.9818 0.9777 0.9757 0.9858

Fig. 14. Computational cost of the algorithms.

level information, which does not consider spatial information.
From the experimental results, this effect on the EnFCM is the
worst one.

(ii) Similar to EnFCM, the FGFCM algorithm also utilizes the
linearly weighted sum image. However, this new image is de-
rived from a local similarity measure combining both spatial and
gray level information. Thus FGFCM, has better performance than
EnFCM. Information loss in FGFCM cannot be avoided. Besides,
FGFCM_S1 and FGFCM_S2 are two reduced versions of the FGFCM
method. Generally speaking, FGFCM, FGFCM_S1 and FGFCM_S2
are superior over the EnFCM.

(iii) For the FLICM algorithm, there are no information losses
as they are avoided by using the original image. The experimental
results show that the method is better than EnFCM, FGFCM,
FGFCM_S1, and FGFCM_S2. However, as mentioned in Section 1,
it is not proper to depict the relationship between the image pixel
and the cluster center, and also the relationship between two
pixels in the FLICM algorithm.

(iv) As an improvement to FLICM, the KWFLICM algorithm
inherits its main features and demonstrates better performance.
KWFLICM uses a non-Euclidean distance to express the relation-
ship between the image pixel and the cluster center, however
it also depends on the gray values of these two points. And it
employs the local coefficient of variation to represent the rela-
tionship between the two pixels. This is helpful but not sufficient
to fully capture the relationship between two pixels. KWFLICM is
better than FLICM to characterize the relationship for the image
elements. Besides, the computing time of KWFLICM is the highest
in comparison with other algorithms studied here.

(v) IIFCM is another improvement of FLICM. Its main contri-
bution lies in that it depends on the intuitionistic fuzzy value to

represent image elements, however it is only related to image
gray, and the configuration of intuitionistic fuzzy value is simple
and lack of clear interpretation. Thus the relationship for the basic
image element is also not adequately expressed. From experi-
ment results, IIFCM is better than FLICM while it is not as good as
KWFLICM. Meanwhile, IIFCM seems a little difficult to distinguish
detailed structure features for noised images.

(vi) WIPFCM employs image patches to replace pixels with a
weighting scheme. From experiment results, WIPFCM is better
than FLICM while it is not as good as KWFLICM and IIFCM.
Moreover, we show the difference of WIPFCM and PFLSCM. First,
in WIPFCM, only the idea of image patch is employed. But, in
PFLSCM, the computing method for image patch is different from
WIPFCM, and a new distance measure and similarity measure are
put forward to characterize the spatial relationships between two
image pixels but also the dependencies of two image patches
revolving around them. Second, WIPFCM is basically positioned
along the lines of FCM, which leads to its standard computing
mechanism. However, PFLSCM inherits the advantages of FLICM
and utilizes fuzzy coefficient to make the computing model per-
form more reasonable. Finally, by experiments we find that the
performance of PFLSCM is better than WIPFCM.

(vii) PFLSCM fully characterizes the relationship among the
elements of the image. For one thing, to properly analyze the
relationship between the image pixel and the cluster center, the
idea of image patch is introduced for both the current image
pixel and the cluster center, because the image patches imply
more general information than image pixels. For another, aiming
at the relationship between two image pixels, we establish a
new similarity measure to compute the similarity between two
image pixels in the whole image. The new similarity measure
expresses not only the spatial relationships between two image
pixels but also the dependencies related with luminance, con-
trast, and structure of two image patches formed around them.
Consequently, PFLSCM fully characterizes the relationship among
the elements of the image, and then overcomes the weaknesses
of FLICM. These also demonstrate where PFLSCM improves on
FLICM. The computing cost of PFLSCM is similar to the one of the
FLICM, and is lower than the one encountered in KWFLICM and
IIFCM. The PFLSCM method has the highest ability to preserve the
details of the image and eliminate noise.

In sum, the proposed PFLSCM algorithm has the highest ability
to retain the details of the image and eliminate noise. It per-
forms the best among these algorithms from the angles of design
mechanism, evaluation metrics and visual perceptions.

4. Conclusions

In the FCM clustering algorithm used for image segmentation,
a crucial issue is how to appropriately characterize the relation-
ship between the image pixel and the cluster center, as well as the
relationship between two image pixels. To properly characterize
these two relationships, a novel FCM algorithm called PFLSCM
algorithm is put forward and investigated.



Y. Tang, F. Ren and W. Pedrycz / Applied Soft Computing Journal 87 (2020) 105928 15

The research of the proposed PFLSCM approach is summarized
as follows. To begin with, the idea of image patches is introduced
for not only the current image pixel but also the cluster center.
The basic distance is restructured into a weighted sum of image
patch. Furthermore, a novel local distance measure via the struc-
tural similarity (SSIM) index is presented to calculate the distance
between two pixels, and based on it a new similarity measure
is constructed. Such similarity measure includes the spatial rela-
tionships between two pixels as well as the dependencies related
with luminance, contrast, and structure of two patches revolved
around them. Following that, a new fuzzy coefficient is provided
using the new similarity measure as well as the weighted sum
distance of image patch, and then the PFLSCM algorithm is estab-
lished. Finally, from the algorithm design mechanism and testing
for the synthetic, real-world and medical images, the proposed
PFLSCM algorithm is better than related comparative algorithms
from the angles of both performance indexes and visual effects.

In the future, the idea of possibilistic c-means clustering can be
introduced into the PFLSCM algorithm, then new object function
and segmentation strategy can be obtained. What is more, we
can combine the PFLSCM algorithm with an advanced denoising
algorithm and then integrate it into a new algorithm, which may
lead to the better segmentation results for images with significant
levels of noise. In further studies, it is worth investigating how
to adjust the PFLSCM algorithm to segment synthetic aperture
radar images and color images. Furthermore it may be a good way
to employ granular information to express image pixel or patch.
How to utilize granular expression [48,49] to investigate image
segmentation based on fuzzy clustering, could be of interest in
further studies.
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