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Oscillation-Bound Estimation of Perturbations
Under Bandler–Kohout Subproduct

Yiming Tang , Member, IEEE, and Witold Pedrycz , Life Fellow, IEEE

Abstract—The Bandler–Kohout subproduct (BKS) method is
one of the two widely acknowledged fuzzy relational inference
(FRI) schemes. The previous works related to its stability and
robustness mainly concentrated on how the output values were
changed with perturbation parameters of input values. However,
the works on estimating oscillation bounds of output values
with regard to varying limits of input, are lacking. In this
study, we investigate the oscillation-bound estimation of per-
turbations for BKS. First, the BKS output variation scopes
are acquired for interval perturbation, where the R-implication,
(S, N)-implication, QL-implication, and t-norm implication are
adopted. Second, in allusion to the more sophisticated problem
of the fuzzy reasoning chain with BKS, the oscillation bounds
of BKS output resulting from input interval perturbation are
offered. Third, we construct the upper and lower bounds of BKS
output deviation originated in the simple perturbation of the
input fuzzy set, in which the situations of one rule and multiple
rules are both dissected. Finally, the stable properties of all these
BKS strategies are confirmed. It is emphasized that interval per-
turbation and simple perturbation are more general ways to give
expression describing the robustness issue, and the obtained oscil-
lation bounds also deliver more detailed characterization of the
output deviation along with the input perturbation. This study
further validates the sound properties of the BKS method.

Index Terms—Bandler–Kohout subproduct (BKS), composi-
tional rule of inference (CRI), fuzzy reasoning, perturbation,
robustness, stability.

I. INTRODUCTION

FUZZY reasoning is embodied as an advanced computing
framework on the strength of the concepts of the fuzzy

set, fuzzy if-then rule, and approximate reasoning. It has been
thoroughly explored and applied to the fields of fuzzy con-
trol, pattern recognition, decision making, time-series analysis
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and others. The general form of fuzzy reasoning comes as the
following fuzzy modus ponens (FMP):

Input: u is C

Rule: If u is A, then v is B

Output: D is f (A,B,C) =? (1)

in which A,C ∈ F(U), B,D ∈ F(V), and F(U),F(V), respec-
tively, represent the set of all fuzzy subsets of universes U
and V . f signifies a fuzzy reasoning mechanism. The output
D = f (A,B,C) is obtained from the rule and the input with
the fuzzy reasoning mechanism f .

Directing at such a fuzzy reasoning problem, there are a
number of reasoning mechanisms in fuzzy rule-based systems,
including fuzzy relational inference (FRI) [1], similarity-based
reasoning (SBR) [2], and inverse truth functional modifica-
tion [3], fuzzy interpolative reasoning, and differently impli-
cational reasoning [5], as a few representatives. Among them,
FRI has gained visible attention from both theoretical and
practical points of view. Among the FRI methods, the two
most frequently considered strategies are the compositional
rule of inference (CRI) [6] established by Zadeh, and the
Bandler–Kohout subproduct (BKS) proposed by our research
team [7] (realized on the basis of the previous results of
Bandler and Kohout [8]). In this work, we concentrate on the
FRI mechanism, especially the BKS method.

A. BKS and CRI

Here, we briefly review the BKS method. Our research
team [7] came up with the BKS method of fuzzy reasoning.
In allusion to a given SISO rule in (1), the BKS reasoning
mode is shown as follows:

D = C � R. (2)

Thereinto, C ∈ F(U) is the input. R : U × V → [0, 1] means
the fuzzy relation, viz., R ∈ F(U × V) denotes the rule base.
D ∈ F(V) represents the constructed output. In the end, the
operation � is the mapping � : F(U) × F(U × V) → F(V)
conveyed by

D(v) = inf
u∈U

{C(u) → R(u, v)}, v ∈ V. (3)

Here, → represents a fuzzy implication. The mapping � is
also known as the inf −I composition, where I indicates a
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fuzzy implication. For the rule base R, two alternatives are
sought

Ř(u, v) = ∨n
i=1{Ai(u)⊗ Bi(v)}, u ∈ U, v ∈ V (4)

R̂(u, v) = ∧n
i=1{Ai(u) → Bi(v)}, u ∈ U, v ∈ V. (5)

Here, ⊗ denotes a t-norm, and → represents a fuzzy implica-
tion. Equation (4) corresponds to a conjunctive mode for the
rule base, while (5) denotes an implicative mode. As for the
difference in semantics expressed by Ř and R̂, refer to [9].
By making use of Ř or R̂, the corresponding BKS algorithm
becomes

D(v) = inf
u∈U

{
C(u) → ∨n

i=1(Ai(u)⊗ Bi(v))
}
, v ∈ V (6)

D(v) = inf
u∈U

{
C(u) → ∧n

i=1(Ai(u) → Bi(v))
}
, v ∈ V. (7)

For the case of a single rule, we can acquire two types of
the BKS methods

D(v) = inf
u∈U

{C(u) → (A(u)⊗ B(v))}, v ∈ V (8)

D(v) = inf
u∈U

{C(u) → (A(u) → B(v))}, v ∈ V. (9)

The BKS methods indicated by (6) or (8) are referred to as
the BKS-T methods, meanwhile, the BKS methods completed
with the aid of (7) or (9) are said to be the BKS-I methods.

Another classic fuzzy reasoning method is the CRI method
proposed by Zadeh [6]. The CRI method can be shown as
follows:

D(v) = sup
u∈U

{C(u)⊗ R(u, v)}, v ∈ V (10)

where ⊗ is a fuzzy conjunction, which is usually treated as a
t-norm (see [10]).

Here, we compare the CRI method with the BKS method.
Notice that R̂ and Ř are typical and recognized fuzzy relations
used to model the rule base. On the one hand, any fuzzy rule in
R̂ is considered as a constraint, which results in a conjunctive
way of integrating the individual constraints, because of more
constraints, the fewer possible values satisfying these con-
straints [9], [11]. The employed fuzzy implication obviously
expresses the logical operation IF-THEN while the minimum
evidently reflects the logical conjunction, and hence R̂ is an
appropriate structure of conjunctively merged IF-THEN fuzzy
rules. On the other hand, Ř is not mainly constructed as a
mathematical structure of conditional IF-THEN sentences but
it adopts the Cartesian product of antecedent and consequent
fuzzy sets. Fuzzy rules characterized by Ř are regarded as
pieces of data that are evidently accumulated by the maxi-
mum in (4) for the merging of fuzzy rules [9], [11]. It is
emphasized that some of the superiorities of the CRI method
depend largely on the fuzzy rules modeled by Ř. However,
aiming at R̂, many of the advantages of CRI have been
lost, which incorporate the robustness of CRI in regard to
the indistinguishability of input fuzzy sets in the situation
of multiple rules, the equivalence of first-infer-then-aggregate
(FITA), and first-aggregate-then-infer (FATI), and many strate-
gies to improve the efficiency of the reasoning process [12].
But the BKS method has ideal performance for the fuzzy rules
modeled by R̂ [12]. Generally speaking, in view of previous

research (e.g., [12]–[14]), when a given fuzzy rule base is
modeled by the fuzzy relation Ř, the CRI method is preferable;
however, when it is modeled by the fuzzy relation R̂, the BKS
method is better. In addition, the fuzzy relation R̂ does better
in handling different levels of specificity of knowledge than Ř,
and only R̂ has a built-in ability for detecting inconsistencies
in rule bases [15]. Therefore, for complex tasks, such as in
data mining, logic programming, or complex expert systems,
the combination of BKS with R̂ provides a better selection
than the combination of CRI with Ř.

B. Research on Stability and Robustness for CRI and BKS

For a fuzzy reasoning mechanism, its stability and robust-
ness are deemed as the key research topics. At present, fuzzy
reasoning has become a vital strategy for designing and ana-
lyzing fuzzy controllers. The fuzzy controllers perform well
when using the quantitative expression to characterize granu-
lar domain knowledge, thus the divergence of the latter from
related quantitative representations enhances the importance of
the stability issue for fuzzy controllers [16]. The stability of
fuzzy reasoning concerns the deviation of the output implied
by perturbations of the input. Current research chiefly focuses
on how the output values of the reasoning strategy are changed
in response to the perturbation parameters of input values.

In this regard, some studies were completed, especially
for the CRI method. Pappis [17] established the proximity
measure originated from approximately equal fuzzy values
of system variables and relations and revealed its retention
abilities in the setting of the CRI method. Then, Hong and
Hwang [18] extended it to the α-similarity measure. Ying [19]
presented maximum and average perturbations of fuzzy sets,
determined perturbation parameters for some CRI strategies.
Cai [20] made a thorough inquiry into the robustness of
specific fuzzy implications and reasoning rules in CRI strate-
gies with regard to δ-equalities of fuzzy sets. Jin et al. [21]
offered the concept of perturbation of fuzzy sets with a logic-
oriented equivalence measure and obtained corresponding
robustness outcomes for some fuzzy-logic connectives, fuzzy
implications, reasoning rules, and fuzzy reasoning machines.
Dai et al. [22] investigated the perturbation of CRI with respect
to the perturbation of fuzzy sets derived from normalized
Minkowski distances. Li et al. [23] adopted an idea simi-
lar to the modulus of continuity to analyze the robustness
of some fuzzy connectives together with the CRI method.
Li et al. [24] proposed a divergence measure on the strength
of previously proposed dissimilarity function DF-metric [25]
and then inquired into the robustness of fuzzy connectives and
CRI. As for the BKS algorithm, there are also some works
related to this aspect. Štěpnička and Jayaram[12] verified the
effect of the BKS method with residuated implications, which
included the equivalence and reasonability for the solvabil-
ity and interpolativity, and analyzed its robustness (i.e., the
preservation of the indistinguishability that may be inherent
in the input fuzzy sets) along analogous lines of study as [26]
for CRI. Finally, it was concluded that the BKS strategy is
a sound alternative as the CRI method. Henceforth, Mandal
and Jayaram [13] investigated the BKS method employing
Yager’s classes of fuzzy implications and found that the
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corresponding BKS method also has useful properties, viz.,
interpolativity, continuity, and robustness (whose definitions
are analogous to those present in [12]). Štěpnička et al. [27]
verified the robustness with regard to the combination of BKS
and implicative model from another viewpoint, and briefly ana-
lyzed the preservation of desirable properties for FRI methods.
Focusing on the satisfiability problem for the three “inter-
polation” axioms introduced by Moser and Navara in [28],
Štěpnička and Mandal [14] further developed these axioms
and discovered the corresponding conditionally firing rules as
well as the related properties for the CRI and BKS algorithms
with Mamdani–Assilian and implicative models.

As a matter of fact, there is another aspect of the stability of
fuzzy reasoning, that is, to research how to estimate oscillation
bounds of output values when variation limits of input values
are provided. In [29], in allusion to the CRI method with a sin-
gle rule, Cheng and Fu analyzed the upper and lower bounds
of the output error induced by the simple perturbation of the
input fuzzy set and determined the oscillation scope of the
output result for the case of which the input ranges over an
interval.

C. Motivation

It should be emphasized that the oscillation-bound estima-
tion for BKS demands to be explored.

The previous investigation on error estimation for CRI
can also be done for other FRI mechanisms. In this article,
we focus on the oscillation-bound estimation for the BKS
algorithm.

Some properties of the CRI mechanism rely, to a great
extent, on the modeling strategy used for fuzzy rules via
the fuzzy relation Ř, which is proper in the context in
which the fuzzy rules are regarded as positive pieces of
information [9], [11]. For example, the work [29] concerns
the case of a single rule with Ř formed in CRI [viz.,
R(u, v) = A(u) → B(v)]. However, there are also situations
in which the conditional aspect of fuzzy rules is considered,
and the fuzzy relation R̂ has to be employed to character-
ize them [15]. Hence, some properties of CRI cannot hold,
including the oscillation-bound estimation. As a consequence,
the oscillation-bound estimation of BKS has to be formed for
both Ř and R̂.

D. Outline

Section II covers some preliminaries. Section III discusses
the estimation of the limits of the output with regard to the
interval perturbation of the input. Section IV analyzes the esti-
mates of the output scope related to the interval perturbation of
the input in the problem of a chain of fuzzy reasoning via BKS.
Section V investigates the error estimation of perturbations for
BKS with a single rule and with multiple rules. The stability
of the BKS fuzzy reasoning method is validated. Section VI
offers some discussion. Section VII summarizes this article.

II. PRELIMINARIES

A. Some Notions

There are several definitions of fuzzy implications. The
fundamental one is as follows.

Definition 1 [8], [30]: A fuzzy implication on [0, 1] is a
function I : [0, 1]2 → [0, 1] satisfying the condition

(P1) I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0.

I(a, b) can also be be represented a → b (a, b ∈ [0, 1]).
Definition 2 [10]: A function ⊗ : [0, 1]2 −→ [0, 1] is

referred to as a t-norm if ⊗ is associative, commutative,
increasing, and lets 1 ⊗ p = p be valid (p ∈ [0, 1]).

Here, three commonly used t-norms are adopted, which
incorporate min ⊗M , product ⊗P, and the Lukasiewicz con-
junction ⊗L. That is, ⊗M(p, q) = p ∧ q, ⊗P(p, q) = p × q,
and ⊗L(p, q) = 0 ∨ (p + q − 1) where p, q ∈ [0, 1] and ∨ and
∧ signify the supremum and infimum in turn.

Definition 3 [10]: A function ⊕ : [0, 1]2 −→ [0, 1] goes
by the name of a t-conorm if ⊕ is associative, commutative,
increasing, and makes 0 ⊕ p = p be effective (p ∈ [0, 1]).

Definition 4 [10]: A fuzzy negation is a decreasing function
N : [0, 1] −→ [0, 1] which meets N(0) = 1 and N(1) = 0.

Definition 5 [30]: A fuzzy implication → is referred to as
an R-implication whenever a left-continuous t-norm ⊗ exists
and lets p → q = ∨{x ∈ [0, 1]|p ⊗ x ≤ q} be right (p, q ∈
[0, 1]).

Definition 6 [31]: A function I : [0, 1]2 → [0, 1] is known
as an (S, N)-implication whenever there exist a t-conorm ⊕
and a fuzzy negation N making I(p, q) = N(p)⊕q hold (p, q ∈
[0, 1]). Such (S, N)-implication is recorded as I⊕,N .

Definition 7 [30], [32]: A function I : [0, 1]2 → [0, 1] is
referred to as a QL-implication whenever there are a t-norm
⊗, a t-conorm ⊕, and a fuzzy negation N making I(p, q) =
N(p)⊕(p⊗q) (p, q ∈ [0, 1]) be effective. Such QL-implication
is represented by I⊗,⊕,N .

Definition 8 [29], [33]: A function I : [0, 1]2 → [0, 1] is
referred to as a t-norm implication whenever there exists a
t-norm ⊗ making I(p, q) = p ⊗ q be right (p, q ∈ [0, 1]).

Although the t-norm implications do not meet (P1), they are
adopted as a model of fuzzy implication in many applications
of fuzzy logic [33].

Definition 9 [17]: Suppose that C,D ∈ F(Z) and that λ ∈
[0, 1]. If supz∈Z |C(z) − D(z)| ≤ λ holds, then C and D are
said to be approximately equal. λ is known as a proximity
measure of C and D.

Definition 10 [18]: Suppose that C,D ∈ F(Z) and that λ ∈
[0, 1]. If 1 − supz∈Z |C(z) − D(z)| ≥ λ holds, then C and D
are said to be λ-similar.

Definition 11 [19]: Suppose that C,D ∈ F(Z) and that λ ∈
[0, 1]. If one has |C(z) − D(z)| ≤ λ for any z ∈ Z, viz.,
D(z) = C(z) + λψ(z) for some function ψ : Z → [−1, 1]
(where 0 ≤ C(z) + λψ(z) ≤ 1 for any z ∈ Z), then D is
referred to as a maximum λ perturbation of C.

Definition 12 [34]: Suppose that C,D ∈ F(Z) and that λ ∈
[0, 1]. If supz∈Z |C(z) − D(z)| ≤ 1 − λ holds, then C and D
are called λ-equal.

Definition 13 [29]:
1) Suppose that β−, β+ ∈ F(Z) and that β−(z) ≤ β+(z)

(z ∈ Z), then [β−, β+] is known as a fuzzy interval
on Z.

2) Suppose that C ∈ F(Z) and that [β−, β+] be a fuzzy
interval on Z. If β−(z) ≤ C(z) ≤ β+(z) (z ∈ Z), then

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on July 05,2022 at 00:56:41 UTC from IEEE Xplore.  Restrictions apply. 



6272 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 7, JULY 2022

[β−, β+] is referred to as an interval perturbation of C,
which is signified by C ∈ [β−, β+].

Definition 14 [29]: Suppose that A,B ∈ F(Z). If there is a
function β : Z → [−1, 1] making B(z) = A(z)+ β(z) (z ∈ Z),
then B is known as a simple perturbation of A, and β is called
a perturbation factor of A.

Definition 15 [29]: Assume that C,E ∈ F(Z), D ∈ F(W),
and that C ∈ [α−, α+], D ∈ [η−, η+], E ∈ [γ−, γ+]. A fuzzy
reasoning strategy f is referred to as a stable function if, for
any ε > 0, there is a fuzzy interval [λ−, λ+] on W and δ > 0
making λ+(v) − λ−(v) < ε be effective for any w ∈ W and
f (C,D,E) ∈ [λ−, λ+] if α+(z)−α−(z) < δ, η+(w)−η−(w) <
δ, γ+(z)− γ−(z) < δ (z ∈ Z, w ∈ W).

Definition 16 [29]:
1) Assume that C,E ∈ F(Z), D ∈ F(W), and that C∗, D∗,

E∗ are perturbations of C,D,E with factors β1, β2, β3
in turn. A fuzzy reasoning strategy f is known as a
stable function if, for any ε > 0, there is δ > 0
making |f (C∗,D∗,E∗)(w) − f (C,D,E)(w)| < ε hold if
|β1(z)| < δ, |β2(w)| < δ, |β3(z)| < δ (z ∈ Z, w ∈ W).

2) Assume that {C∗
m,D∗

m,E∗
m} is a perturbation sequence of

(C,D,E) with regard to {β1m, β2m, β3m} of factors (m =
1, 2, . . . ). Then, a fuzzy reasoning strategy f is referred
to as an asymptotic stable function if, for any ε > 0,
there are m0 and δ > 0 making |f (C∗

m,D∗
m,E∗

m)(w) −
f (C,D,E)(w)| < ε hold for any m > m0 if |β1m(z)| < δ,
|β2m(w)| < δ, and |β3m(z)| < δ (z ∈ Z, w ∈ W).

Lemma 1 [29]: Let h1 and h2 be real-valued, bounded
mappings on Z, and C,D ∈ F(Z). Thus, one has:

1) h1 ∨ h2 = max{h1, h2} = (h1 + h2)/2 + |h1 − h2|/2;
2) h1 ∧ h2 = min{h1, h2} = (h1 + h2)/2 − |h1 − h2|/2;
3) −|h1 − h2| ≤ |h1| − |h2| ≤ |h1 − h2|;
4) infz∈Z C(z)+ infz∈Z D(z) ≤ infz∈Z(C(z)+ D(z));
5) supz∈Z(C(z)+ D(z)) ≤ supz∈Z C(z)+ supz∈Z D(z);
6) supz∈Z C(z) = − infz∈Z(−C(z));
7) infz∈Z(C(z) ∧ D(z)) = infz∈Z C(z) ∧ infz∈Z D(z);
8) infz∈Z(C(z) ∨ D(z)) ≥ infz∈Z C(z) ∨ infz∈Z D(z);
9) supz∈Z(C(z) ∧ D(z)) ≤ supz∈Z C(z) ∧ supz∈Z D(z);

10) supz∈Z(C(z) ∨ D(z)) = supz∈Z C(z) ∨ supz∈Z D(z).
It is effortless to verify Lemma 2.
Lemma 2: If h1 and h2 be real-valued, bounded mappings

on Z, then:
1) supz∈Z h1(z)− supz∈Z h2(z) ≤ supz∈Z(h1(z)− h2(z));
2) infz∈Z h1(z)− infz∈Z h2(z) ≤ supz∈Z(h1(z)− h2(z));
3) infz∈Z h1(z)− infz∈Z h2(z) ≥ infz∈Z(h1(z)− h2(z));
4) supz∈Z h1(z)− supz∈Z h2(z) ≥ infz∈Z(h1(z)− h2(z)).

III. INTERVAL PERTURBATION FOR BKS

A. Interval Perturbation for BKS With Single Rule

Assume that [α−, α+] and [γ−, γ+] are fuzzy intervals on
U, and that [η−, η+] is a fuzzy interval on V . We denote
ĩu(f ) = infu∈U{f (u)}, s̃u(f ) = supu∈U{f (u)}, and BKS1(v) =
BKS(A,B,C)(v) (v ∈ V).

Theorem 1: Let A,C ∈ F(U) and B ∈ F(V). Assume that
A ∈ [α−, α+], C ∈ [γ−, γ+], and B ∈ [η−, η+], and that ⊗
is a t-norm. The BKS-T method is adopted.

1) If → is an R-implication, then s̃u(γ
+) � (ĩu(α−) ⊗

η−(v)) ≤ BKS1(v) ≤ ĩu(γ−)� (s̃u(α
+)⊗ η+(v)).

2) If → is a t-norm implication, then ĩu(γ−)� (ĩu(α−)⊗
η−(v)) ≤ BKS1(v) ≤ s̃u(γ

+)� (s̃u(α
+)⊗ η+(v)).

3) If → is an (S, N)-implication I⊕1,N , then
ĩu{N(s̃u(γ

+)) ⊕1 (ĩu(α−) ⊗ η−(v))} ≤ BKS1(v) ≤
ĩu{N(ĩu(γ−))⊕1 (s̃u(α

+)⊗ η+(v))}.
4) If → is an QL-implication I⊗1,⊕1,N , then

ĩu{N(s̃u(γ
+)) ⊕1 [ĩu(γ−) ⊗1 (ĩu(α−) ⊗ η−(v))]} ≤

BKS1(v) ≤ ĩu{N(ĩu(γ−)) ⊕1 [s̃u(γ
+) ⊗1 (s̃u(α

+) ⊗
η+(v))]}.

Proof: Here, we only prove 1). The other cases can be
gained in an analogous manner. Note that an R-implication
is decreasing in the first variable and increasing in the
second variable. From the intrinsic characteristics of R-
implications and t-norms, one has s̃u(γ

+) � (ĩu(α−) ⊗
η−(v)) = infu∈U{supu∈U(γ

+(u)) → (infu∈U(α
−(u)) ⊗

η−(v))} ≤ BKS1(v) = infu∈U{C(u) → (A(u) ⊗ B(v))} ≤
infu∈U{infu∈U(γ

−(u)) → (supu∈U(α
+(u)) ⊗ η+(v))} =

ĩu(γ−)� (s̃u(α
+)⊗ η+(v)).

Theorem 2 can be derived in a similar manner.
Theorem 2: Let A,C ∈ F(U) and B ∈ F(V). Assume that

A ∈ [α−, α+], and C ∈ [γ−, γ+], B ∈ [η−, η+]. The BKS-I
method is used.

1) If → is an R-implication, then s̃u(γ
+) � (s̃u(α

+) →
η−(v)) ≤ BKS1(v) ≤ ĩu(γ−)� (ĩu(α−) → η+(v)).

2) If → is a t-norm implication, then ĩu(γ−)� (ĩu(α−) →
η−(v)) ≤ BKS1(v) ≤ s̃u(γ

+)� (s̃u(α
+) → η+(v)).

3) If → is an (S, N)-implication I⊕1,N , then
ĩu{N(s̃u(γ

+)) ⊕1 (N(s̃u(α
+)) ⊕1 η

−(v))} ≤ BKS1(v) ≤
ĩu{N(ĩu(γ−))⊕1 (N(ĩu(α−))⊕1 η

+(v))}.
4) If → is an QL-implication I⊗1,⊕1,N , then

ĩu{N(s̃u(γ
+))⊕1 [ĩu(γ−)⊗1 (N(s̃u(α

+))⊕1 (ĩu(α−)⊗1
η−(v)))]} ≤ BKS1(v) ≤ ĩu{N(ĩu(γ−)) ⊕1 [s̃u(γ

+) ⊗1
(N(ĩu(α−))⊕1 (s̃u(α

+)⊗1 η
+(v)))]}.

If the generic operations (including t-norm, t-conorm, and
fuzzy negation) are continuous, the BKS method with ⊗
(some t-norm) and an (S, N)-implication, or a QL-implication,
or a t-norm implication is stable. As for the situation of
R-implication, if the R-implication and t-norm are continu-
ous, then the corresponding BKS fuzzy reasoning method is
stable.

Suppose that there is a perturbation sequence
([α−

m , α
+
m ], [η−

m , η
+
m ], [γ−

m , γ
+
m ]) of the input (A,B,C) for the

BKS method implying that limm→∞ supu∈U(α
+
m (u)−α−

m (u)) =
limm→∞ supv∈V(η

+
m (v) − η−

m (v)) = limm→∞ supu∈U(γ
+
m (u) −

γ−
m (u)) = 0 hold (m = 1, 2, . . .). In Theorems 1 and 2, we

adopt λ−
m, λ

+
m to indicate the corresponding lower and upper

bounds of the BKS output, viz., BKS(A,B,C) ∈ [λ−
m, λ

+
m]

for ([α−
m , α

+
m ], [η−

m , η
+
m ], [γ−

m , γ
+
m ]) (m = 1, 2, . . .). When

the continuous condition are met, one has from Theorems 1
and 2 that limm→∞ supv∈V(λ

+
m(v) − λ−

m(v)) = 0. That
is, the output of BKS algorithm converges steadily to a
value when the continuous conditions mentioned above is
effective. From Definition 15, the BKS algorithm for the
situation of one rule is stable from the perspective of interval
perturbation.
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B. Interval Perturbation for BKS With Multiple Rules

Denote BKSn(v) = BKS(A1, . . . ,An,B1, . . . ,Bn,C)(v)
(v ∈ V). Theorems 3 and 4 can be proved analogously.

Theorem 3: Suppose that Ai,C ∈ F(U), Bi ∈ F(V), and
that Ai ∈ [α−

i , α
+
i ], and C ∈ [γ−, γ+], Bi ∈ [η−

i , η
+
i ], and

that ⊗ is a t-norm (i = 1, 2, . . . , n). The BKS-T method is
adopted.

1) If → is an R-implication, then s̃u(γ
+)�[∨n

i=1 (ĩu(α
−
i )⊗

η−
i (v))] ≤ BKSn(v) ≤ ĩu(γ−)�[∨n

i=1 (s̃u(α
+
i )⊗η+

i (v))].
2) If → is a t-norm implication, then ĩu(γ−) � [ ∨n

i=1
(ĩu(α

−
i ) ⊗ η−

i (v))] ≤ BKSn(v) ≤ s̃u(γ
+) � [ ∨n

i=1
(s̃u(α

+
i )⊗ η+

i (v))].
3) If → is an (S, N)-implication I⊕1,N , then

ĩu{N(s̃u(γ
+)) ⊕1 ∨n

i=1(ĩu(α
−
i ) ⊗ η−

i (v))} ≤ BKSn(v) ≤
ĩu{N(ĩu(γ−))⊕1 ∨n

i=1(s̃u(α
+
i )⊗ η+

i (v))}.
4) If → is a QL-implication I⊗1,⊕1,N , then

ĩu{N(s̃u(γ
+)) ⊕1 [ĩu(γ−) ⊗1 ∨n

i=1(ĩu(α
−
i ) ⊗ η−

i (v))]} ≤
BKSn(v) ≤ ĩu{N(ĩu(γ−))⊕1 [s̃u(γ

+)⊗1 ∨n
i=1(s̃u(α

+
i )⊗

η+
i (v))]}.

Theorem 4: Suppose that Ai,C ∈ F(U), Bi ∈ F(V), and
that Ai ∈ [α−

i , α
+
i ], C ∈ [γ−, γ+], and Bi ∈ [η−

i , η
+
i ] (i =

1, 2, . . . , n). The BKS-I method is utilized.
1) If → is an R-implication, then s̃u(γ

+)�[∧n
i=1(s̃u(α

+
i ) →

η−
i (v))] ≤ BKSn(v) ≤ ĩu(γ−) � [ ∧n

i=1 (ĩu(α
−
i ) →

η+
i (v))].

2) If → is a t-norm implication, then ĩu(γ−) � [ ∧n
i=1

(ĩu(α
−
i ) → η−

i (v))] ≤ BKSn(v) ≤ s̃u(γ
+) � [ ∧n

i=1
(s̃u(α

+
i ) → η+

i (v))].
3) If → is an (S, N)-implication I⊕1,N , then

ĩu{N(s̃u(γ
+)) ⊕1 ∧n

i=1(N(s̃u(α
+
i )) ⊕1 η−

i (v))} ≤
BKSn(v) ≤ ĩu{N(ĩu(γ−))⊕1 ∧n

i=1(N(ĩu(α
−
i ))⊕1η

+
i (v))}.

4) If → is an QL-implication I⊗1,⊕1,N , then
ĩu{N(s̃u(γ

+)) ⊕1 [ĩu(γ−) ⊗1 ∧n
i=1(N(s̃u(α

+
i )) ⊕1

(ĩu(α
−
i ) ⊗1 η

−
i (v)))]} ≤ BKSn(v) ≤ ĩu{N(ĩu(γ−)) ⊕1

[s̃u(γ
+)⊗1 ∧n

i=1(N(ĩu(α
−
i ))⊕1 (s̃u(α

+
i )⊗1 η

+
i (v)))]}.

On the strength of Theorems 3 and 4, if the operations
(i.e., t-norm, t-conorm, and fuzzy negation) are continuous,
then the BKS method for multiple rules is stable for the case
of (S, N)-implication, or QL-implication, or t-norm impli-
cation with ⊗. Moreover, if the R-implication and t-norm
are continuous, then the BKS method for multiple rules is
stable.

Assume that there is a perturbation sequence
([α−

im, α
+
im], [η−

im, η
+
im], [γ−

im, γ
+
im]) of the input

(A1, . . . ,An,B1, . . . ,Bn,C) for the BKS method making
limm→∞ supu∈U(α

+
im(u)−α−

im(u)) = limm→∞ supv∈V(η
+
im(v)−

η−
im(v)) = limm→∞ supu∈U(γ

+
im(u) − γ−

im(u)) = 0 hold
(i = 1, 2, . . . , n). In Theorems 3 and 4, we analogously
make use of λ−

m and λ+
m to signify the homologous lower

and upper bounds of the BKS output. When the contin-
uous condition is effective, we gain from Theorems 3
and 4 that limm→∞ supv∈V(λ

+
m(v) − λ−

m(v)) = 0. That is,
the output of BKS method for multiple rules converges
to a value with meeting the continuity. On the grounds
of Definition 15, the BKS algorithm for the situation of
multiple rules is stable from the viewpoint of interval
perturbation.

IV. INTERVAL PERTURBATION FOR BKS CHAIN

INFERENCE

A meaningful generalization of BKS is a chain of fuzzy
reasoning. Let U1,U2, . . . ,Un+1 be n + 1 universes. C,A1 ∈
F(U1), B1,D1,A2 ∈ F(U2), . . . , and finally Bn,Dn ∈
F(Un+1). We probe into the following reasoning chain:

Input: C

Rule 1: A1 implies B1

Output 1: D1

Rule 2: A2 implies B2

Output 2: D2

· · · · · ·
Output n-1: Dn−1

Rule n: An implies Bn

Final output: Dn.

Theorem 5: Assume that Ai ∈ [α−
i , α

+
i ], Bi ∈ [η−

i , η
+
i ], and

C ∈ [γ−
1 , γ

+
1 ] (i = 1, 2, . . . , n), and that ⊗ is a t-norm. The

BKS-T method is adopted.
1) If → is an R-implication, then s̃un(γ

+
n ) �n (ĩun(α

−
n ) ⊗

η−
n (un+1)) ≤ Dn(un+1) ≤ ĩun(γ

−
n ) �n (s̃un(α

+
n ) ⊗

η+
n (un+1)), in which γ+

i+1(ui+1) � ĩui(γ
−
i )�i (s̃ui(α

+
i )⊗

η+
i (ui+1)), γ

−
i+1(ui+1) � s̃ui(γ

+
i )�i (ĩui(α

−
i )⊗η−

i (ui+1))

(i = 1, 2, . . . , n − 1).
2) If → is a t-norm implication, then ĩun(γ

−
n )�n (ĩun(α

−
n )⊗

η−
n (un+1)) ≤ Dn(un+1) ≤ s̃un(γ

+
n ) �n (s̃un(α

+
n ) ⊗

η+
n (un+1)), in which γ+

i+1(ui+1) � s̃ui(γ
+
i )�i (s̃ui(α

+
i )⊗

η+
i (ui+1)), γ

−
i+1(ui+1) � ĩui(γ

−
i )�i (ĩui(α

−
i )⊗η−

i (ui+1))

(i = 1, 2, . . . , n − 1).
3) If → is an (S, N)-implication I⊕1,N , then

ĩun{N(s̃un(γ
+
n ))⊕1 (ĩun(α

−
n )⊗η−

n (un+1))} ≤ Dn(un+1) ≤
ĩun{N(ĩun(γ

−
n )) ⊕1 (s̃un(α

+
n ) ⊗ η+

n (un+1))}, in which
γ+

i+1(ui+1) � ĩui{N(ĩui(γ
−
i ))⊕1 (s̃ui(α

+
i )⊗ η+

i (ui+1))} ,
γ−

i+1(ui+1) � ĩui{N(s̃ui(γ
+
i )) ⊕1 (ĩui(α

−
i ) ⊗ η−

i (ui+1))}
(i = 1, 2, . . . , n − 1).

4) If → is a QL-implication I⊗1,⊕1,N , then
ĩun{N(s̃un(γ

+
n ))⊕1 [ĩun(γ

−
n )⊗1 (ĩun(α

−
n )⊗η−

n (un+1))]} ≤
Dn(un+1) ≤ ĩun{N(ĩun(γ

−
n )) ⊕1 [s̃un(γ

+
n ) ⊗1 (s̃un(α

+
n ) ⊗

η+
n (un+1))]}, in which γ+

i+1(ui+1) � ĩui{N(ĩui(γ
−
i )) ⊕1

[s̃ui(γ
+
i ) ⊗1 (s̃ui(α

+
i ) ⊗ η+

i (ui+1))]}, γ−
i+1(ui+1) �

ĩui{N(s̃ui(γ
+
i )) ⊕1 [ĩui(γ

−
i ) ⊗1 (ĩui(α

−
i ) ⊗ η−

i (ui+1))]}
(i = 1, 2, . . . , n − 1).

Proof: Here, we merely validate 1). It is analogous to 1) of
Theorem 1 that s̃u1(γ

+
1 ) �1 (ĩu1(α

−
1 ) ⊗ η−

1 (u2)) ≤ D1(u2) =
BKS(A1,B1,C)(u2) ≤ ĩu1(γ

−
1 )�1 (s̃u1(α

+
1 )⊗ η+

1 (u2)).

We denote γ+
2 (u2) � ĩu1(γ

−
1 ) �1 (s̃u1(α

+
1 ) ⊗ η+

1 (u2)) =
infu1∈U1{infu1∈U1(γ

−
1 (u1)) → (supu1∈U1

(α+
1 (u1)) ⊗ η+

1 (u2))},
and γ−

2 (u2) � s̃u1(γ
+
1 ) �1 (ĩu1(α

−
1 ) ⊗ η−

1 (u2)) =
infu1∈U1{supu1∈U1

(γ+
1 (u1)) → (infu1∈U1(α

−
1 (u1)) ⊗ η−

1 (u2))}.
Then, we obtain s̃u2(γ

+
2 ) �2 (ĩu2(α

−
2 )⊗ η−

2 (u3)) ≤ D2(u3) =
BKS(A2,B2,D1)(u3) ≤ ĩu2(γ

−
2 )�2 (s̃u2(α

+
2 )⊗ η+

2 (u3)).

More generally, we can acquire s̃ui+1 (γ+
i+1) �i+1 (ĩui+1

(α−
i+1) ⊗η−

i+1(ui+2)) ≤ Di+1(ui+2) = BKS (Ai+1,Bi+1,Di)

(ui+2) ≤ ĩui+1 (γ
−
i+1) �i+1 (s̃ui+1(α

+
i+1) ⊗ η+

i+1(ui+2)) (i =
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1, 2, . . . , n−1), in which γ+
i+1(ui+1) � ĩui (γ

−
i ) �i (s̃ui(α

+
i )⊗

η+
i (ui+1)) = infui∈Ui {infui∈Ui(γ

−
i (ui)) → (supui∈Ui

(α+
i (ui))⊗

η+
i (ui+1))}, and γ−

i+1(ui+1) � s̃ui (γ+
i ) �i (ĩui (α−

i ) ⊗
η−

i (ui+1)) = infui∈Ui {supui∈Ui
(γ+

i (ui)) → (infui∈Ui (α
−
i (ui))

⊗ η−
i (ui+1))}.

Finally, we gain s̃un(γ
+
n ) �n (ĩun(α

−
n ) ⊗ η−

n (un+1)) ≤
Dn(un+1) ≤ ĩun(γ

−
n )�n (s̃un(α

+
n )⊗ η+

n (un+1)).

Theorem 6 is proved in a similar way.
Theorem 6: Assume that Ai ∈ [α−

i , α
+
i ], Bi ∈ [η−

i , η
+
i ], and

C ∈ [γ−
1 , γ

+
1 ] (i = 1, 2, . . . , n). The BKS-I method is utilized.

1) If → is an R-implication, then s̃un(γ
+
n )�n (s̃un(α

+
n ) →

η−
n (un+1)) ≤ Dn(un+1) ≤ ĩun(γ

−
n ) �n (ĩun(α

−
n ) →

η+
n (un+1)), in which γ+

i+1(ui+1) � ĩui(γ
−
i )�i(ĩui(α

−
i ) →

η+
i (ui+1)) and γ−

i+1(ui+1) � s̃ui(γ
+
i ) �i (s̃ui(α

+
i ) →

η−
i (ui+1)) (i = 1, 2, . . . , n − 1).

2) If → is a t-norm implication, then ĩun(γ
−
n ) �n

(ĩun(α
−
n ) → η−

n (un+1)) ≤ Dn(un+1) ≤ s̃un(γ
+
n ) �n

(s̃un(α
+
n ) → η+

n (un+1)), in which γ+
i+1(ui+1) �

s̃ui(γ
+
i ) �i (s̃ui(α

+
i ) → η+

i (ui+1)) and γ−
i+1(ui+1) �

ĩui(γ
−
i )�i (ĩui(α

−
i ) → η−

i (ui+1)) (i = 1, 2, . . . , n − 1).
3) If → is an (S, N)-implication I⊕1,N , then

ĩun{N(s̃un(γ
+
n )) ⊕1 (N(s̃un(α

+
n )) ⊕1 η−

n (un+1))} ≤
Dn(un+1) ≤ ĩun{N(ĩun(γ

−
n )) ⊕1 (N(ĩun(α

−
n )) ⊕1

η+
n (un+1))}, in which γ+

i+1(ui+1) � ĩui{N(ĩui(γ
−
i )) ⊕1

(N(ĩui(α
−
i )) ⊕1 η+

i (ui+1))}, γ−
i+1(ui+1) �

ĩui{N(s̃ui(γ
+
i )) ⊕1 (N(s̃ui(α

+
i )) ⊕1 η−

i (ui+1))}
(i = 1, 2, . . . , n − 1).

4) If → is an QL-implication I⊗1,⊕1,N , then
ĩun{N(s̃un(γ

+
n )) ⊕1 [ĩun(γ

−
n ) ⊗1 (N(s̃un(α

+
n )) ⊕1

(ĩun(α
−
n ) ⊗1 η−

n (un+1)))]} ≤ Dn(un+1) ≤
ĩun{N(ĩun(γ

−
n )) ⊕1 [s̃un(γ

+
n ) ⊗1 (N(ĩun(α

−
n )) ⊕1

(s̃un(α
+
n ) ⊗1 η+

n (un+1)))]}, in which γ+
i+1(ui+1) �

ĩui{N(ĩui(γ
−
i ))⊕1 [s̃ui(γ

+
i )⊗1 (N(ĩui(α

−
i ))⊕1 (s̃ui(α

+
i )⊗1

η+
i (ui+1)))]}, γ−

i+1(ui+1) � ĩui{N(s̃ui(γ
+
i )) ⊕1

[ĩui(γ
−
i ) ⊗1 (N(s̃ui(α

+
i )) ⊕1 (ĩui(α

−
i ) ⊗1 η

−
i (ui+1)))]}

(i = 1, 2, . . . , n − 1).
In accordance with Theorems 5 and 6, if the continuous con-

dition holds for the related operations (i.e., t-norm, t-conorm,
and fuzzy negation), then the fuzzy chain reasoning strategy
of BKS is stable, in which ⊗ and an (S, N)-implication, or a
QL-implication, or a t-norm implication are utilized. In addi-
tion, if the R-implication and t-norm are continuous, then the
BKS chain reasoning is stable for interval perturbation.

Suppose that there is a perturbation sequence
([α−

im, α
+
im], [η−

im, η
+
im], [γ−

1m, γ
+
1m]) of the input

(A1, . . . ,An,B1, . . . ,Bn,C) for BKS chain reasoning letting
limm→∞ supu∈U(α

+
im(u)−α−

im(u)) = limm→∞ supv∈V(η
+
im(v)−

η−
im(v)) = limm→∞ supu∈U(γ

+
1m(u) − γ−

1m(u)) = 0 hold
(i = 1, 2, . . . , n). In Theorems 5 and 6, we employ λ−

m, λ
+
m

to represent the corresponding lower and upper bounds
of BKS chain output, viz., Dn(un+1) ∈ [λ−

m, λ
+
m] for

([α−
im, α

+
im], [η−

im, η
+
im], [γ−

1m, γ
+
1m]) (m = 1, 2, . . .). When

the continuous condition holds, Theorems 5 and 6 imply
limm→∞ supun+1∈Un+1

(λ+
m(un+1)−λ−

m(un+1)) = 0. That is, the
output of BKS chain reasoning method is converged gradually
to a value when the continuous condition is effective. From

Definition 15, the BKS chain reasoning method is stable from
the perspective of interval perturbation.

V. SIMPLE PERTURBATIONS FOR BKS

A. Simple Perturbations for BKS With One Rule

Here, ten commonly used fuzzy implications are studied.
1) I1(p, q) = (1 − p) ∨ q (the Kleene-Dienes implication,

as an (S, N)-implication and QL-implication).
2) I2(p, q) = 1 − p + pq (the Reichenbach implication, as

an (S, N)-implication and QL-implication).
3) I3(p, q) = 1 ∧ (1 − p + q) (the Lukasiewicz impli-

cation, as an R-implication, (S, N)-implication and
QL-implication).

4) I4(p, q) = (1 − p) ∨ (p ∧ q) (the Zadeh implication, as
an QL-implication).

5) I5(p, q) = (p∧q)∨((1−p)∧q)∨((1−p)∧(1−q)) ([35]).
6) I6(p, q) = (1 − p) ∨ (p + q − 1) (as an QL-

implication [32]).
7) I7(p, q) = (1 − p2) ∨ q (as an (S, N)-implication [36]).
8) I8(p, q) = 1 − p + p2q (as an QL-implication [32]).
9) I9(p, q) = p ∧ q (the Mamdani implication, as a t-norm

implication).
10) I10(p, q) = p × q (the Larsen implication, as a t-norm

implication).
Lemma 3 [29]: Assume that A ∈ F(U),B ∈ F(V), and

that β1 and β2 are factors of perturbation of A and B. Denote

I(u, v) = [(A(u)+β1(u)) → (B(v)+β2(v))]−[A(u) → B(v)].
Then, one has the following outcomes.

1) If → employs I1, then (−β1(u)) ∧ β2(v) ≤ 
I(u, v) ≤
(−β1(u)) ∨ β2(v).

2) If → employs I2, then (−1)∨ (0 ∧β2(v)− 0 ∨β1(u)) ≤

I(u, v) ≤ 1 ∧ (0 ∨ β2(v)− 0 ∧ β1(u)).

3) If → employs I3, then (−1) ∨ (0 ∧ (β2(v)− β1(u))) ≤

I(u, v) ≤ 1 ∧ (0 ∨ (β2(v)− β1(u))).

4) If → employs I4, then (−β1(u)) ∧ β1(u) ∧ β2(v) ≤

I(u, v) ≤ (−β1(u)) ∨ β1(u) ∨ β2(v).

5) If → employs I5, then β1(u)∧β2(v)∧(−β1(u)∨β2(v)) ≤

I(u, v) ≤ β1(u) ∨ β2(v) ∨ (−β1(u) ∧ β2(v)).

6) If → employs I9, then β1(u) ∧ β2(v) ≤ 
I(u, v) ≤
β1(u) ∨ β2(v).

We denote 
(v) = BKS(A∗,B∗,C∗)(v)− BKS(A,B,C)(v).
Thereinto, A∗(u) = A(u) + β1(u), B∗(v) = B(v) + β2(v), and
C∗(u) = C(u) + β3(u), in which A∗ and C∗ are respectively,
the perturbations of A and C on U while B∗ is the perturbation
of B on V .

In the beginning, we investigate the situation of the BKS-I
algorithm whose solution is indicated by (9). It is effortless to
give evidence of Lemma 4.

Lemma 4: Suppose that A ∈ F(U) and B ∈ F(V), and that
β1 and β2 are the factors of perturbation of A,B in turn. Then,
following results hold.

1) If → employs I6, then (−1) ∨ [(−β1(u)) ∧ (β1(u) +
β2(v))] ≤ 
I(u, v) ≤ 1 ∧ [(−β1(u)) ∨ (β1(u)+ β2(v))].

2) If → employs I7, then (−1) ∨ [(−2A(u)β1(u) −
(β1(u))2) ∧ β2(v)] ≤ 
I(u, v) ≤ 1 ∧ [(−2A(u)β1(u) −
(β1(u))2) ∨ β2(v)].
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TABLE I
ESTIMATION OF SIMPLE PERTURBATIONS FOR SINGLE RULE UNDER BKS-I (FOR THEOREM 7)

3) If → employs I8, then 
I(u, v) = (A(u)B(v) +
A∗(u)B(v) − 1) × β1(u) + (A∗(u))2β2(v), and (−1) ∨
[0 ∧ β1(u) ∧ (−β1(u)) + 0 ∧ β2(v)] ≤ 
I(u, v) ≤
1 ∧ [0 ∨ β1(u) ∨ (−β1(u))+ 0 ∨ β2(v)].

4) If → employs I10, then 
I(u, v) = B∗(v)β1(u) +
A(u)β2(v), and (−1) ∨ [0 ∧ β1(u) + 0 ∧ β2(v)] ≤

I(u, v) ≤ 1 ∧ [0 ∨ β1(u)+ 0 ∨ β2(v)].

We denote δ(u, v) = [C(u)+ β3(u)] → [(A(u)+ β1(u)) →
(B(v)+ β2(v))] − [C(u) → (A(u) → B(v))].

Theorem 7: Let A,C ∈ F(U) and B ∈ F(V), and β1, β2,

and β3 be the factors of perturbation of A,B, and C in turn.
If BKS-I is adopted, then one has the outcomes indicated in
Table I.

Proof: At present, we exhibit the proof for the situation of
I8, the others can be gained in an analogous manner. We have
from Lemma 4 that

δ(u, v) = [C(u)+ β3(u)] → [(A(u)+ β1(u)) → (B(v)+ β2(v))]

− [C(u) → (A(u) → B(v))]

= 1 − [C(u)+ β3(u)] + [C(u)+ β3(u)]
2

×
[
1 − (A(u)+ β1(u))+ (A(u)+ β1(u))

2

× (B(v)+ β2(v))]

−
[
1 − C(u)+ (C(u))2 ×

(
1 − A(u)+ (A(u))2B(v)

)]

= (−β3(u))+
[
(C(u))2 + 2C(u)β3(u)+ (β3(u))

2
]

× [1 − (A(u)+ β1(u))

+
(
(A(u))2 + (β1(u))

2 + 2A(u)β1(u)
)

× (B(v)+ β2(v))]

− (C(u))2 ×
(

1 − A(u)+ (A(u))2B(v)
)

= (C(u))2 ×
I(u, v)+
[
2C(u)β3(u)+ (β3(u))

2
]

× (
A∗(u) → B∗(v)

) − β3(u)

= (C(u))2 ×
[(

A(u)B(v)+ A∗(u)B(v)− 1
) × β1(u)

+ (
A∗(u)

)2
β2(v)

]

+ [C(u)β3(u)+ (C(u)+ β3(u))× β3(u)]

× (
A∗(u) → B∗(v)

) − β3(u)

= (C(u))2 × [
A(u)B(v)+ A∗(u)B(v)− 1

] × β1(u)

+ (
A∗(u)

)2
(C(u))2β2(v)

+ [
C(u)× (

A∗(u) → B∗(v)
)

+ C∗(u)× (
A∗(u) → B∗(v)

) − 1
] × β3(u).

On the strength of Lemmas 1 and 2, we acquire


(v) = inf
u∈U

{[C(u)+ β3(u)]

→ [(A(u)+ β1(u)) → (B(v)+ β2(v))]}
− inf

u∈U
{[C(u) → (A(u) → B(v))]}

≤ sup
u∈U

{[C(u)+ β3(u)]

→ [(A(u)+ β1(u)) → (B(v)+ β2(v))]

− [C(u) → (A(u) → B(v))]}
≤ sup

u∈U

{
(C(u))2 × [

A(u)B(v)+ A∗(u)B(v)− 1
] × β1(u)

+ (
A∗(u)

)2
(C(u))2β2(v)

+ [
C(u)× (

A∗(u) → B∗(v)
)

+ C∗(u)× (
A∗(u) → B∗(v)

) − 1
] × β3(u)

}

≤ sup
u∈U

{
(C(u))2 × [

A(u)B(v)+ A∗(u)B(v)− 1
] × β1(u)

}

+ sup
u∈U

{(
A∗(u)

)2
(C(u))2β2(v)

}

+ sup
u∈U

{[
C(u)× (

A∗(u) → B∗(v)
) + C∗(u)

× (
A∗(u) → B∗(v)

) − 1
] × β3(u)

}
.

In this formula, we determine supu∈U{(C(u))2×[A(u)B(v)+
A∗(u)B(v)− 1] × β1(u)}.

1) If supu∈U{(C(u))2 × [A(u)B(v) + A∗(u)B(v) − 1] ×
β1(u)} ≤ 0, then the outcome is evident.

2) If supu∈U{(C(u))2 × [A(u)B(v) + A∗(u)B(v) − 1] ×
β1(u)} > 0, then two situations are considered. On the
one hand, if supu∈U{β1(u)} > 0, then supu∈U{(C(u))2 ×
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TABLE II
ESTIMATION OF SIMPLE PERTURBATIONS FOR SINGLE RULE UNDER BKS-T WITH ⊗M (FOR THEOREM 8)

TABLE III
ESTIMATION OF SIMPLE PERTURBATIONS FOR SINGLE RULE UNDER BKS-T WITH ⊗P (FOR THEOREM 9)

[A(u)B(v)+A∗(u)B(v)−1]×β1(u)} ≤ supu∈U{β1(u)} =
s̃u(β1). On the other hand, if supu∈U{β1(u)} < 0, then
supu∈U{(C(u))2 ×[A(u)B(v)+A∗(u)B(v)−1]×β1(u)} ≤
supu∈U{(−β1(u))} = − infu∈U{β1(u)} = −ĩu(β1).

Placing these two expressions together, we gain
supu∈U{(C(u))2 × [A(u)B(v) + A∗(u)B(v) − 1] × β1(u)} ≤
0 ∨ s̃u(β1) ∨ (−ĩu(β1)).

Analogously, we obtain supu∈U{(A∗(u))2(C(u))2β2(v)} ≤
0 ∨ β2(v), and supu∈U{[C(u) × (A∗(u) → B∗(v)) + C∗(u) ×
(A∗(u) → B∗(v))− 1] × β3(u)} ≤ 0 ∨ s̃u(β3) ∨ (−ĩu(β3)).

As a consequence, we have 
(v) ≤ 0∨ s̃u(β1)∨(−ĩu(β1))+
0 ∨ β2(v)+ 0 ∨ s̃u(β3) ∨ (−ĩu(β3)).

Distinctly, 
(v) ≤ 1, hence it implies 
(v) ≤ 1 ∧ [0 ∨
s̃u(β1) ∨ (−ĩu(β1))+ 0 ∨ β2(v)+ 0 ∨ s̃u(β3) ∨ (−ĩu(β3))].

In an analogous situation, we obtain 
(v) ≥ (−1) ∨ [0 ∧
ĩu(β1) ∧ (−s̃u(β1))+ 0 ∧ β2(v)+ 0 ∧ ĩu(β3) ∧ (−s̃u(β3))].

Summarizing the above findings, one achieves (−1)∨ [0 ∧
ĩu(β1) ∧ (−s̃u(β1)) + 0 ∧ β2(v) + 0 ∧ ĩu(β3) ∧ (−s̃u(β3))] ≤

(v) ≤ 1 ∧ [0 ∨ s̃u(β1)∨ (−ĩu(β1))+ 0 ∨β2(v)+ 0 ∨ s̃u(β3)∨
(−ĩu(β3))].

In addition, we reveal the situation of the BKS-T algorithm,
that is, the solution is demonstrated by (8). It is easy to gain
Lemma 5.

Lemma 5: Suppose that A ∈ F(U) and B ∈ F(V), and
that β1 and β2 are factors of perturbation of A and B
in turn. Denote 
T(u, v) = [(A(u) + β1(u)) ⊗ (B(v) +
β2(v))] − [A(u) ⊗ B(v)]. Then, we have the following
outcomes.

1) If ⊗ is ⊗M , then β1(u) ∧ β2(v) ≤ 
T(u, v) ≤
β1(u)∨β2(v).

2) If ⊗ employs ⊗P, then 
T(u, v) = B∗(v)β1(u) +
A(u)β2(v), and (−1) ∨ [0 ∧ β1(u) + 0 ∧ β2(v)] ≤

T(u, v) ≤ 1 ∧ [0 ∨ β1(u)+ 0 ∨ β2(v)].

3) If ⊗ takes ⊗L, then (−1) ∨ [(β1(u) + β2(v)) ∧ 0] ≤

T(u, v) ≤ 1 ∧ [(β1(u)+ β2(v)) ∨ 0].

Theorems 8–10 are validated as the previous ones.
Theorem 8: Suppose that A,C ∈ F(U) and B ∈ F(V), and

β1, β2, and β2 are the factors of perturbation of A,B, and C
in turn. If BKS-T is employed and ⊗ is ⊗M , then the results
in Table II hold for I1, I2, . . . , I10.

Theorem 9: Suppose that A,C ∈ F(U) and B ∈ F(V), and
that β1, β2, and β2 are the factors of perturbation of A,B,
and C in turn. If BKS-T is utilized, and ⊗ takes ⊗P, then we
obtain the outcomes in Table III for I1–I10.

Theorem 10: Suppose that A,C ∈ F(U) and B ∈ F(V), and
that β1, β2, and β2 are the factors of perturbation of A,B,
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TABLE IV
ESTIMATION OF SIMPLE PERTURBATIONS FOR SINGLE RULE UNDER BKS-T WITH ⊗L (FOR THEOREM 10)

TABLE V
ESTIMATION OF SIMPLE PERTURBATIONS FOR MULTIPLE RULES UNDER BKS-I (FOR THEOREM 11)

and C in turn. If BKS-T is used and ⊗ takes ⊗L, then the
conclusions in Table IV are derived.

Suppose that A,C ∈ F(U) and B ∈ F(V). If there is a small
positive real number ε, and functions θk(u) : U → [−1, 1]
for k = 1, 3 or θ2(v) : V → [−1, 1] letting βk(u) = εθk(u)
hold where k = 1, 3 and β2(v) = εθ2(v), then we acquire
from Theorems 7–10 that limε→0 BKS(A∗,B∗,C∗)(v) =
BKS(A,B,C)(v). Hence, the BKS algorithm is stable in view
of Definition 16-1).

From another perspective, assume that there is
a perturbation sequence {(A∗

m,B∗
m,C∗

m)} with regard
to {(β1m(u), β2m(v), β3m(u))}, viz., A∗

m(u) = A(u) +
β1m(u), B∗

m(v) = B(v) + β2m(v), and C∗
m(u) = C(u) +

β3m(u) (m = 1, 2, . . . , ). Let limm→∞ supu∈U |β1m(u)| =
limm→∞ supv∈V |β2m(v)| = limm→∞ supu∈U |β3m(u)| = 0
holds forβ1m(u), β2m(v), β3m(u). Then, from Theorems 7–10, it
follows that limm→∞ BKS(A∗

m,B∗
m,C∗

m)(v) = BKS(A,B,C)(v).
In consequence, it follows from Definition 16-2) that the BKS
algorithm is asymptotic stable.

All in all, the BKS algorithm for the situation of a single
rule is stable from the perspective of simple perturbation.

B. Simple Perturbations for BKS With Multiple Rules

For the situation of multiple rules, we employ the
notation 
n(v) = BKS(A∗

1, . . . ,A∗
n,B∗

1, . . . ,B∗
n,C∗)(v) −

BKS(A1, . . . ,An,B1, . . . ,Bn,C)(v). Thereinto,
A∗

i (u) = Ai(u) + β1i(u), B∗
i (v) = Bi(v) + β2i(v), and

C∗(u) = C(u)+ β3(u), in which A∗
i and C∗ are, respectively,

the perturbations of Ai,C on U while B∗
i is the perturbation

of Bi on V (i = 1, 2, . . . , n).
First, we analyze the BKS-I algorithm, viz., the expres-

sion (7). Denote δn(u, v) = [(C(u)+ β3(u)) → ∧n
i=1((Ai(u)+

β1i(u)) → (Bi(v)+β2i(v)))]−[C(u) → ∧n
i=1(Ai(u) → Bi(v))].

Theorem 11 can be verified in a similar fashion.
Theorem 11: Assume that Ai,C ∈ F(U) and Bi ∈ F(V),

and that β1i, β2i, and β3 are the factors of perturbation of
Ai,Bi, and C in turn (i = 1, 2, . . . , n). If BKS-I is employed,
then the results for I1–I10 are given below in Table V.
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TABLE VI
ESTIMATION OF SIMPLE PERTURBATIONS FOR MULTIPLE RULES UNDER BKS-T WITH ⊗M (FOR THEOREM 12)

TABLE VII
ESTIMATION OF SIMPLE PERTURBATIONS FOR MULTIPLE RULES UNDER BKS-T WITH ⊗P (FOR THEOREM 13)

Afterward, we look at the BKS-T algorithm. The corre-
sponding solution comes in the form (6). We utilize the
notation ξn(u, v) = {[C(u)+β3(u)] → ∨n

i=1[(Ai(u)+β1i(u))⊗
(Bi(v)+ β2i(v))]} − {C(u) → ∨n

i=1[Ai(u)⊗ Bi(v)]}.
Theorems 12–14 are proved in the same manner.
Theorem 12: Assume that Ai,C ∈ F(U) and Bi ∈ F(V),

and that β1i, β2i, and β3 are the factors of perturbation
of Ai,Bi, and C in turn (i = 1, 2, . . . , n). If BKS-T is
adopted, and ⊗ takes ⊗M , then the conclusions are provided
in Table VI.

Theorem 13: Assume that Ai,C ∈ F(U) and Bi ∈ F(V),
and that β1i, β2i, and β3 are the factors of perturbation of
Ai,Bi, and C in turn (i = 1, 2, . . . , n). If BKS-T is used, and
⊗ takes ⊗P, then we have the outcomes in Table VII.

Theorem 14: Let Ai,C ∈ F(U),Bi ∈ F(V), and
β1i, β2i, β3 be the factors of perturbation of Ai,Bi,C in turn

(i = 1, 2, . . . , n). The BKS-T with ⊗ takes ⊗L yields the
results in Table VIII.

Let A1, . . . ,An,C ∈ F(U), and B1, . . . ,Bn ∈ F(V). If
there exists a small positive real number ε, and functions
θki(u) : U → [−1, 1] for k = 1, 3 or θ2i(v) : V → [−1, 1] such
that βki(u) = εθki(u) where k = 1, 3 and β2i(v) = εθ2i(v)
(i = 1, 2, . . . , n), then we obtain from Theorems 11–14
that limε→0 BKS(A∗

1, . . . ,A∗
n,B∗

1, . . . ,B∗
n,C∗)(v) =

BKS(A1, . . . ,An,B1, . . . ,Bn,C)(v). Consequently, the
BKS algorithm is stable on the strength of Definition 16-1).

From a different viewpoint, assume that there is a per-
turbation sequence {(A∗

1m, . . . ,A∗
nm,B∗

1m, . . . ,B∗
nm,C∗

m)} with
regard to {(β11m(u), . . . , β1nm(u), β21m(v), . . . , β2nm(v),
β3m(u))}, that is, A∗

1m(u) = A1(u) + β11m(u), . . . ,A∗
nm(u) =

An(u) + β1nm(u), B∗
1m(v) = B1(v) + β21m(v), . . . ,B∗

nm(v) =
Bn(v) + β2nm(v), C∗

m(u) = C(u) + β3m(u)
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TABLE VIII
ESTIMATION OF SIMPLE PERTURBATIONS FOR MULTIPLE RULES UNDER BKS-T WITH ⊗L (FOR THEOREM 14)

(m = 1, 2, . . .). If limm→∞ supu∈U |β11m(u)| = · · · =
limm→∞ supu∈U |β1nm(u)| = 0, limm→∞ supv∈V |β21m(v)|
= · · · = limm→∞ supv∈V |β2nm(v)| = 0, limm→∞
supu∈U |β3m(u)| = 0 hold, then we gain from Theorems 11–14
that limm→∞ BKS(A∗

1m, . . . ,A∗
nm,B∗

1m, . . . ,B∗
nm,C∗

m)(v) =
BKS(A1, . . . ,An,B1, . . . ,Bn,C)(v).

In sum, the BKS algorithm for the situation of multiple rules
is stable from the perspective of simple perturbation.

Affective computing [37] is nowadays one of the most
active research areas. Emotion deduction (which explores how
to generate reasonable values of other emotions from some
basic emotions) makes a critical difference in many aspects
(e.g., when constructing massive emotional corpus, affect state
transitions, and so forth), which is a vital task of affective com-
puting. In what follows, we offer two examples of emotion
deduction.

Example 1: We carry computing of emotion aspects via the
BKS-I method where → is implemented as I4. For the eight
basic emotions, (including surprise, expect, anxiety, sorrow,
angry, hate, joy, and love), we find that the former six emo-
tions have a strong relationship with fear (as a new emotion).
We establish the emotion deduction system from six basic
emotions to fear. In detail, let U = {u1, u2, . . . , u6} where
u1 = 0, u2 = 0.2, u3 = 0.4, u4 = 0.6, u5 = 0.8, u6 = 1.0, and
V = {v1} where v1 = 0.5. Meanwhile, some rules from Ai to
Bi and an input C are as follows:

A1 = 0.3

u1
+ 0.9

u2
+ 0.2

u3
+ 0.5

u4
+ 0.3

u5
+ 0.4

u6
, B1 = 0.2

v1

A2 = 0.5

u1
+ 0.6

u2
+ 0.5

u3
+ 0.7

u4
+ 0.6

u5
+ 0.7

u6
, B2 = 0.4

v1

A3 = 0.9

u1
+ 0.4

u2
+ 0.7

u3
+ 0.9

u4
+ 0.5

u5
+ 0.8

u6
, B3 = 0.6

v1

A4 = 0.6

u1
+ 0.7

u2
+ 0.9

u3
+ 0.4

u4
+ 0.3

u5
+ 0.5

u6
, B4 = 0.9

v1

C = 0.8

u1
+ 0.7

u2
+ 0.6

u3
+ 0.9

u4
+ 0.5

u5
+ 0.8

u6
.

Here, the input Ai reflects the value for six basic emotions
and the output Bi stands for the value for the emotion fear.
For the input C, the BKS-I solution from (7) is D(v1) =
infu∈U{C(u) → ∧n

i=1(Ai(u) → Bi(v1))} = 0.5 ∧ 0.3 ∧ 0.5 ∧
0.4 ∧ 0.5 ∧ 0.4 = 0.3.

For one situation, we take β11(u) = 0.05, β12(u) = 0.06,
β13(u) = 0.07, β14(u) = 0.08, β21(v) = 0.06, β22(v) = 0.07,
β23(v) = 0.08, β24(v) = 0.09, β3(u) = 0.05 (u ∈ U, v ∈
V). Let A∗

i (u) = Ai(u) + β1i(u), B∗
i (v) = Bi(v) + β2i(v), and

C∗(u) = C(u)+ β3(u) (i = 1, 2, 3, 4).
From Theorem 11 for I4, we obtain that the lower bound

of 
n(v1) is [ ∧n
i=1 (−s̃u(β1i))] ∧ [ ∧n

i=1 ĩu(β1i)] ∧ [ ∧n
i=1

β2i(v1)] ∧ (−s̃u(β3)) ∧ ĩu(β3) = (−0.08) ∧ 0.05 ∧ 0.06 ∧
(−0.05) ∧ 0.05 = −0.08. Analogously, the upper bound of

n(v1) is 0.09. Hence, we obtain −0.08 ≤ 
n(v1) ≤ 0.09
and 0.22 ≤ BKS(A∗

1, . . . ,A∗
4,B∗

1, . . . ,B∗
4,C∗) (v) ≤ 0.39.

For another situation, we adopt β1i(u) = β2i(v) = β3(u) =
0.02 (u ∈ U, v ∈ V, i = 1, 2, 3, 4). Afterward, we can
similarly gain −0.02 ≤ 
n(v1) ≤ 0.02 and 0.28 ≤
BKS(A∗

1, . . . ,A∗
4,B∗

1, . . . ,B∗
4,C∗)(v) ≤ 0.32. Obviously, in

this case, the value of BKS(A∗
1, . . . ,A∗

4,B∗
1, . . . ,B∗

4,C∗)(v) is
closer to BKS(A1, . . . ,A4,B1, . . . ,B4,C)(v).

Example 2: We involve the BKS-T method in which →
is realized as I7 and ⊗ is taken as ⊗M . We use the same
A1, . . . ,A4,B1, . . . ,B4 as Example 1. New input is C =
(0.7/u1)+(0.2/u2)+(0.3/u3)+(0.8/u4)+(0.9/u5)+(0.6/u6).

Then, the BKS-T solution from (6) is D(v1) = infu∈U{C(u) →
∨n

i=1(Ai(u) ⊗ Bi(v1))} = 0.6 ∧ 0.96 ∧ 0.91 ∧ 0.6 ∧ 0.5
∧ 0.64 = 0.5.

For one case, we choose β11(u) = 0.08, β12(u) = 0.07,
β13(u) = 0.06, β14(u) = 0.07, β21(v) = 0.07, β22(v) = 0.06,
β23(v) = 0.06, β24(v) = 0.05, and β3(u) = 0.06 (u ∈ U, v ∈
V). Let A∗

i (u) = Ai(u) + β1i(u), B∗
i (v) = Bi(v) + β2i(v), and

C∗(u) = C(u)+ β3(u) (i = 1, 2, 3, 4).
In the light of Theorem 12 for I7, we have that the lower

bound of 
n(v1) is (−1) ∨ [(∧n
i=1 ĩu(β1i)) ∧ (∧n

i=1β2i(v1)) ∧
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(−0∨2s̃u(β3)− s̃u(β
2
3 ))] = (−1)∨ [0.06∧0.05∧(−0∨0.12−

0.062)] = −0.1236. Analogously the upper bound of 
n(v1)

is 0.08. Consequently, we find −0.1236 ≤ 
n(v1) ≤ 0.08 and
0.3764 ≤ BKS(A∗

1, . . . ,A∗
4,B∗

1, . . . ,B∗
4,C∗)(v) ≤ 0.58.

For another case, we let β1i(u) = β2i(v) = β3(u) =
0.02 (u ∈ U, v ∈ V, i = 1, 2, 3, 4). In a simi-
lar way we obtain −0.0404 ≤ 
n(v1) ≤ 0.02 and
0.4596 ≤ BKS(A∗

1, . . . ,A∗
4,B∗

1, . . . ,B∗
4,C∗)(v) ≤ 0.52. In this

case, BKS(A∗
1, . . . ,A∗

4,B∗
1, . . . ,B∗

4,C∗)(v) evidently achieves
a closer result to BKS(A1, . . . ,A4,B1, . . . ,B4,C)(v).

VI. DISCUSSION

1) Definition 9 (i.e., Pappis’s proximity measure [17]),
Definition 10 (i.e., Hong and Hwang’ ε-similarity [18]),
and Definition 12 (viz., Cai’s δ-equality [34]) can be
incorporated into the framework of interval perturba-
tion of fuzzy sets. Moreover, Definition 11 (i.e., Ying’s
maximum ε perturbation of a fuzzy set in [19]) can be
deemed as a special situation of simple perturbation.
Then, the interval perturbation and simple perturbation
are more general ways to express the robust issue. So
this work is more meaningful vis-à-vis the previous
studies.

2) In this study, we obtain the upper and lower bounds of
BKS output deviation derived from the perturbation of
the input fuzzy set, which provide more detailed charac-
terization for the output deviation along with the input
perturbation.

3) The previous works have exhibited that the BKS method
has good performance, including the interpolativity, con-
tinuity, robustness, and that the BKS-based FRI is as
effective and efficient as the CRI method (see [7], [12],
and [13]). As their development, this work goes a step
further to validate the stability of BKS from the per-
spective of oscillation-bound estimation of perturbations,
which is also as good as the CRI method.

4) In [29], the CRI-based FRI with varying limits of input
is researched. Our work in this study for the BKS-based
FRI has three disparate and original points with [29] as
follows.

a) The work in [29] only focuses on modeling form
Ř in CRI, where the CRI solution is D(v) =
supu∈U{C(u)⊗R(u, v)} = supu∈U{C(u)⊗ (A(u) →
B(v))} (v ∈ V). Thereinto, Ř1(u, v) = A(u) → B(v)
is adopted. However, in this study, we discover the
situations of both Ř (using →) and R̂ (employ-
ing ⊗) in BKS. Hence, our modeling strategies are
more comprehensive.

b) The work in [29] only aims at one rule in CRI.
That is, Ř1(u, v) = A(u) → B(v) is considered.
By our findings in this study, the performance
of BKS is as good as CRI for the situation of
Ř1. But more importantly, we make a thorough
inquiry into the cases of both one rule and multiple
rules for BKS. To be specific, four kinds of situ-
ations are revealed, which incorporate Ř1(u, v) =
A(u) → B(v), R̂2(u, v) = A(u) ⊗ B(v), Ř3(u, v) =

∨n
i=1{Ai(u)⊗Bi(v)}, and R̂4(u, v) = ∧n

i=1{Ai(u) →
Bi(v)} (u ∈ U, v ∈ V). Notice that the results of
BKS for the last three are also good.

c) The chain of fuzzy reasoning has the problem
of error propagation since it consists of multiple
nested inferences. Consequently, it has a stricter
demand for stability and possesses more important
value for the stability research than the ordinary
fuzzy reasoning. The work in [29] does not con-
sider the problem of the fuzzy reasoning chain.
However, this study explores such challenging
problem and has a confirmed the stability of BKS
chain reasoning.

VII. CONCLUSION

It should be stressed that the previous works mainly
concentrated on how the output values were altered due
to perturbation parameters of input values. However, stud-
ies on estimating oscillation bounds of output values with
respect to varying limits of input values were not avail-
able. This study directed at this problem and offered the
upper and lower bounds of BKS output, in which the
two bounds are characterized in the form of fuzzy sets.
Then, the stable (or asymptotically stable) properties are
verified for the BKS algorithms. We systematically investi-
gated the oscillation-bound estimation of perturbations for the
fuzzy reasoning method of BKS. The key contributions are
as follows.

Above all, we focus on two kinds of BKS algo-
rithms, (including the BKS-T and BKS-I algorithms cor-
responding to two different modeling methods for the
rule base) with one rule as well as multiple rules, and
research the situation of interval perturbation. Corresponding
upper and lower bounds of BKS output variation are
offered, where the R-implication, (S, N)-implication, QL-
implication, and t-norm implication are adopted. The stabil-
ity of the BKS method for interval perturbation has been
validated.

Furthermore, focusing on the chain of fuzzy reasoning
with BKS, the BKS output scope originating from input
interval perturbation are given, where the R-implication, (S,
N)-implication, QL-implication, and t-norm implication are
utilized. The stability of BKS chain reasoning has been
confirmed.

In the end, we investigated the situation of simple
perturbation for the BKS algorithm with one rule and
multiple rules and obtained the upper and lower bounds
of BKS output deviation derived from the simple pertur-
bation of the input fuzzy set, in which ten fuzzy impli-
cations, (including some representative R-implications, (S,
N)-implications, QL-implications, and t-norm implications)
together with three t-norms are employed. The stable and
asymptotic stable properties of these BKS strategies are
verified.

It is noted that the interval perturbation and simple per-
turbation are more general expression ways for the robust
issue, hence the work for the interval perturbation and simple
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perturbation is more meaningful than the previous works. In
addition, the obtained oscillation bound gives more detailed
characterization for the output deviation along with the input
perturbation. This work goes a step further to validate the good
properties of the BKS method of fuzzy reasoning, which is as
good as the CRI method.

Here, we emphasize the novelty of this study.
1) The oscillation-bound estimation of perturbations is a

novel problem to be explored for BKS (noting that
the foregoing works in relation to stability and robust-
ness of BKS mainly focused on how the output values
were altered due to perturbation parameters of input
values).

2) Directing at fuzzy chain reasoning with BKS, its out-
put scope resulting from input interval perturbation is
offered. Note that such a point for the chain of FRI was
lacking in the previous research.

3) We explore the error estimation of perturbations for both
Ř and R̂ in the BKS scheme. It is noticed that such a
topic for the situation of R̂ was not investigated in the
foregoing studies on FRI.

In future studies, it is worth developing the BKS method
from the perspective of granular computing (see [38]
and [39]) and studying on how to construct and design
rational fuzzy controllers by choosing some ideal BKS
strategies.
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[36] M. Baczyński and B. Jayaram, “(S, N)- and R-implications: A state-
of-the-art survey,” Fuzzy Set Syst., vol. 159, no. 14, pp. 1836–1859,
Jul. 2008.

[37] H. Y. Meng and N. Bianchi-Berthouze, “Affective state level recogni-
tion in naturalistic facial and vocal expressions,” IEEE Trans. Cybern.,
vol. 44, no. 3, pp. 315–328, Mar. 2014.

[38] W. Pedrycz, Granular Computing: Analysis and Design of Intelligent
Systems. Boca Raton, FL, USA: CRC Press/Francis & Taylor, 2013.

[39] Y. H. Shen, W. Pedrycz, and X. M. Wang, “Clustering homogeneous
granular data: Formation and evaluation,” IEEE Trans. Cybern., vol. 49,
no. 4, pp. 1391–1402, Apr. 2019.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on July 05,2022 at 00:56:41 UTC from IEEE Xplore.  Restrictions apply. 



6282 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 7, JULY 2022

Yiming Tang (Member, IEEE) received the Ph.D.
degree from the Hefei University of Technology,
Hefei, China, in 2011.

He is an Associate Professor with the Hefei
University of Technology. He is a Visiting Professor
with the University of Alberta, Edmonton, AB,
Canada. He has published more than 60 papers. His
research interests include fuzzy control, clustering,
image processing, and affective computing.

Dr. Tang is an Associate Editor of IEEE ACCESS,
a Member of Editorial Board of PLOS ONE, a

Member of Editorial Board of Mathematics and Computer Science, and an
Associate Editor of Journal of Mathematics and Informatics, and also a Senior
Member of the Chinese Association for Artificial Intelligence (CAAI) and a
Senior Member of China Computer Federation. He serves as a Professional
Committee of Granular Computing and Knowledge Discovery of CAAI, a
Professional Committee of Machine Learning of CAAI. He is a Reviewer of
more than 20 journals.

Witold Pedrycz (Life Fellow, IEEE) received the
M.Sc., Ph.D., and D.Sc. degrees from the Silesian
University of Technology, Gliwice, Poland, in 1977,
1980, and 1984, respectively.

He is a Professor and the Canada Research Chair
of Computational Intelligence with the Department
of Electrical and Computer Engineering, University
of Alberta, Edmonton, AB, Canada. He is also with
the Systems Research Institute, Polish Academy of
Sciences, Warsaw, Poland, where he was elected as a
Foreign Member in 2009. He also holds an appoint-

ment as a Special Professor with the School of Computer Science, University
of Nottingham, Nottingham, U.K. He has authored 14 research monographs
that cover various aspects of computational intelligence and software engineer-
ing. He has edited a number of volumes. His current research interests include
computational intelligence, fuzzy modeling and granular computing, knowl-
edge discovery and data mining, fuzzy control, and software engineering.

Prof. Pedrycz received the prestigious Norbert Wiener Award from the IEEE
Systems, Man, and Cybernetics Council in 2007, the IEEE Canada Computer
Engineering Medal in 2008, and the Cajastur Prize for Soft Computing in 2009
from the European Centre for Soft Computing for pioneering and multifaceted
contributions to granular computing. He is an Editor-in-Chief of Information
Sciences and International Journal of Granular Computing. He is also an
Associate Editor of IEEE TRANSACTIONS ON FUZZY SYSTEMS and IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS. He
has been a member of numerous program committees of IEEE conferences
in the area of fuzzy sets and neurocomputing. He is a Fellow of the Royal
Society of Canada.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on July 05,2022 at 00:56:41 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


