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Abstract—As a means of describing realistic problems, fuzzy sets
can be included into the category of information granules from
a broader perspective. Then the interval-valued fuzzy set itself is
an expression of information granule which has more elaborate
and stronger characterization abilities than generic fuzzy sets. In
this study, facing up with modeling situations involving the use of
interval-valued fuzzy sets, we come up with the granular symmetric
implicational (GSI) method of fuzzy inference in view of the sym-
metric implicational idea and granular computing, which includes
the basic GSI method and the ζ(w, z)-GSI method. First, complete
residuated lattices are employed as the structures of truth-values
for interval-valued fuzzy sets. Second, unified expressions of opti-
mal solutions to two GSI methods are gained for R-implications and
(S, N)-implications. Lastly, it is shown through examples that the
GSI method is superior over corresponding interval-valued fully
implicational method. The originality of this work is three-fold.
To begin with, the interval-valued fuzzy operators are introduced
to the symmetric implicational mechanism, and novel symmetric
implicational principles are presented which ameliorate the pre-
vious ones. Moreover, we offer a new construction method for
interval-valued implications and corresponding adjoint couples,
and on the strength of it we validate the reversibility and continuous
properties of the GSI method. Finally, the hierarchical granular
inference strategy is established for the GSI method in allusion to
the circumstance of multiple rules.

Index Terms—Granular computing, fuzzy inference, fuzzy
implication, compositional rule of inference, fully implicational
method.

I. INTRODUCTION

FUZZY inference is an advanced intelligent computing
framework based on the concepts of fuzzy set theory,

fuzzy if-then rules and approximate inference. Currently fuzzy
inference comes with an extensive theory and applications in the
fields of fuzzy control, machine learning, affective computing,
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and humanoid robot [1]–[3]. Its essential connotation is

If P =⇒ Q, then P � =⇒ Q�, (1)

which is in relation to the FMP (fuzzy modus ponens) problem:

FMP: for P =⇒ Q and P �, deduce Q�, (2)

in which P, P � ∈ Φ(W ), Q,Q� ∈ Φ(Z) while Φ(W ),Φ(Z)
reflect the set of entire fuzzy subsets of universes W,Z.

A. The CRI Method and the Symmetric Implicational Method

Gaining insight into the internal mechanism of FMP, an im-
plication → was adopted to characterize =⇒, and then the com-
positional rule of inference (CRI) method was found by Zadeh
[4]. The solution of CRI comes as Q�(z) = supw∈W {P �(w) ∧
(P (w) → Q(z))}, z ∈ Z.

Then single implication was extended to triple ones. To con-
nect closely fuzzy reasoning and fuzzy formal deduction theory,
Wang [5] proposed the fully implicational method to set a logic
foundation for developing the theory of fuzzy reasoning. As for
its internal mechanism, the ideal solution of FMP is acquired
from the major premise P → Q and the minor premise P �

together, and P � =⇒ Q� should be considered (with P � → Q�)
and should be adequately supported by P → Q, where sup-
porting is also characterized by →. Then the structure of three
implications is formed, and its ideal solution is the smallest
Q� ∈ Φ(Z) making

(P (w) → Q(z)) → (P �(w) → Q�(z)) (3)

attain its maximum for any w ∈ W, z ∈ Z. Song et al. [6]
researched the fully implicational method for Zadeh implica-
tion IZ , and the corresponding reversibility properties were
analyzed. Wang and Fu [7] established unified forms of the
fully implicational method of which diverse implications can
be used, and pointed out that the CRI method could be brought
into line with these unified forms. Liu and Wang [8] validated the
continuity of the fully implicational method, including the cases
for the R-implications and the Zadeh implication. Pei [9] built
a sound logical foundation for the fully implicational method
with verifying its consistency, which was on the strength of a
monoidal t-norm based logical system. Li and Liu [10] analyzed
the entire fully implicational method for double fuzzy control
systems and manifold learning of dimensionality reduction, and
discussed their reversibility. Zheng and Liu [11] investigated
the fully implicational method on intuitionistic fuzzy sets, in
which the corresponding multiple-rules models were estab-
lished. Luo and Liu [12] verified the robustness of interval-
valued fully implicational method on account of normalized
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Minkowski distance. Luo and Wang [13] researched the interval-
valued fully implicational method based on the left-continuous
t-representable t-norm, and its reversibility property and robust-
ness were verified. Following systematic discovery ([6]–[13]),
it was validated that the fully implicational method exhibited
many favorable properties including logic basis, reversibility,
robustness among others.

In the fully implicational method, three implications are same.
In fact, implication connective is the fundament for a logic
system to carry through inference. The implication in (3) is to
form an intimate contact between the fuzzy inference and the
logic system, thus gives fine logic basis for fuzzy inference.
Analyzing (1) and (3), the first and third implications in (3) can
be viewed as the implication connective in a logic system; and
the second implication in (3) represents the “if-then” relationship
of the model (1). So, in [14], we came up with a novel fuzzy
inference method called the symmetric implicational method,
which generalized (3) to

(P (w) →1 Q(z)) →2 (P �(w) →1 Q�(z)). (4)

Here →1 and →2 can adopt different implications, which means
that they can be the same or disparate. As for the implications
used in (4), we prefer R-implications or (S,N)-implications.
In [14], we developed the basic principles of the symmetric
implicational method, and offered its ideal solutions, while
its reversibility was proved. Then, we presented the ζ(w, z)-
symmetric implicational method in [15], where (4) was trans-
formed into

(P (w) →1 Q(z)) →2 (P �(w) →1 Q�(z)) ≥ ζ(w, z), (5)

where ζ(w, z) was a mapping from W × Z to [0,1], which
reflected the idea of two-dimensional sustaining degree. In
[15], its ideal solutions were gained, and it was found that the
ζ(w, z)-symmetric implicational method made all symmetric
implicational methods and fully implicational methods form
a unified whole. Dai [16] provided a predicate formal repre-
sentation and logic proof of the solutions to the symmetric
implicational method based upon the LΠ logic and formalized
its consistency on the strength of a formal logic system LΠ∀.
This brought the symmetric implicational method within a log-
ical framework and provided a sound logic foundation for the
symmetric implicational method.

B. Motivation

To sum up, new tendency of fuzzy inference mentioned above
lies in the following aspects. First, the exploration of fuzzy
inference for specific implications ([5], [6]) has been developed
into the analyses for certain kinds of implications ([7]–[16]).
Second, the researches on properties always occupy a high
position ([8]–[16]) because they are important criterions to judge
whether a fuzzy inference method is effective or not. Third,
using the same implications ([5]–[13]) has been upgraded to
employ different implications ([14]–[16]). Lastly, the ordinary
fuzzy environment ([5]–[10], [14]–[16]) has been evolved into
more complex one ([11]–[13]).

As for the symmetric implicational method, our previous
works only aimed at ordinary fuzzy environment. Under the new
tendency, it is worth exploring it in more complex environment.
We show the details below.

Zadeh proposed fuzzy sets to deal with the aspect of un-
certainty found in the definition of a vagueness concept or
meaning, which has made a groundbreaking and outstanding
contribution to the field. The fuzzy set was characterized by
the mapping P : W → [0, 1] (w ∈ W ). From the viewpoint of
granular computing [17], such specific number can be extended
to a broader concept of information granule [18], [19] (e.g., an
interval). This consideration has resulted in some extensions of
fuzzy sets. For instance, the interval-valued fuzzy set [20] was
an important extension (see Lemma 1.1 (i) in what follows),
which was characterized by the mapping P : W → [0L, 1L],
where 0L = [0, 0], 1L = [1, 1].

Lemma I.1: (i) The interval-valued fuzzy set can be regarded
as an extension of the fuzzy set. (ii) P(w) ≡ [b−, b+] (w ∈ W )
is an interval-valued fuzzy set on W . (iii) For any interval
membership degree [b−, b+] to depict an element with respect
to (w.r.t. for short) a linguistic term, if its interval length is
larger, then the uncertainty expressed by [b−, b+] is higher; and
vice versa. (iv) For any interval membership degree [b−, b+] to
depict an element w.r.t. a linguistic term, b− reflects the smallest
numerical value to depict this element, while b+ embodies the
largest numerical value.

Proof: (i) From the definition of the interval-valued fuzzy set
(i.e., Definition 2.9 in what follows), note that an interval-valued
fuzzy set can be represented by P(w) = [μP(w), νP(w)] ∈ L
(w ∈ W ). IfμP(w) ≡ νP(w) (w ∈ W ), then the interval-valued
fuzzy set P can be regarded as a fuzzy set. From this view-
point, the interval-valued fuzzy set can be regarded as an ex-
tension of the fuzzy set. (ii) For an interval-valued fuzzy set
P(w) = [μP(w), νP(w)] ∈ L, if μP(w) ≡ b− and νP(w) ≡ b+

(w ∈ W ), then P(w) ≡ [b−, b+] (w ∈ W ), which is obviously
a special interval-valued fuzzy set on W . (iii) For any interval
membership degree [b−, b+] to characterize an element w.r.t. a
linguistic term, we denote its interval length len = b+ − b−. If
the interval length len is larger, then this reflects the greater
uncertainty expressed by [b−, b+] about the characterization of
the element, since it is even harder to determine what the exact
number is. (iv) For any interval membership degree [b−, b+] to
characterize an element w.r.t. a linguistic term, the left interval
endpoint b− is obviously the smallest numerical value to depict
the element w.r.t. the linguistic term. On the contrary, the right
interval endpoint b+ is the largest numerical value. �

On the one hand, intervals can be reconstructed as interval-
valued fuzzy sets. In fact, aiming at an interval [b−, b+], we
can construct P(w) ≡ [b−, b+] (w ∈ W ) from the viewpoint
of Lemma 1.1(i), which is an interval-valued fuzzy set on W .
On the other hand, interval membership degrees can be used
to represent the uncertainty to precisely determine the proper
membership degree of an element w.r.t. a linguistic term, as
considered in interval-valued fuzzy sets. In one case, the interval
length is used to provide an estimation of the uncertainty during
membership assignment (see Lemma 1.1(iii)). Interval values
can also be viewed as summarizing the opinions of several
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experts about the exact membership degree for an element w.r.t.
a linguistic term. In another case, the left and right interval
endpoints are, respectively, the smallest and largest numerical
values provided by experts (see Lemma 1.1(iv)). In both cases,
the richness of interval structures provides tools to deal with
such notions of uncertainty.

As a result, under the environment of granular computing,
we hope to establish a new framework to fuzzy inference, i.e.,
the granular fuzzy inference. As an exploration of this topic,
in this study, we use the symmetric implicational method as
its basis, and come up with a novel fuzzy inference method
called the granular symmetric implicational (GSI) method. It
aims at (4) and (5) where →1,→2 can employ different interval-
valued implications and P,Q, P �, Q� are interval-valued fuzzy
sets, which are in turn said to be the basic GSI method and the
ζ(w, z)-GSI method. The purpose of this work is to research the
GSI method.

Section II covers the preliminaries. Section III presents the
basic ζ(w, z)-GSI method revolving around its principle, solv-
ing strategy and its hierarchical idea. Section IV investigates its
developed algorithm, i.e., the ζ(w, z)-GSI method. Section V
discusses their reversibility and the continuous properties. Sec-
tion VI offers some examples for the ζ(w, z)-GSI method.
Section VII summarizes the entire work.

II. PRELIMINARIES

Definition II.1: ([21]) (i) A function T : [0, 1]2 → [0, 1] is
referred to as a triangular norm (abbreviated by t-norm), if it
is commutative, associative, increasing, and owns the neutral
point 1 (i.e., T (w, 1) = w holds for any w ∈ [0, 1]).

(ii) A function S : [0, 1]2 → [0, 1] is called a triangular
conorm (abbreviated by t-conorm), if it is commutative, associa-
tive, increasing, and owns the neutral point 0 (i.e., S(w, 0) = w
holds for any w ∈ [0, 1]).

Definition II.2: ([21]) A decreasing funtion N : [0, 1] →
[0, 1] goes by the name of a fuzzy negation whenever N(1) = 0,
N(0) = 1 works. It is referred to as a strong negation when
N(N(w)) = w comes into existence (w ∈ [0, 1]). And N is said
to be strict when it is continuous and strictly decreasing.
Ns(w) = 1− w (w ∈ [0, 1]) goes by the name of the standard

negation on [0,1]. ApparentlyNs is a strong negation and a strict
negation. NK(w) = 1− w2 is strict. ND1(w) = { 1, w = 0

0, w > 0

and ND2(w) = { 1, w < 1
0, w = 1 are the least and greatest ones, and

are non-strong.
Definition II.3: ([21]) The antithesis of a t-norm T (t-conorm

S) on [0,1] w.r.t. a strong negation N is the function TN

(SN ) which is represented as TN (w, z) = N(T (N(w), N(z)))
(SN (w, z) = N(S(N(w), N(z)))) where w, z ∈ [0, 1].

Definition II.4: ([22]) An implication on [0,1] is a function
I : [0, 1]2 → [0, 1] making three properties be effective:

(PR1) I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0,
(PR2) I(w, r) ≥ I(z, r) if w ≤ z,
(PR3) I(w, z) ≥ I(w, r) if z ≥ r.

I(w, z) is also recorded as w → z (w, z, r ∈ [0, 1]).
From Definition 2.4, the following relationship works for I .

(PR4) I(0, w) = I(w, 1) = 1 (w ∈ [0, 1])

Definition II.5: ([23]) Let T, I be two [0, 1]2 → [0, 1] func-
tions, (T, I) is referred to as an adjoint couple, whenever
T (w, z) ≤ r ⇐⇒ z ≤ I(w, r) is true (w, z, r ∈ [0, 1]).

Take notice of that the function T adjoint to I is one and only,
and the reverse is also true.

Lemma II.1: ([14]) Let I be an implication on [0,1], if (PR5)
I(w, z) is right-continuous w.r.t. z,is effective, thenT : [0, 1]2 →
[0, 1] indicated as

T (w, z) = inf{y ∈ [0, 1] | z ≤ I(w, y)}, w, z ∈ [0, 1] (6)

is adjoint to I .
Definition II.6: ([24]) I : [0, 1]2 → [0, 1] is referred to as an

R-implication, whenever a left-continuous t-norm T exists and
makes I(w, z) = sup{y ∈ [0, 1]| T (w, y) ≤ z}, w, z ∈ [0, 1].

Definition II.7: ([22], [25]) A function I : [0, 1]2 → [0, 1] is
known as an (S, N)-implication, whenever there are a t-conormS
and a fuzzy negation N making I(w, z) = S(N(w), z), w, z ∈
[0, 1]. In addition, if N is a strong negation, then I goes by the
name of an S-implication.

Definition II.8: ([26]) If I is an implication, then the function
NI:[0, 1] → [0, 1] indicated byNI(w) = I(w, 0) (w ∈ [0, 1]) is
referred to as the natural negation of I .

Lemma II.2: ([7], [25]) Assume that I is an R-implication
from a left-continuous t-normT , then (T, I) is an adjoint couple,
and I meets (PR1),(PR2),(PR3),(PR4),(PR5) and

(PR6) I(0, w) = 1
(PR7) I(1, w) = w,
(PR8) I(w, z) is left-continuous w.r.t. w,
(PR9) w ≤ z ⇐⇒ I(w, z) = 1,
(PR10) I(w, I(z, r)) = I(z, I(w, r)),
(PR11) I(T (w, z), r) = I(w, I(z, r)),
(PR12) w ≤ I(z, r) ⇐⇒ z ≤ I(w, r),
(PR13) I(supy∈Y y, w) = infy∈Y I(y, w),
(PR14) I(w, infy∈Y y) = infy∈Y I(w, y).

Among them w, z, r, y ∈ [0, 1] and Y ⊂ [0, 1], Y = ∅.
Proposition II.1: ([25], [26]) If I is an (S, N)-implication

constructed by a fuzzy negation N and a t-conorm S, then I
meets (PR6), (PR7), (PR10) and

(PR15) N = NI .
In addition, any (S,N)-implication I meets (w, z ∈ [0, 1])

(PR16) I(w, z) = I(N(z), N(w)),
iff I is an S-implication.
Definition II.9: ([27], [28]) An IFS on W is a function

P :W → L, P(w) = [μP(w), νP(w)] ∈ L (w ∈ W ), where
L = {[e−, e+] | e−, e+ ∈ [0, 1], e− ≤ e+}. The order ≤L on L
is characterized by [e−, e+] ≤L [f−, f+] ⇐⇒ e− ≤ f−, e+ ≤
f+. In addition, [e−, e+] ≤L [f−, f+] is also represented by
[f−, f+] ≥L [e−, e+]. And the set of all IFSs on W is also
indicated by Φ(W ). In allusion to any nonempty subset C of L,
infimum (∧) and supremum (∨) are indicated as ∧{c|c ∈ C} =
[∧{c−|c ∈ C}, ∧{c+|c ∈ C}] and ∨{c|c ∈ C} = [∨{c−|c ∈
C}, ∨{c+|c ∈ C}].
(L,∧,∨, 0L, 1L) is a complete lattice [27], where 0L = [0, 0]

and 1L = [1, 1] are the smallest and greatest value, in turn.
An IFS can be seen as an L-fuzzy set from the perspective of
Goguen [28] w.r.t. L. We adopt complete residuated lattices as
the structures of truth-values for interval-valued fuzzy sets.
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Definition II.10: ([29]) A residuated lattice is an algebraΩ =
(L,∧,∨,⊗,→, 0, 1) meeting

(i) (L,∧,∨, 0, 1) is a lattice with the least value 0 and the
greatest value 1,

(ii) (L,⊗, 1) is a commutative monoid with the unit 1, i.e., ⊗
is commutative, associative and w ⊗ 1 = w (w ∈ L),

(iii) ⊗ and → construct an adjoint couple, i.e., w ⊗ z ≤
r ⇐⇒ z ≤ w → r holds for all w, z, r ∈ L.

In addition, if (L,∧,∨, 0, 1) is a complete lattice, then Ω is
referred to as a complete residuated lattice.

In Definition 2.10, ⊗ (called multiplication) and → (called
residuum), respectively aim to model the conjunction and im-
plication of the corresponding logical calculus, while supremum
(∨) and infimum (∧) are adopted for signifying the existential
and general quantifier.

The lattice (L,∧,∨, 0L, 1L) from Definition 2.9, is already
a complete lattice. For this reason, we put emphasis on the
properties of residuated lattices, where the key one lies in the
adjunction property.

Definition II.11: ([30]) (i) The interval-valued fuzzy t-norm
T on L is an associative, increasing, commutative function, and
owns the neutral element 1L (i.e., T (w, 1L) = w holds for any
w ∈ L).

(ii) The interval-valued fuzzy t-conorm S on L is an associa-
tive, increasing, commutative function, and possesses the neutral
element 0L (i.e., S(w, 0L) = w holds for any w ∈ L).

Definition II.12: Assume that W is a non-empty set, then the
partial order relation ≤Φ on Φ(W ) is indicated as P ≤Φ Q iff
P (w) ≤L Q(w) (w ∈ W ), in which P,Q ∈ Φ(Z).

It is easy to see that < Φ(Z),≤Φ> is a complete lattice.
Definition II.13: ([20]) The interval-valued implication I is

a function L2 → L meeting:
(P1) I(0L, 0L) = I(1L, 1L) = 1L, and I(1L, 0L) = 0L.
(P2) I(w, z) ≥L I(w, r) if z ≥L r (w, z, r ∈ L),
(P3) I(w, r) ≥L I(z, r) if w ≤L z (w, z, r ∈ L).

In addition, I(w, z) is also signified by w → z (w, z ∈ L).
From Definition 2.13,

(P4) I(0L, w) = I(w, 1L) = 1L (w ∈ L).
meets for any interval-valued implication I.
The following definition offers a construction strategy for a

t-norm on L.
Definition II.14: ([31]) For a t-norm T on [0,1], the L2 → L

function represented by (w, z ∈ L):

TT (w, z) = [T (w−, z−),max{T (w−, z+), T (w+, z−)}]
is a t-norm on L, which is known as the pessimistic t-norm with
representative T .

The next proposition affords a new kind of interval-valued
implication, which leads to a method to construct an implication
on L from an implication on [0,1].

Proposition II.2: Assume that I is an implication on [0,1]
meeting (PR5), and that T signified by (6) is its adjoint function,
and that p ∈ [0, 1]. Then the function II,p : L2 → L represented
by (w, z ∈ L)

II,p(w, z) = [min{I(w−, z−), I(w+, z+)},

min{I(T (p, w+), z+), I(w−, z+)}] (7)

is referred to as an interval-valued implication on L.
Proof: (i) The implication I meets (PR5), so one has

from Lemma 2.1 that T indicated by (6) is adjoint
to I . Therefore we gain T (w, 0) = inf{y ∈ [0, 1] | 0 ≤
I(w, y)} = 0 for any w ∈ [0, 1]. It implies that II,p(0L, 0L) =
[min{1, 1},min{I(0, 0), 1}] = [1, 1] = 1L. Analogously one
has II,p(1L, 0L) = 0L and II,p(0L, 1L) = II,p(1L, 1L) = 1L.

(ii) Assume that w, z, r ∈ L, and z ≥L r. Because I
meets (PR3), it is straightforward to gain I(w−, z−) ≥
I(w−, r−), I(w+, z+) ≥ I(w+, r+), I(T (p, w+), z+) ≥
I(T (p, w+), r+), I(w−, z+) ≥ I(w−, r+). In consequence,
II,p(w, z) ≥L II,p(w, r).

(iii) From (6), it is straightforward to acquire T is in-
creasing w.r.t its second variable. Suppose that w, z, r ∈
L, and w ≤L z. Noting I satisfies (PR2), one has
I(w−, r−) ≥ I(z−, r−), I(w+, r+) ≥ I(z+, r+), T (p, w+) ≤
T (p, z+), I(T (p, w+), r+) ≥ I(T (p, z+), r+), I(w−, r+) ≥
I(z−, r+). For this reason, we gain II,p(w, r) ≥L II,p(z, r).

As a consequence, II,p indicated by (7) is an interval-valued
implication on L. �

Gasse et al. [32] also provided similar interval-valued impli-
cation as (7), however it was derived from the left-continuous
t-norm. Next we easily deduce Corollary 2.1.

Corollary 2.1. If I is an implication on [0,1] meeting (PR5),
and T denoted by (6) is its adjoint function, and p = 0. Then the
implication II,p(w, z) signified by (7) is (w, z ∈ L):

[min{I(w−, z−), I(w+, z+)}, I(w−, z+)]. (8)

In truth, II,p represented by (8) can be deemed as the op-
timistic implication on L as one of the pseudo-i-representable
implications [33].

Definition II.15: Let T and I be two L2 → L functions,
(T , I) is referred to as an interval-valued adjoint couple, when-
ever the equivalent relationship is true (w, z, r ∈ L):

T (w, z) ≤L r ⇐⇒ z ≤L I(w, r). (9)

The next Proposition 2.3 shows a method to build an adjoint
couple from the interval-valued fuzzy viewpoint.

Proposition II.3: Assume that I is an implication on [0,1]
meeting (PR5), and that T signified by (6) is adjoint to I ,
and that p ∈ [0, 1]. The function TT,p : L2 → L is expressed as
TT,p(w, z) = inf{γ ∈ L | z ≤L II,p(w, γ)} (w, z ∈ L). Then
we gain

(i) TT,p can be indicated as below (w, z ∈ L):

TT,p(w, z) = [T (w−, z−),max
{
T (w−, z+), T (w+, z−) ,

T (T (p, w+), z+)
}
], (10)

(ii) TT,p is adjoint to II,p which is represented by (7);
(iii)II,p, which is adjoint toTT,p, is expressed asII,p(w, z) =

sup{γ ∈ L | TT,p(w, γ) ≤L z}.
Proof: (i) Since the implication I meets (PR5), one gets from

Lemma 2.1 that T denoted as (6) is adjoint to I . So (6) works for
(T, I). Take into consideration that II,p(w, γ) = [min{I(w−,
γ−), I(w+, γ+)}, min{I(T (p, w+), γ+), I(w−, γ+)}].
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Then we have (w, z, γ ∈ L)

z+ ≤ (II,p(w, γ))+

⇐⇒ z+ ≤ min{I(T (p, w+), γ+), I(w−, γ+)}

⇐⇒ z+ ≤ I(T (p, w+), γ+) , z+ ≤ I(w−, γ+)

⇐⇒ T (T (p, w+), z+) ≤ γ+ , T (w−, z+) ≤ γ+.

In a similar manner, the following relationship is constructed.

z− ≤ (II,p(w, γ))− ⇐⇒ T (w−, z−) ≤ γ−, T (w+, z−) ≤ γ+.

For this reason, TT,p can be changed into TT,p(w, z) =
inf{γ ∈ L | z ≤L II,p(w, γ)} = [T (w−, z−), max{T (w−, z+),
T (w+, z−), T (T (p, w+), z+)}]. That is, (10) works.

(ii) In consideration of the definition of ≤L, Proposition 2.2
together with (7) and (10), noting that (6) is effective for (T, I),
one has (w, z, r ∈ L)

TT,p(w, z) ≤L r

⇐⇒ T (w−, z−) ≤ r− ,

max{T (w−, z+), T (w+, z−), T (T (p, w+), z+)} ≤ r+

⇐⇒ z− ≤ I(w−, r−), T (w−, z+) ≤ r+, T (w+, z−) ≤ r+ ,

T (T (p, w+), z+) ≤ r+

⇐⇒ z− ≤ I(w−, r−), z+ ≤ I(w−, r+), z− ≤ I(w+, r+) ,

z+ ≤ I(T (p, w+), r+)

⇐⇒ z− ≤ min{I(w−, r−), I(w+, r+)},

z+ ≤ min{I(T (p, w+), r+), I(w−, r+)}
⇐⇒ z ≤L II,p(w, r).

Hence (TT,p, II,p) constructs an interval-valued adjoint couple.
(iii) Owing to that (TT,p, II,p) is an interval-valued adjoint

couple, we have TT,p(w, γ) ≤L z if and only if γ ≤L II,p(w, z)
(in which γ ∈ L). Hence one has sup{γ ∈ L | TT,p(w, γ) ≤L

z} = sup{γ ∈ L | γ ≤L II,p(w, z)} = II,p(w, z). �
When p = 0, then (10) is changed into TT,p(w, z) =

[T (w−, z−),max{T (w−, z+), T (w+, z−), T (T (0, w+), z+)}]
= [T (w−, z−),max{T (w−, z+), T (w+, z−)}], which is
consistent with the pessimistic t-norm with representative
T (see Definition 2.14).

In Proposition 2.3, TT,p is adjoint to II,p, then such adjoint
condition is corresponding to the adjunction property of Def-
inition 2.10. In addition, II,p, TT,p match →,⊗ of Definition
2.10. For this reason, the truth-values of this work are under the
meaning of complete residuated lattice.

III. THE BASIC GSI METHOD

On the strength of the idea of the basic GSI method and
the environment of complete residuated lattice and granular
computing, we set up the following principle:

Basic GSI principle: The resultQ� of FMP (2) is the smallest
interval-valued fuzzy set (in < Φ(Z),≤Φ>) making

I2(I1(P(w),Q(z)), I1(P�(w),Q�(z))) (11)

gain its maximum for any w ∈ W, z ∈ Z, in which I1, I2 are
two interval-valued implications.

The symmetric implicational principle in [14] is in view of
the generic fuzzy sets, while the GSI principle is acquired from
the interval-valued fuzzy sets. Hence, in the GSI principle, the
computing procedure and the obtained result Q� of FMP (2) are
all interrelated to interval-valued fuzzy sets. These are better
than the corresponding cases from generic fuzzy sets. Draw
a conclusion, such symmetric implicational principle for FMP
ameliorates the previous one presented in [14].

Definition III.1: Let P,P� ∈ Φ(W ), Q ∈ Φ(Z), if Q� (in <
Φ(Z),≤Φ>) makes (11) be maximized for any w ∈ W , z ∈ Z.
Then Q� is referred to as a GSI solution.

Definition III.2: Assume that P,P� ∈ Φ(W ), Q ∈ Φ(Z),
and that nonempty set B is the set of total GSI solutions, and
that O� is the infimum of B. Then O� goes by the name of a
GInf-solution. In addition, if O� is the minimum of B, then O�

is referred to as a GMin-solution.
We adoptM(w, z) to represent the maximum of (11) at (w, z)

for FMP.
Proposition III.1: (i) M(w, z) = I2(I1(P(w),Q(z)),

I1(P�(w), 1L)) ≡ 1L (w ∈ W, z ∈ Z).
(ii) I1, I2 take II1,p, II2,p in turn, where I1, I2 are implica-

tions on [0,1] meeting (PR5), and p ∈ [0, 1], thenM(w, z) ≡ 1L
(w ∈ W, z ∈ Z).

Proof: (i) As I1, I2 satisfy (P2) (from Proposition
2.2), one has I2(I1(P(w),Q(z)), I1(P�(w),Q�(z))) ≤L

I2(I1(P(w),Q(z)), I1(P�(w), 1L)). We select O� = 1L,
then (11) is equal to I2(I1(P(w),Q(z)), I1(P�(w), 1L))
(w ∈ W, z ∈ Z). Hence we have M(w, z) =
I2(I1(P(w),Q(z)), I1(P�(w), 1L)). Take into consid-
eration that I1, I2 meet (P4) (from Proposition 2.2).
Then M(w, z) = I2(I1(P(w),Q(z)), 1L) = 1L. (ii) In
consideration of Proposition 2.2, II1,p, II2,p meet (P2), (P4),
then it implies that M(w, z) ≡ 1L (w ∈ W, z ∈ Z). �

Proposition 3.2 can be acquired in a similar manner.
Proposition III.2: (i) If Q1 is a GSI solution, and Q1 ≤F

Q2 (in which Q1,Q2 ∈< Φ(Z),≤Φ>), then Q2 is a GSI
solution.

(ii) Let I1, I2 be II1,p, II2,p in turn, in which I1, I2 are
implications on [0,1] meeting (PR5), and p ∈ [0, 1]. Q1 is a GSI
solution, and Q1 ≤F Q2 (in which Q1,Q2 ∈< Φ(Z),≤Φ>),
then Q2 is a GSI solution.

Remark III.1: In accordance with Proposition 3.2, for any
GSI solution Q�, each Q1 in < Φ(Z),≤Φ> such that Q� ≤F

Q1, shall be also a GSI solution. Accordingly there exist many
GSI solutions, which consist of Q�

2(z) ≡ 1L (z ∈ Z). Q�
2 is

an extraordinary solution, due to that (11) all the time gets
its maximum regardless of what P,P�,Q are chosen. For this
reason, if the ideal GSI solution exists, then it should be the
smallest one (or the infimum) of B.

Proposition III.3: Suppose that I1, I2 satisfy
(P5) I(w, z) is right-continuous w.r.t z (w, z ∈ L),

then the GInf-solution is the GMin-solution.
Proof: It is manifested that the GInf-solution O� =

inf B, in which B = {Q�
1 ∈ Φ(Z) | I2(I1(P(w),Q(z)),

I1(P�(w),Q�
1(z))) = M(w, z), w ∈ W, z ∈ Z}.
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We develop the proof by contradiction. Assume that O� /∈
B, then there are O1,O2, · · · in B letting limi→∞ Oi(z) =
O�(z), z ∈ Z. In consideration of O1,O2, · · · ∈ B, one
has I2(I1(P(w),Q(z)), I1(P�(w),Oi(z))) = M(w, z). (w ∈
W, z ∈ Z, i = 1, 2, · · · ).

In virtue ofO� = inf B, we getOi(z) ≥L O�(z) (z ∈ Z, i =
1, 2, · · · ), and thus we have from limi→∞ Oi(z) = O�(z)
that O�(z) is the right limit of {Oi(z) | i = 1, 2, · · · }
(z ∈ Z). Since I1, I2 meet (P2) and (P5), it means that
limi→∞{I1(P�(w),Oi(z))} = I1(P�(w),O�(z)), and that
I1(P�(w),Oi(z)) ≥L I1(P�(w),O�(z)) (i = 1, 2, · · · ). Then
M(w, z) = limi→∞{I2(I1(P(w),Q(z)), I1(P�(w),Oi(z)))}
= I2(I1(P(w),Q(z)), I1(P�(w),O�(z))) (w ∈ W, z ∈ Z).
Thus O� ∈ B, which reflects a contradiction.

For this reason, O� ∈ B and hence O� is the mini-
mum of B, which implies that the GInf-solution O� is the
GMin-solution. �

Theorem III.1: If I1, I2 are implications on [0,1] meeting
(PR5), and T (1)

T,p , T
(2)
T,p are the functions adjoint to II1,p, II2,p

in turn (where p ∈ [0, 1]), then the GMin-solution Q� can be
calculated as below (z ∈ Z):

Q�(z) = sup
w∈W

{T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w),Q(z)), 1L))}.
(12)

Proof: As I1, I2 are implications on [0,1] meeting (PR5), it
follows from Proposition 2.3 that there are T (1)

T,p , T
(2)
T,p which

are adjoint to II1,p, II2,p in turn. From (12), one has that

T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w),Q(z)), 1L)) ≤L Q�(z) (w ∈
W, z ∈ Z).

Taking into consideration that (T (2)
T,p , II2,p), (T

(1)
T,p , II1,p) are

two interval-valued adjoint couples, one acquires from (9) that
T (2)
T,p (II1,p(P(w),Q(z)), 1L) ≤L II1,p(P�(w),Q�(z)), and

that 1L ≤L II2,p(II1,p(P(w),Q(z)), II1,p(P�(w),Q�(z)))
(w ∈ W, z ∈ Z), which means that 1L = II2,p(II1,p
(P(w),Q(z)), II1,p(P�(w),Q�(z))).

As I1, I2 satisfy (PR5), we get from Proposition 3.1 that
M(w, z) ≡ 1L (w ∈ W, z ∈ Z). Consequently, Q� denoted by
(12) let (11) be maximized (w ∈ W, z ∈ Z), that is, Q� ∈ B.

Afterwards we validate that Q� represented as (12) is the
minimum of entire GSI solutions.

Assume that Q1 is any GSI solution, viz., Q1 ∈ B, then it
implies 1L = II2,p(II1,p(P(w),Q(z)), II1,p(P�(w),Q1(z)))

(w ∈ W, z ∈ Z). As (T (2)
T,p , II2,p), (T

(1)
T,p , II1,p) are two

interval-valued adjoint couples, we find 1L ≤L

II2,p(II1,p(P(w),Q(z)), < ?brk? > II1,p(P�(w),Q1(z))),

and T (2)
T,p (II1,p(P(w),Q(z)), 1L) ≤L II1,p(P�(w),Q1(z)),

and T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w),Q(z)), 1L)) ≤L Q1(z)
(w ∈ W, z ∈ Z). Accordingly, Q1(z) is an upper bound
of {T (1)

T,p (P�(w), T (2)
T,p (II1,p(P(w),Q(z)), 1L)) | w ∈

W}, z ∈ Z. Therefore one has from (12) that Q� ≤Φ Q1.
As a consequence, Q� indicated by (12) is the minimum of B.

In a word, Q� indicated by (12) is the GMin-solution. �
It is effortless to prove Lemma 3.1.
Lemma III.1: Let I be an implication on [0,1] meeting (PR5),

(PR7), (PR9), and p ∈ [0, 1], then the function TT,p adjoint to
II,p meets

(P6) TT,p(w, 1L) = w (w ∈ L).
Theorem III.2: If I1 is an (S,N)-implication meeting (PR5)

or an R-implication, and I2 is an R-implication, and T (1)
T,p , T

(2)
T,p

are respectively the functions adjoint to II1,p, II2,p (where p ∈
[0, 1]), then the GMin-solution Q� can be computed as below
(z ∈ Z):

Q�(z) = sup
w∈W

{T (1)
T,p (P�(w), II1,p(P(w),Q(z)))}. (13)

Proof: (i) Assume that I1, I2 are two R-implications. In
accordance with Lemma 2.2, we gain that I1, I2 satisfy
(PR5), (PR7), (PR9). Thus one has from Lemma 3.1
that T (2)

T,p meets (P6). For this reason, we acquire from
Theorem 3.1 that the GMin-solution Q� is Q�(z) =

supw∈W {T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w),Q(z)), 1L))} =

supw∈W {T (1)
T,p (P�(w), II1,p(P(w),Q(z)))}, z ∈ Z.

(ii) Assume that I1 is an (S,N)-implication meeting (PR5),
and I2 is an R-implication. From the property of I2 we find
that T (2)

T,p satisfies (P6). Then we can analogously gain that the
GMin-solution Q� can be represented by (13). �

Theorem III.3: (i) If I1 adopts an (S,N)-implication meeting
(PR5) or an R-implication, and I2 takes an (S,N)-implication
satisfying (PR5), and T (1)

T,p , T
(2)
T,p are the functions adjoint to

II1,p, II2,p in turn (where p ∈ [0, 1]), then the GMin-solution
Q� can be signified by (12).

(ii) Particularly, if I2 also meets (PR9), then the GMin-
solution Q� can be calculated as (13).

Proof: (i) As I1 adopts an (S,N)-implication meeting (PR5)
or an R-implication and I2 utilizes an (S,N)-implication meeting
(PR5), it follows from Theorem 3.1 that the GMin-solution Q�

can be calculated as (12).
(ii) We have from Proposition 2.1 that I2 meets (PR7). Hence

(PR5), (PR7), (PR9) hold for I2. As a consequence one gets from
Lemma 3.1 that T (2)

T,p meets (P6), and then the GMin-solution
Q� denoted by (12) can be transformed into (13). �

We introduce some R-implications including IL, IF , IGG,
IGD, IE (adjoint to the t-norm of Einstein product), IY (adjoint
to the t-norm of Yager), and (S, N)-implications incorporating
IR, IKD, IMK , ITD, ID [15]. Note that IL, IF are also (S, N)-
implications. The formulae of these implications are as follows:

IL(w, z) =

{
1 if w ≤ z
1− w + z if w > z

,

IF (w, z) =

{
1 if w ≤ z
(1− w) ∨ z if w > z

,

IGG(w, z) =

{
1 if w ≤ z
z/w if w > z

,

IGD(w, z) =

{
1 if w ≤ z
z if w > z

,

IE(w, z) =

{
1 if w ≤ z
(2z − wz)/(w + z − wz) if w > z

,

IY (w, z) =

{
1 if w ≤ z

1− (
√
1− z −

√
1− w

2
if w > z

,

IR(w, z) = 1− w + wz, IKD(w, z) = (1− w) ∨ z,
IMK(w, z) = (1− w2) ∨ z,

ITD(w, z) =

{
1 if w < 1
z if w = 1

, ID(w, z) =

{
1 if w = 0
z if w > 0

.
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It is effortless to know that (PR5) works for the (S, N)-
implications ID, ITD, IKD, IR, IF , IL, IMK , and that (PR9)
holds for the (S, N)-implications IF , IL. Consequently, Propo-
sition 3.4 is deduced from Theorem 3.2 and Theorem 3.3.

Proposition III.4: (i) If →1,→2∈
{IR, IMK , IE , IGG, IF , IL, ID, IGD, IY , IKD, ITD}, and

T (1)
T,p , T (2)

T,p are respectively the functions adjoint to II1,p, II2,p
(thereinto p ∈ [0, 1]), then the GMin-solution Q� is counted by
(12).

(ii) If→1∈ {IL, IY , IGD, IMK , ID, IF , IE , IGG, IR, IKD, ITD}
and →2∈ {IGG, IF , IL, IGD, IE , IY }, and T (1)

T,p , T
(2)
T,p are

respectively the functions adjoint to II1,p, II2,p (thereinto
p ∈ [0, 1]), then the GMin-solution Q� is calculated by (13).

When the input is changed from one fuzzy set to multiple
ones, the status of multiple-input and single-output (MISO) is
considered, which is more practically relevant. Here we show
the status of double-input and single-output (DISO), which can
be simply extended into MISO. The FMP problem of DISO in
the interval-valued fuzzy environment is shown as below:

From P,Q =⇒ O, and inputsP�,Q�,Gain O�, (14)

where P,P� ∈ Φ(W ), Q,Q� ∈ Φ(Z), O,O� ∈ Φ(Y ).
In [34], Jayaram came up with the hierarchical CRI method,

which exhibited good properties from the viewpoints of com-
putational efficiency, storage efficiency, associative inferencing
and order independence. Afterwards, here we also employ the
hierarchical granular structure for the basic GSI method, referred
here as the hierarchical basic GSI method.

The hierarchical basic GSI method proceeds in two steps
where we adopt the GMin-solution shown by (12) (see Theorem
3.1 and Theorem 3.3):

(i) We put to use the basic GSI method with
Q =⇒ O and Q�. Then by virtue of (12), we
can acquire the in-between solution O1(y) =

supz∈Z{T
(1)
T,p (Q�(z), T (2)

T,p (II1,p(Q(z),O(y)), 1L))} (y ∈ Y ).

Thereinto T (1)
T,p , T

(2)
T,p are the mappings adjoint to II1,p, II2,p.

(ii) Then we utilize the basic GSI method with P =⇒ O1 and
P�. From (12), we gain the last output O� (y ∈ Y ):

O�(y) = sup
w∈W

{T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w), sup
z∈Z

{T (1)
T,p (

Q�(z), T (2)
T,p (II1,p(Q(z),O(y)), 1L))}), 1L))}.

(15)

Analogously, for the GMin-solution Q� shown by (13) (see
Theorem 3.2 and Theorem 3.3), we can gain the hierarchical
solution as below (y ∈ Y ):

O�(y) = sup
w∈W

{
T (1)
T,p (P�(w), II1,p(P(w), sup

z∈Z
{T (1)

T,p

(Q�(z), II1,p(Q(z),O(y)))}))
}
. (16)

IV. THE ζ(w, z)-GSI METHOD

From the mechanism of the ζ(w, z)-GSI method, the complete
residuated lattice and granular computing, we offer the following
finding:
ζ(w, z)-GSI principle: The outcome Q� of FMP (2) is the

smallest one (in < Φ(Z),≤Φ>) letting

I2(I1(P(w),Q(z)), I1(P�(w),Q�(z))) ≥L ζ(w, z) (17)

work for any w ∈ W, z ∈ Z. Thereinto I1, I2 are two interval-
valued implications, and ζ(w, z) = [ζ−(w, z), ζ+(w, z)] where
ζ−, ζ+ are two functions from W × Z to [0,1], and ζ−(w, z) ≤
ζ+(w, z) for any w ∈ W, z ∈ Z.

In like manner, such symmetric implicational principle for
FMP ameliorates the previous one afforded in [15].

Definition IV.1: Let P,P� ∈ Φ(W ), Q ∈ Φ(Z), if Q� (in <
Φ(Z),≤Φ>) makes (17) hold for any w ∈ W , z ∈ Z. Then Q�

is referred to as a ζ(w, z)-GSI solution.
Definition IV.2: Assume thatP,P� ∈ Φ(W ),Q ∈ Φ(Z), and

that nonempty set Bζ(w,z) is the set of total ζ(w, z)-GSI so-
lutions, and that O� is the infimum of Bζ(w,z). Then O� goes
by the name of a ζ(w, z)-GInf-solution. In addition, if O�

is also the minimum of Bζ(w,z), then O� is referred to as a
ζ(w, z)-GMin-solution.

Analogous to Proposition 3.2, Proposition 4.1 is offered.
Proposition IV.1: (i) If Q1 is a ζ(w, z)-GSI solution, and

Q1 ≤F Q2 (in which Q1,Q2 ∈< Φ(Z),≤Φ>), then Q2 is a
ζ(w, z)-GSI solution.

(ii) Let I1, I2 be II1,p, II2,p in turn, in which I1, I2 are
implications on [0,1] meeting (PR5), and p ∈ [0, 1]. Q1 is a
ζ(w, z)-GSI solution, and Q1 ≤F Q2 (in which Q1,Q2 ∈<
Φ(Z),≤Φ>), then Q2 is a ζ(w, z)-GSI solution.

Remark IV.1: In consideration of Proposition 4.1, for any
ζ(w, z)-GSI solution Q�, each Q1 in < Φ(Z),≤Φ> making
Q� ≤F Q1, shall be also a ζ(w, z)-GSI solution. Accord-
ingly there exist many ζ(w, z)-GSI solutions, which consist of
Q�

2(z) ≡ 1L (z ∈ Z). Here Q�
2 is an extraordinary solution, due

to that (11) all the time takes its maximum regardless of what
P,P�,Q are chosen. For this reason, if the ideal ζ(w, z)-GSI
solution exists, then it should be the smallest one (or the infimum)
in Bζ(w,z).

Proposition IV.2: Assume that I1, I2 meet (P5), then the
ζ(w, z)-GInf-solution is the ζ(w, z)-GMin-solution.

Proof: It is manifest that the ζ(w, z)-GInf-
solution O� = inf Bζ(w,z), in which Bζ(w,z) = {Q�

1 ∈
Φ(Z) | I2(I1(P(w),Q(z)), I1(P�(w),Q�

1(z))) ≥L

ζ(w, z), w ∈ W, z ∈ Z}.
We adopt the proof by contradiction. Assume

that O� /∈ Bζ(w,z), then there are O1,O2, · · · in
Bζ(w,z) letting limi→∞ Oi(z) = O�(z), z ∈ Z.
In consideration of O1,O2, · · · ∈ Bζ(w,z), we get
I2(I1(P(w),Q(z)), I1(P�(w),Oi(z))) ≥L ζ(w, z).
(w ∈ W, z ∈ Z, i = 1, 2, · · · ).

In virtue of O� = inf Bζ(w,z), we have Oi(z) ≥L O�(z) (z ∈
Z, i = 1, 2, · · · ), and hence it follows from limi→∞ Oi(z) =
O�(z) that O�(z) is the right limit of {Oi(z) | i = 1, 2, · · · }
(z ∈ Z). Because I1, I2 satisfy (P2) and (P5), we find
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that limi→∞{I1(P�(w),Oi(z))} = I1(P�(w),O�(z)),
and that I1(P�(w),Oi(z)) ≥L I1(P�(w),Q�(z)) (w ∈
W, z ∈ Z, i = 1, 2, · · · ). Then one has ζ(w, z) ≤L

limi→∞{I2(I1(P(w),Q(z)), I1(P�(w),Oi(z)))} =
I2(I1(P(w),Q(z)), I1(P�(w),O�(z))) (w ∈ W, z ∈ Z).
So O� ∈ Bζ(w,z), which forms a contradiction.

For this reason, O� ∈ Bζ(w,z) and hence O� is the minimum
of Bζ(w,z), which means that the ζ(w, z)-GInf-solution O� is
the ζ(w, z)-GMin-solution. �

Theorem IV.1: If I1, I2 are implications on [0,1] meeting
(PR5), and T (1)

T,p , T
(2)
T,p are the function adjoint to II1,p, II2,p in

turn (where p ∈ [0, 1]), then the ζ(w, z)-GMin-solution Q�(z)
can be calculated as below (z ∈ Z):

sup
w∈W

{T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w),Q(z)), ζ(w, z)))}.

(18)

Proof: Owing to that I1, I2 are implications on [0,1] meeting
(PR5), one has from Proposition 2.3 that there exist T (1)

T,p , T
(2)
T,p

which are adjoint to II1,p, II2,p in turn. By virtue of (18), we

gain that T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w),Q(z)), ζ(w, z))) ≤L

Q�(z) (w ∈ W, z ∈ Z). Take into consideration that
(T (2)

T,p , II2,p), (T
(1)
T,p , II1,p) are two interval-valued adjoint cou-

ples, which implies that T (2)
T,p (II1,p(P(w),Q(z)), ζ(w, z)) ≤L

II1,p(P�(w),Q�(z)), and that ζ(w, z) ≤L

II2,p(II1,p(P(w),Q(z)), II1,p(P�(w),Q�(z))) (w ∈ W, z ∈
Z). As a consequence, Q� represented as (18) entails (17) hold
for any w ∈ W, z ∈ Z, i.e., Q� ∈ Bζ(w,z).

In addition, we validate that Q� indicated by (18) is the
minimum of entire ζ(w, z)-GSI solutions. Assume that O is
any ζ(w, z)-GSI solution, viz., O ∈ Bζ(w,z), then one has
ζ(w, z) ≤L II2,p(II1,p(P(w),Q(z)), II1,p(P�(w),O(z)))

(w ∈ W, z ∈ Z). With a view to that (T (2)
T,p , II2,p), (T

(1)
T,p , II1,p)

are two interval-valued adjoint couples, we acquire
T (2)
T,p (II1,p(P(w),Q(z)), ζ(w, z)) ≤L II1,p(P�(w),O(z)),

and T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w),Q(z)), ζ(w, z))) ≤L

O(z) (w ∈ W, z ∈ Z). As a conse-
quence, O(z) is an upper bound of
{T (1)

T,p (P�(w), T (2)
T,p (II1,p(P(w),Q(z)), ζ(w, z))) | w ∈ W},

z ∈ Z. Hence we have from (18) that Q� ≤Φ O. Accordingly,
Q� denoted by (18) is the minimum of Bζ(w,z).

Thus Q� represented by (18) is the ζ(w, z)-GMin-solution.�
Theorem IV.2: If I1 is an (S,N)-implication meeting (PR5) or

an R-implication, and I2 is an (S,N)-implication meeting (PR5)
or an R-implication, and T (1)

T,p , T
(2)
T,p are the functions adjoint to

II1,p, II2,p in turn (where p ∈ [0, 1]), then the ζ(w, z)-GMin-
solution Q� is calculated as (18).

Proof: In consideration of Lemma 2.2, an R-implication
meets (PR5), too. Hence I1 and I2 both meet (PR5). As a
consequence, one has from Theorem 4.1 that the ζ(w, z)-GMin-
solution Q� is computed as (18). �

Theorem 4.1 and Theorem 4.2 can infer Proposition 4.3.
Proposition IV.3: If→1,→2∈ {IE , IY , IKD, IMK , ID, IR, IL,

IGD, IGG, IF , ITD}, and T (1)
T,p , T

(2)
T,p are the functions

adjoint to II1,p, II2,p (thereinto p ∈ [0, 1]), then the
ζ(w, z)-GMin-solution Q� can be denoted by (18).

For the MISO status (14), it is analogous to the hierarchical
basic GSI method that we can come up with the hierarchical
ζ(w, z)-GSI method. To be specific, it can be deduced by two
steps in which we adopt the ζ(w, z)-GMin-solution represented
by (18) (paying respects to Theorem 4.1 and Theorem 4.2):

(i) We make use of the ζ(w, z)-GSI method
with Q =⇒ O and Q�. Then in consideration of
(18), we can gain the in-between solution O1(y) =

supz∈Z{T
(1)
T,p (Q�(z), T (2)

T,p (II1,p(Q(z),O(y)), ζ(w, z)))}
(y ∈ Y ) Here T (1)

T,p , T
(2)
T,p are the functions adjoint to II1,p, II2,p.

(ii) We adopt the ζ(w, z)-GSI method with P =⇒ O1

and P�. From (18), we acquire the last output O�(y) =

supw∈W {T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w),O1(y)), ζ(w, z)))}
(y ∈ Y ).

For the sake of controlling every step, we can utilize different
ζ(w, z). For the DISO status, we can adopt ζ1(w, z), ζ2(w, z),
then O�(y) is (y ∈ Y ):

sup
w∈W

{T (1)
T,p (P�(w), T (2)

T,p (II1,p(P(w), sup
z∈Z

{T (1)
T,p (Q�(z),

T (2)
T,p (II1,p(Q(z),O(y)), ζ2(w, z)))}), ζ1(w, z)))}.

(19)

V. THE PROPERTIES OF THE GSI METHOD

A. The Reversibility Properties of the Basic GSI Method

For any fuzzy inference strategy, there is no completely
accepted criterion using which one can estimate its quality.
However, its reversibility property reflects the compatibility with
classic logic, which is deemed as a requirement.

Definition V.1: In allusion to a method to figure out FMP (2),
if P� = P results in Q� = Q if condition CN works, then this
method is said to be CN -reversible.

Definition V.2: In allusion to a method to figure out FMP (14)
for the DISO status, if P� = P and Q� = Q result in O� = O
if condition CN is effective, then it is said to be CN -reversible.

It is effortless to gain Lemma 5.1.
Lemma V.1: Assume that the implication I on [0,1] meets

(PR5) and (PR7), and that T is the function adjoint to I ,
and that TT,p is the function adjoint to II,p (where p ∈ [0, 1]),
then one has: (i) z ≤ I(w, z), T (w, z) ≤ z (w, z ∈ [0, 1]), (ii)
T (1, w) = w (w ∈ [0, 1]), (iii) II,p(1L, w) = w (w ∈ L), (iv)
TT,p(1L, w) = w (w ∈ L), (v) TT,p is increasing in its two
variables. In addition, if (PR9) also works for I , then we acquire:
(vi) T (w, 1) = w (w ∈ [0, 1]).

Theorem V.1: If the implication I1 meets (PR5), (PR7), and
the implication I2 meets (PR5), (PR7), (PR9), then the basic
GSI method represented by (12) owns reversibility property for
the normal input (i.e. there is w0 ∈ W letting P(w0) = 1L be
effective).

Proof: Since I2 meets (PR5), (PR7), (PR9), from Lemma 3.1,
one has that (P6) is effective for T (2)

T,p . From Definition 2.4, I1,
I2 meets (PR1), (PR2), (PR3) and (PR4).

When P� = P , it follows from Theorem 3.1 that
the GMin-solution can be expressed as Q�(z) =
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supw∈W {T (1)
T,p (P(w), T (2)

T,p (II1,p(P(w),Q(z)), 1L))}
= supw∈W {T (1)

T,p (P(w), II1,p(P(w),Q(z)))} (z ∈ Z).
Owing to that P is normal, there exists w0 ∈ W

making P(w0) = 1L. From Lemma 5.1, one has
Q�(z) ≥L T (1)

T,p (P(w0), II1,p(P(w0),Q(z))) = T (1)
T,p (1L,

II1,p(1L,Q(z))) = T (1)
T,p (1L,Q(z)) = Q(z) (z ∈ Z).

Subsequently, we show Q�(z) ≤L Q(z) (z ∈ Z). It is
apparent that II1,p(P(w),Q(z)) ≤L II1,p(P(w),Q(z))
(w ∈ W, z ∈ Z), then it follows from (9) that
T (1)
T,p (P(w), II1,p(P(w),Q(z))) ≤L Q(z) (w ∈ W, z ∈ Z). In

consequence, Q�(z) ≤L Q(z) (z ∈ Z).
In a word, we obtain Q� = Q. �
Theorem V.2: If the implication I1 meets (PR5), (PR7), and

the implication I2 meets (PR5), (PR7), (PR9), then the hier-
archical basic GSI method computed by (15) has reversibility
property for the normal input (viz. there are w0 ∈ W , z0 ∈ Z
letting P(w0) = Q(z0) = 1L be effective).

Proof: Analogous to Theorem 5.1, one has that (P6) holds for
T (2)
T,p . Let P� = P and Q� = Q. The optimal solution (15) to the

hierarchical basic GSI method can be transformed into O�(y) =

supw∈W {T (1)
T,p (P(w), T (2)

T,p (II1,p(P(w), supz∈Z{T
(1)
T,p (Q(z),

T (2)
T,p (II1,p(Q(z),O(y)), 1L))}), 1L))} = supw∈W {T (1)

T,p (

P(w), II1,p(P(w), supz∈Z{T
(1)
T,p (Q(z), II1,p(Q(z),O(y)))}))}

(y ∈ Y ).
Taking into consideration that P and Q are nor-

mal, there exist w0 ∈ W , z0 ∈ Z such that P(w0) =
Q(z0) = 1L. In virtue of Lemma 5.1, one has O�(y) ≥L

T (1)
T,p (P(w0), II1,p(P(w0), T (1)

T,p (Q(z0), II1,p(Q(z0),O(y)))))

= T (1)
T,p (1L, II1,p(1L, T

(1)
T,p (1L, II1,p(1L,O(y))))) =

T (1)
T,p (1L, II1,p(1L,O(y))) = O(y) (y ∈ Y ).
It is apparent that II1,p(Q(z),O(y)) ≤L II1,p(Q(z),O(y))

(z ∈ Z, y ∈ Y ), then it follows from (9) that
T (1)
T,p (Q(z), II1,p(Q(z),O(y))) ≤L O(y) (z ∈ Z, y ∈ Y ). In a

similar way, one has T (1)
T,p (P(w), II1,p(P(w),O(y))) ≤L O(y)

(w ∈ W, y ∈ Y ). As a result, O�(y) = supw∈W {T (1)
T,p (P(w),

II1,p(P(w), supz∈Z{T
(1)
T,p (Q(z), II1,p(Q(z),O(y)))}))}

≤L supw∈W {T (1)
T,p (P(w), II1,p(P(w),O(y)))} ≤L O(y).

In conclusion, we gain O� = O. �

B. The Continuous Properties of the GSI Method

Focusing on (2) of fuzzy inference, when P � is close to P ,
if the inference outcome Q� is quite disparate from Q, then this
reasoning method is hardly practical in the real world. Therefore,
it is important that a small deviation in the input will not result
in a substantial difference in the output (which is considered as
the continuity issue of fuzzy inference).

A distance function d is known as a metric, if d satisfies
d(w, z) = d(z, w), d(w, z) ≥ 0 (in which d(w, z) = 0 iff w =
z), and d(w, r) ≤ d(w, z) + d(z, r) for any points w, z, r. The
concept of distance has been extended to fuzzy set. Assume that
d is a distance between fuzzy sets, which constructs a metric.

We constantly adopt the distance between two intervals a =
[a−, a+] and b = [b−, b+] in the form d(w, z) = |w− − z−| ∨
|w+ − z+|.

The uniform metric dUN is commonly-utilized, and we ex-
pand it for the granular sense (e.g., interval-valued fuzzy sets)
as dUN (P1,P2) = supw∈W {|P−

1 (w)− P−
2 (w)

∣∣ ∨ ∣∣P+
1 (w)−

P+
2 (w)|} (P1,P2 ∈ Φ(W )).
Definition V.3: A fuzzy inference method for FMP (2) is a

function f : Φ(W ) → Φ(Z), viz., there exists an output Q� =
f(P�) ∈ Φ(Z) for any input P� ∈ Φ(W ). (i) For any ε >
0, if there exists δ > 0 making d(f(P1), f(P2)) < ε hold if
d(P1,P2) < δ for any P1,P2 ∈ Φ(W ), then f is referred to
as a uniformly continuous function in d. (ii) Aiming at any
ε > 0, if there exists δ > 0 making d(f(P1), f(P)) < ε work
if d(P1,P) < δ for any P1 ∈ Φ(W ), then f is known as a
continuous function at P ∈ Φ(W ) in d.

Definition V.4: A fuzzy inference method for FMP (14) is
a function g : Φ(W ) ∗ Φ(Z) → Φ(Y ), i.e., there is an out-
put O� = g(P�,Q�) ∈ Φ(Y ) for inputs P� ∈ Φ(W ),Q� ∈
Φ(Z). (i) For any ε > 0, if there exists δ > 0 let-
ting d(g(P1,Q1), g(P2,Q2)) < ε hold if d(P1,P2) < δ and
d(Q1,Q2) < δ for any P1,P2 ∈ Φ(W ) and Q1,Q2 ∈ Φ(Z),
then g is called to be uniformly continuous ind. (ii) Aiming at any
ε > 0, if there exists δ > 0 such that d(g(P1,Q1), g(P,Q)) < ε
if d(P1,P) < δ and d(Q1,Q) < δ for any P1 ∈ Φ(W ) and
Q1 ∈ Φ(Z), then g is said to be continuous at P ∈ Φ(W ) and
Q ∈ Φ(Z) in d.

Lemma V.2: If the t-norm T is continuous and p ∈ [0, 1], then
TT,p represented by (10) is continuous.

Proof: From (10), one has TT,p(w, z) =
[T (w−, z−),max{T (w−, z+), T (w+, z−), T (T (p, w+), z+)}].
Take into account that max keeps the continuous property. It is
not difficult to arrive at the conclusion. �

It is effortless to gain Lemma 5.3 and Lemma 5.4.
Lemma V.3: |w ∧ r − z ∧ r| ≤ |w − z|, |w ∨ r − z ∨ r| ≤

|w − z|, thereinto w, z, r ∈ [0, 1].
Lemma V.4: If W → R+ functions f, g are bounded, in

which W is a nonempty set and R+ = [0,+∞), then it im-
plies thatsupw∈W f(w) ∨ supw∈W g(w) ≤ supw∈W {f(w) ∨
g(w)}.

Lemma V.5: ([35]) If f, g : W → R are bounded
functions, in which W is a nonempty set and R is the set
of real number, then aiming at any w ∈ W , one has (i)
| supw∈W f(w)− supw∈W g(w)| ≤ supw∈W |f(w)− g(w)|;
(ii) | infw∈W f(w)− infw∈W g(w)| ≤ supw∈W |f(w)−
g(w)|.

Theorem V.3: In view of the identical conditions of Theorem
4.1, if the t-norm T1 is continuous, then the ζ(w, z)-GSI method
for FMP indicated by (18) is uniformly continuous in dUN , and
hence continuous in dUN .

Proof: Denote Γ(w, z) = T (2)
T,p (II1,p(P(w),Q(z)),

ζ(w, z)), then (18) is changed into Q�(z) =

supw∈W {T (1)
T,p (P�(w),Γ(w, z))}, z ∈ Z.

On the basis of Lemma 5.2, one has that T (1)
T,p is continuous.

Then T (1)
T,p is uniformly continuous w.r.t. its first variable in

[0L, 1L]. Hence, in allusion to any ε > 0, there exists δ1 > 0
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letting dUN (T (1)
T,p (P1(w),Γ(w, z)), T (1)

T,p (P2(w),Γ(w, z))) <
ε be effective for any z ∈ Z if dUN (P1, P2) < δ1
(thereinto P1,P2 ∈ Φ(W )). We adopt ε2 = ε

2 . Appar-
ently ε > ε2 > 0 is right. As a consequence, there
exists δ2 > 0 such that dUN (P1, P2) < δ2 implies
dUN (T (1)

T,p (P1(w),Γ(w, z)), T (1)
T,p (P2(w),Γ(w, z))) < ε2

(z ∈ Z), that is, the following inequality holds (z ∈ Z)

sup
w∈W

{∣∣[T (1)
T,p (P1(w),Γ(w, z))]

−

− [T (1)
T,p (P2(w),Γ(w, z))]

−∣∣
∨
∣∣[T (1)

T,p (P1(w),Γ(w, z))]
+

− [T (1)
T,p (P2(w),Γ(w, z))]

+
∣∣} < ε2.

Let Q1,Q2 be the ζ(w, z)-GMin-solution for P1,P2, in turn.
In what follows, we prove that there exists δ > 0 such that
dUN (Q1,Q2) < ε if dUN (P1,P2) < δ.

Here we adopt δ = δ2.Assume that dUN (P1,P2) < δ.Hence
the inequality mentioned above holds, and on the strength of
Lemma 5.3, Lemma 5.4 along with Lemma 5.5, one has

dUN (Q1,Q2) = sup
z∈Z

{|Q−
1 (z)−Q−

2 (z)| ∨ |Q+
1 (z)−Q+

2 (z)|}

≤ sup
z∈Z

{ sup
w∈W

{|[T (1)
T,p (P1(w),Γ(w, z))]

−

− [T (1)
T,p (P2(w),Γ(w, z))]

−|∨

|[T (1)
T,p (P1(w),Γ(w, z))]

+ − [T (1)
T,p (P2(w),Γ(w, z))]

+|}}

≤ sup
z∈Z

ε2 = ε2 < ε.

As a consequence, it follows from Definition 5.3 that the
ζ(w, z)-GSI method for FMP denoted by (18) is uniformly
continuous in dUN .

It is apparent to note that if f is uniformly continuous then
it is continuous. For this reason, we derive that the ζ(w, z)-
GSI method for FMP represented by (18) is also continuous in
dUN . �

Theorem V.4: (i) In view of the identical conditions of Theo-
rem 3.1 (or Theorem 3.3), if the t-norm T1 is continuous, then
the basic GSI method for FMP denoted by (12) is uniformly
continuous in dUN , and hence continuous in dUN .

(ii) In view of the identical conditions of Theorem 3.2 (or
Theorem 3.3), if the t-norm T1 is continuous, then the basic GSI
method for FMP represented by (13) is uniformly continuous in
dUN , and hence continuous in dUN .

Proof: In Theorem 5.3, we choose ζ(w, z) ≡ 1L (w ∈
W, z ∈ Z), then the conclusion for (12) is obtained. In addition,
(13) is a peculiar status of (12), the result can be analogously
derived. �

Theorem V.5: In view of the identical conditions of Theorem
4.1, if the t-normsT1, T2 are continuous and I1 is left-continuous
w.r.t. the second variable, then the hierarchical ζ(w, z)-GSI
method denoted by (19) is uniformly continuous in dUN , and
hence continuous in dUN .

Proof: Take into consideration that I1 is left-continuous w.r.t.
the second variable, and I1 meets (PR5), then I1 is continuous
w.r.t. the second variable. Afterwards, from Proposition 2.2, it
is apparent to discover that II1,p is continuous w.r.t. the second
variable, and thus II1,p is uniformly continuous w.r.t. its second
variable in [0L, 1L].

Owing to that T (1)
T,p , T

(2)
T,p are continuous, T (1)

T,p , T
(2)
T,p are uni-

formly continuous w.r.t. its first variable and also its second
variable in [0L, 1L].

Let O1 be the hierarchical ζ(w, z)-GMin-
solution w.r.t. P1,Q1, and O2 be the one
w.r.t. P2,Q2. We offer the signs: O11(y) =

supz∈Z{T
(1)
T,p (Q1(z), T (2)

T,p (II1,p(Q(z),O(y)), ζ2(w, z)))},

O12(y) = supz∈Z{T
(1)
T,p (Q2(z), T (2)

T,p (II1,p(Q(z),O(y)),

ζ2(w, z)))},Γ11(w, z) = T (2)
T,p (II1,p(P(w),O11(y)), ζ1(w, z)),

Γ12(w, z) = T (2)
T,p (II1,p(P(w),O12(y)), ζ1(w, z))

(w ∈ W, z ∈ Z, y ∈ Y ). Then one has from (19) that
O1(y) = supw∈W {T (1)

T,p (P1(w),Γ11(w, z))},O2(y) =

supw∈W {T (1)
T,p (P2(w),Γ12(w, z))} (y ∈ Y ).

We validate that aiming at any ε > 0, there exists δ > 0
letting dUN (O1, O2) < ε be effective if dUN (P1, P2) < δ
and dUN (Q1, Q2) < δ where P1,P2 ∈ Φ(W ) and Q1,Q2 ∈
Φ(Z).

We denote O3(y) = supw∈W {T (1)
T,p (P1(w),Γ12(w, z))}

(y ∈ Y ).
We take ε0 = ε/2. Take into account that T (1)

T,p is continu-
ous, hence there is δ0 > 0 such that dUN (P1,P2) < δ0 implies
dUN (O2,O3) < ε0.

We select ε1 = ε/2. Analogously there is δ1 > 0 leading to
that dUN (O1,O3) < ε1 if dUN (Γ11(w, z),Γ12(w, z)) < δ1.

We adopt ε2 = δ1. Owing to that T (2)
T,p is con-

tinuous, for such ε2 > 0, there exists δ2 > 0 re-
sulting in that dUN (Γ11(w, z),Γ12(w, z)) < ε2 if
dUN (II1,p(P(w),O11(y)), II1,p(P(w),O12(y))) < δ2.

We utilize ε3 = δ2. Because II1,p is uniformly
continuous w.r.t. its second variable in [0L, 1L].
Hence for such ε3 > 0, there is δ3 > 0 causing that
dUN (II1,p(P(w),O11(y)), II1,p(P(w),O12(y))) < ε3 if
dUN (O11,O12) < δ3.

We select ε4 = δ3. On the strength of Theorem 5.3, one has
that the ζ(w, z)-GMin-solution represented by (18) is uniformly
continuous in dUN . Then for such ε4 > 0, there is δ4 > 0 such
that dUN (O11,O12) < ε4 if dUN (Q1,Q2) < δ4.

All in all, dUN (Q1,Q2) < δ4 means dUN (O1,O3) < ε1.
Afterwards we adopt δ = min{δ0, δ4}. Then dUN (P1,P2) <

δ and dUN (Q1,Q2) < δ implies dUN (O1,O2) ≤
dUN (O2,O3) + dUN (O1,O3) < ε0 + ε1 = ε. That is, the
hierarchical ζ(w, z)-GSI method denoted by (19) is uniformly
continuous in dUN . And hence it is continuous in dUN . �

Theorem V.6: (i) In view of the identical conditions of Theo-
rem 3.1 (or Theorem 3.3), if the t-norms T1, T2 are continuous
and I1 is left-continuous w.r.t. the second variable, then the
hierarchical basic GSI method represented by (15) is uniformly
continuous in dUN , and hence continuous in dUN .
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(ii) Based upon the identical conditions of Theorem 3.2 (or
Theorem 3.3), if the t-norms T1, T2 are continuous and I1 is
left-continuous w.r.t. the second variable, then the hierarchical
basic GSI method denoted by (16) is uniformly continuous in
dUN , and hence continuous in dUN .

Proof: In Theorem 5.5, we select ζ1(w, z) ≡ 1L and
ζ2(w, z) ≡ 1L (w ∈ W, z ∈ Z), then the conclusion for (15) is
achieved. By the way, (16) is a particular status of (15), the result
can be analogously gotten. �

VI. APPLICATIONS AND DISCUSSION

When there are n rules, (2) should be altered to:

From P1 =⇒ Q1,P2 =⇒ Q2, . . . ,Pn =⇒ Qn, and P�,

Gain the outcome Q�.

Then the total inference rule is often acquired with ∨ (see
[15], [36]), viz., TRR(w, z) = ∨n

i=1II1,p(Pi(w),Qi(z)). As a
consequence, (5) should be altered to:

TRR(w, z) →2 (P�(w) →1 Q�(z)) ≥ ζ(w, z). (20)

From Theorem 4.1, it is analogous to find that the ζ(w, z)-GMin-
solution Q�(z) gained from (20) is as below (z ∈ Z):

sup
w∈W

{T (1)
T,p (P�(w), T (2)

T,p (TRR(w, z), ζ(w, z)))}. (21)

Here IGD and IL are adopted. IGD is an R-implication,
meanwhile IL is an R-implication and also an (S,N)-implication.
Let I1 be IGD, and I2 be IL. The following examples exhibit
the procedure of the ζ(w, z)-GSI method.

Example VI.1: Let W = {w1, w2, w3} where w1 =
0.2, w2 = 0.4, w3 = 0.6, Z = {z1, z2} in which z1 =
0.8, z2 = 1.0, Y = {y1, y2} in which y1 = 0.4, y2 = 0.8,
p = 0.9. In addition, ζ1(w, z) = [ 1.0−w+z

2 , 1.2−w+z
2 ],

ζ2(w, z) = [ 0.8−w+z
2 , 1.0−w+z

2 ]. The rules and inputs are
as below:
P = [0.3,0.4]

w1
+ [0.4,0.5]

w2
+ [0.8,0.9]

w3
, Q = [0.2,0.4]

z1
+ [0.5,0.6]

z2
,

O = [0.5,0.6]
y1

+ [0.3,0.4]
y2

,

P� = [0.1,0.2]
w1

+ [0.2,0.3]
w2

+ [0.7,0.8]
w3

, Q� = [0.4,0.6]
z1

+
[0.7,0.9]

z2
.

We obtain by (19) that ζ(w, z)-GMin-solution is O� =
[0.3,0.4]

y1
+ [0.2,0.3]

y2
.

When →1,→2 employ the identical one, the GSI method
degenerates to the interval-valued fully implicational method
[13]. Homoplastically the interval-valued fully implicational
method can also be split into the basic interval-valued fully
implicational method and the ζ(w, z)-interval-valued fully im-
plicational method. Entire achievement of the GSI method (in-
cluding its hierarchical mechanism) can also be extended to
the corresponding interval-valued fully implicational method.
Notice that the interval-valued fully implicational method in
[13] is merely corresponding to the basic interval-valued fully
implicational method.

Example VI.2: In allusion to the identical
P,Q,O,P�,Q�, ζ1, ζ2 as Example 6.1, we adopt the
hierarchical ζ(w, z)-GSI method where I1, I2 take IGD

(that is the status of the interval-valued ζ(w, z)-fully
implicational method). By calculation, the optimal solution is
O� = [0.6,0.7]

y1
+ [0.4,0.6]

y2
.

Example VI.3: We show an example of emotion deduction
in the field of affective computing [37]. Aiming at the ac-
knowledged eight fundamental emotions (which are surprise,
anxiety, expect, sorrow, angry, hate, joy, love), the former
six emotions own a clear relationship with fury (as a novel
emotion). We construct the emotion deduction system from
six fundamental emotions to fury. Let W = {w1, w2, . . . , w6}
where w1 = 0, w2 = 0.2, w3 = 0.4, w4 = 0.6, w5 = 0.8, w6 =
1.0, and Z = {z1} where z1 = 0.6, p = 0.9. In addition,
ζ(w, z) = [ 1.0−w2+z

2 , 1.2−w2+z
2 ]. Some rules from Pi to Qi and

the input P� are as below:
P1 = [0.2,0.4]

w1
+ [0.3,0.4]

w2
+ [0.8,0.9]

w3
+ [0.2,0.3]

w4
+ [0.3,0.5]

w5
+

[0.0,0.1]
w6

,

P2 = [0.6,0.8]
w1

+ [0.5,0.6]
w2

+ [0.4,0.5]
w3

+ [0.7,0.8]
w4

+ [0.6,0.7]
w5

+
[0.5,0.7]

w6
,

P3 = [0.1,0.2]
w1

+ [0.8,0.9]
w2

+ [0.2,0.3]
w3

+ [0.4,0.5]
w4

+ [0.9,1.0]
w5

+
[0.2,0.4]

w6
,

Q1 = [0.1,0.2]
z1

, Q2 = [0.4,0.5]
z1

, Q3 = [0.7,0.8]
z1

,

P� = [0.4,0.5]
w1

+ [0.9,1.0]
w2

+ [0.3,0.4]
w3

+ [0.0,0.1]
w4

+ [0.5,0.6]
w5

+
[0.8,0.9]

w6
.

This is an example belonging to fuzzy classifica-
tion, where three categories are Q1(z1) = [0.1, 0.2],
Q2(z1) = [0.4, 0.5], Q3(z1) = [0.7, 0.8]. Let I1 utilize
IGD, and I2 be IL in the ζ(w, z)-GSI method. We
calculate by (21) that the ζ(w, z)-GMin-solution is
Q�(z1) = sup{ξ(w1, z1), ξ(w2, z1), . . . , ξ(w6, z1)} =
[0.4, 0.5] ∨ [0.48, 0.58] ∨ [0.3, 0.4] ∨ [0.0, 0.1] ∨ [0.18, 0.28] ∨
[0.3, 0.4] = [0.48, 0.58]. It comes near to [0.4,0.5], and hence
the classification outcome is the second class Q2.

Example VI.4: Focusing on the identicalP1,P2,P3,Q1,Q2,
Q3,P�, ζ as Example 6.3, we utilize the ζ(w, z)-GSI method
where I1, I2 take IGD (that corresponds to the status of the
ζ(w, z)-interval-valued fully implicational method).

Through calculation, one has that the ζ(w, z)-GMin-solution
is as below: Q�(z1) = [0.4, 0.5] ∨ [0.7, 0.8] ∨ [0.3, 0.4] ∨
[0.0, 0.1] ∨ [0.48, 0.58] ∨ [0.3, 0.4] = [0.7, 0.8]. It is the same
as [0.7,0.8], and hence the classification outcome is the third
class Q3.

Example VI.5: In the field of the product conceptual design
[38], a multi-functional traveling cup is taken as an example to
describe the whole process of function tree modeling. The core
functional requirements of this multi-functional traveling cup
include four parts: heat preservation, non-breakable demand,
portable demand and large capacity. Around these four func-
tions, it is assumed that an initial fuzzy function tree as shown
in Fig. 1 is obtained (in which G1 is an “AND” gate node).

Here we reveal the requirements for heat preservation and
non-breakable demand, which are two inseparable functions.
The inputs include heat preservation and non-breakable de-
mand. The outputs incorporate bilayer structure, insulation de-
gree in the middle area, thickness of bilayer structure (the former
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Fig. 1. An initial fuzzy function tree.

three are for heat preservation), bilayer structure, firmness of
outer wall, thickness of bilayer structure (the latter three are
for non-breakable demand). In detail, let W = {w1, w2} where
w1 = 0.3, w2 = 0.2, and Z = {z1, z2, . . . , z6} where z1 =
0.1, z2 = 0.2, z3 = 0.3, z4 = 0.4, z5 = 0.5, z6 = 0.6, p = 0.9.
In addition, ζ(w, z) = [ 2.0−w∨z

2 , 2.2−w∨z
2 ]. Some rules from Pi

to Qi and the input P� are as below:
P1 = [0.90,1.00]

w1
+ [0.80,0.90]

w2
, Q1 = [0.80,0.90]

z1
+

[0.85,0.95]
z2

+ [0.80,0.95]
z3

+ [0.60,0.70]
z4

+ [0.80,0.95]
z5

+ [0.75,0.85]
z6

,

P2 = [0.55,0.65]
w1

+ [0.20,0.30]
w2

, Q2 = [0.45,0.55]
z1

+
[0.50,0.60]

z2
+ [0.45,0.60]

z3
+ [0.05,0.15]

z4
+ [0.20,0.30]

z5
+ [0.10,0.20]

z6
,

P3 = [0.40,0.50]
w1

+ [0.30,0.40]
w2

, Q3 = [0.35,0.45]
z1

+
[0.30,0.40]

z2
+ [0.25,0.35]

z3
+ [0.20,0.30]

z4
+ [0.30,0.45]

z5
+ [0.15,0.25]

z6
,

P4 = [0.65,0.75]
w1

+ [0.90,1.00]
w2

, Q4 = [0.60,0.70]
z1

+
[0.55,0.65]

z2
+ [0.50,0.60]

z3
+ [0.80,0.90]

z4
+ [0.75,0.90]

z5
+ [0.60,0.70]

z6
,

P� = [0.80,0.90]
w1

+ [0.65,0.75]
w2

.
Let I1 utilize IGD, and I2 be IL in the ζ(w, z)-GSI method.

In accordance with the ζ(w, z)-GSI method, we calculate the
ζ(w, z)-GMin-solution represented by (21). Then we obtain
that the ζ(w, z)-GMin-solution isQ� = [0.65,0.85]

z1
+ [0.7,0.85]

z2
+

[0.65,0.85]
z3

+ [0.8,0.9]
z4

+ [0.75,0.85]
z5

+ [0.45,0.55]
z6

.
Meanwhile, if we utilize the ζ(w, z)-GSI method where

I1, I2 take IGD (that corresponds to the status of the
ζ(w, z)-interval-valued fully implicational method, then the
ζ(w, z)-GMin-solution isQ� = [0.8,0.9]

z1
+ [0.8,0.9]

z2
+ [0.8,0.9]

z3
+

[0.8,0.9]
z4

+ [0.75,0.85]
z5

+ [0.7,0.8]
z6

.
After similar processes (by using I1 = IGD and I2 = IL in

the ζ(w, z)-GSI method), the expanded tree is shown in Fig. 2.
Among it, G4 is an “OR” gate node, and G11 is an “OR-NOT”
gate node, and the other nodes are similar. The final design
schemes can be obtained through function solving of the function
tree as shown in Fig. 2. Here we show one solution. In detail,
we use a bilayer hollow structure to achieve the function of
heat preservation, and adopt a retractable cup bladder and a
retractable cup body (resulting in that corresponding volume is
variable), and add a steel bottom cover outside (to ensure that
it is not easy to break), and employ a strap outside the body.

Here we exhibit some comparative analyses. The foregoing
symmetric implicational principles are direct at the generic fuzzy
sets. In the granular symmetric implicational (GSI) principles,
the computing procedure and the gained outcome are all related
to interval-valued fuzzy sets. These are in more excellent man-
ner than the corresponding situations from generic fuzzy sets.

Fig. 2. An initial fuzzy function tree.

Accordingly, these GSI principles ameliorate the previous ones
of the symmetric implicational method.

Compared with the ζ(w, z)-interval-valued fully implica-
tional method, the advantages of the proposed GSI method are
reflected in the following three aspects. (i) The GSI method
makes the inference appear more coherent. Example 6.1 and
Example 6.2 direct at the identical rule base and input, and
then the optimal solution to the ζ(w, z)-interval-valued fully
implicational method in Example 6.2 is bigger than the one of
the ζ(w, z)-GSI method in Example 6.1. On the basis of the
intrinsic spirit of the ζ(w, z)-GSI method (viz., the ζ(w, z)-GSI
principle which tries to gain the smallest solution letting (17)
be effective), the ζ(w, z)-GSI method offers better solution, and
makes the inference more compact (which is a vital evaluating
standard for the fuzzy inference strategy). In the meantime, we
can obtain that the basic GSI method has similar advantages than
the basic interval-valued fully implicational method. Similarly,
from Example 6.3, Example 6.4 and Example 6.5, the same
conclusion can be obtained. (ii) There exists a step response
phenomenon in the ζ(w, z)-interval-valued fully implicational
method. In Example 6.5, the same output (i.e., [0.8,0.9]) occurs
four times out of six values (for different inputs). This is clearly
not what we want. However, the GSI method solves this problem
properly by using two implications. (iii) The application effect
of the GSI method is better. For Example 6.3 and Example 6.4,
the more reasonable granular inference result is the second class
Q2 in accordance with expert knowledge in the field of affective
computing. For Example 6.5, if the value of the child node (that
realizes a conceptual design requirement in the function tree
modeling) is smaller, then it indicates that the requirement can be
more easily implemented and that the established function tree
is superior. Consequently, the ζ(w, z)-GSI method all achieves
more reasonable result than the ζ(w, z)-interval-valued fully
implicational method.

There are some works related to granular computing (e.g.
[18], [19]). In this study, we systematically establish a granular
structure in the scope of fuzzy inference, which is a novel
exploration for the field of granular computing. It is of great
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value for granular expression, modeling and inference. So this
is an important impetus to the research of granular computing.

VII. CONCLUSIONS

We come up with and investigate the granular symmetric
implicational (GSI) method, which incorporates the basic GSI
method and the ζ(w, z)-GSI method as well as their hierarchical
mode.

The contributions of the study are concisely captured as
follows. In the first place, we offer a new construction method
for interval-valued implications as well as related adjoint cou-
ples, which is gained from some conditions of implication
on [0,1]. Here we adopt complete residuated lattices as the
structures of truth-values for interval-valued fuzzy sets. In
the second place, unified expressions of optimal solutions to
the basic GSI method and the ζ(w, z)-GSI method are ac-
quired, in which →1,→2 utilize R-implications or (S, N)-
implications. Afterwards, the optimal solutions to these meth-
ods are acquired for eleven specific implications, which cover
IGG, IF , IL, IKD, IR, IGD, IE , ID, IY , IMK , ITD. In the third
place, in allusion to multiple rules, we set up hierarchical in-
ference strategy for these methods and gain the corresponding
hierarchical solutions.

The connotation of “granules” in the GSI method includes
three points. To begin with,P,Q, P �, Q� all fall into the category
of information granules. They utilize interval-valued fuzzy sets
as their specific forms. Furthermore, →1 and →2 can adopt
different interval-valued implications. Thereinto →1 gives ex-
pression to the implication connective in a logic system and →2

indicates the “if-then” relation of the inference model (1). →1

and →2 both reflect the mapping relationship of information
granules. Lastly, aiming at the status of multiple rules, we make
use of the hierarchical granular mode to carry through inference.
In short, the granular structure is constructed in the GSI method.

The advantages of the proposed method are three-fold. First,
new symmetric implicational principles are presented, which
gain an advantage over the previous ones, because the interval-
valued fuzzy sets offer more powerful expression abilities than
generic fuzzy sets. Second, the reversibility properties of the ba-
sic GSI method are validated, and the continuous and uniformly
continuous properties of the GSI method in dUN are proved.
Third, from two specific operation examples and two emotion
deductive examples, it is discovered that the GSI method is
superior over the corresponding interval-valued fully implica-
tional method, owing to that the GSI method makes the inference
appear more coherent.

In future studies it would be of interest to construct fuzzy
systems based upon the GSI method, which also incorporate
fuzzier, defuzzier. And the corresponding performances includ-
ing universal approximation, response abilities and so forth
would be discovered. In addition, it is also worth combining
the GSI method with some fuzzy clustering algorithms (e.g., the
patch-based fuzzy local similarity c-means algorithm in [39])
to form new clustering framework under the environment of
granular computing.
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Logic. Boston, Dordrecht: Kluwer Academic Publishes, 1999.

[24] M. Mas, M. Monserrat, J. Torrens, and E. Trillas, “A survey on fuzzy impli-
cation functions,” IEEE Trans. Fuzzy Syst., vol. 15, no. 6, pp. 1107–1121,
Dec. 2007.

[25] J. Fodor and M. Roubens, Fuzzy Preference Modeling and Multicriteria
Decision Support. Boston, Dordrecht: Kluwer Academic Publishers, 1994.

[26] M. Baczyński and B. Jayaram, “(S,N)- and r-implications: A state-of-the-
art survey,” Fuzzy Sets Syst., vol. 159, no. 14, pp. 1836–1859, Jul. 2008.

[27] E. P. Klement and M. Navara, “A survey on different triangular norm-based
fuzzy logics,” Fuzzy Sets Syst., vol. 101, no. 2, pp. 241–251, Jan. 1999.

[28] G. Deschrijver and E. Kerre, “On the relationship between some extensions
of fuzzy set theory,” Fuzzy Sets Syst., vol. 133, no. 2, pp. 227–235,
Jan. 2003.

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on May 26,2022 at 03:09:52 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TCYB.2020.3025793.
https://dx.doi.org/10.1109/TETCI.2020.3038160


TANG et al.: GRANULAR SYMMETRIC IMPLICATIONAL METHOD 723
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