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Viewpoint-Based Kernel Fuzzy Clustering With
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and Xiaocheng Song

Abstract—Domain knowledge can be introduced into fuzzy clus-
tering with the aid of information granules, embodied by the con-
cept of viewpoints. For such kind of fuzzy clustering methods, the
strategy of acquisition of viewpoints has not been fully developed.
Furthermore a way of determining the related information gran-
ules deserves more attention. Having these problems in mind, in this
study, the density Viewpoint-based Weighted Kernel Fuzzy Clus-
tering (VWKFC) algorithm is proposed. First, the kernel-based
hypersphere density initialization (KHDI) algorithm is presented
as a certain prerequisite, in which the kernel distance is utilized
instead of the Euclidean distance. Besides, a novel density radius is
put forward. Second, the concept of the weight information granule
is established, which incorporates two parts. The feature weight
matrix is provided, where different weights are assigned to different
features to reduce the influence of unrelated features. Meanwhile a
sample weight is assigned to each data point, thus the influence of
noise and outliers on clustering can be reduced to a certain extent.
Third, the data point with the highest local density obtained by
KHDI is regarded as the density viewpoint. Then we combine kernel
mechanism, density viewpoints, weight information granules and
a maximum entropy regularization to design the VWKFC algo-
rithm, and prove its convergence. Experimental results validate
that VWKFC is superior over eight related clustering algorithms
with regard to five evaluation indexes, especially when processing
high-dimensional data. It has been shown that VWKFC makes the
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selection of initialized cluster centers and viewpoints more rea-
sonable, and obtains better clustering results, and achieves higher
convergence speed.

Index Terms—Feature weighting, fuzzy c-means, fuzzy cluster-
ing, granular computing, information granules.

I. INTRODUCTION

C LUSTERING divides similar data points into a single
group (cluster) as far as possible through the similarity

calculation of data points in the dataset, and makes the data
among distinct clusters as different as possible [1], [2], [3],
[4]. As an unsupervised machine learning algorithm, it has the
evident advantage of processing a large amount of data without
prior training, so it plays an important role in many fields [5],
[6], [7], [8].

In the early days, clustering analyses mainly referred to hard
clustering. The hard clustering algorithm strictly classified data
objects into a certain cluster. Recently, Rodriguez and Laio [9]
proposed a clustering algorithm RLM to quickly find the peak
density, which was a typical hard clustering algorithm.

In addition to hard clustering, another important clustering
method is fuzzy clustering, which is a generalization of hard
clustering. In 1969, Ruspini introduced fuzzy sets into clustering
analyses, which resulted in the fuzzy clustering method. Among
many fuzzy clustering algorithms, the Fuzzy C-Means (FCM)
algorithm [10], [11], [12] was most widely used. By minimizing
the objective function, the FCM algorithm conveniently calcu-
lated the cluster centers and the membership degree of each data
object. In this way, it made the same cluster as compact as possi-
ble and separated different clusters as far as possible. However,
the FCM algorithm was very sensitive to the initialization of
cluster centers. Meanwhile a small number of outliers and noise
points in the dataset could easily affect its clustering results.

Later, many scholars proposed improvements to the generic
version of FCM. Krishnapuram and Keller [13] proposed the
Possibilistic C-Means (PCM) algorithm, which removed the
constraint of membership degrees in FCM. It reduced the influ-
ence of possible noise and outliers. However, PCM was easy to
produce the problem of consistent clustering. In [14], a new pos-
sibilistic fuzzy clustering algorithm called PFCM was proposed
by combining possibilistic value and membership degree, which
eliminated the clustering consistency problem of PCM. In [15],
[16], [17], the kernel function was introduced into clustering,
which was used to replace Euclidean distance for calculation
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and the Kernel-based FCM (KFCM) algorithm was proposed.
Chen and Zhang [15] employed the idea of kernel method to
calculate the distance between the sample and the cluster center
in fuzzy clustering. They calculated these distances using the
Gaussian kernel function (instead of the Euclidean distance) and
showed that they were more robust to noise and outliers. Zhou
et al. [18] raised the maximum-entropy-regularized weighted
fuzzy c-means (EWFCM) algorithm, which introduced a feature
weight matrix to represent the weights of different features. Yang
and Nataliani [19] proposed a feature weight entropy-based
feature reduction FCM (FRFCM) algorithm, which used a fea-
ture reduction mechanism. This made that clustering irrelevant
features could not continue to play an important role in the
clustering process. However, EWFCM and FRFCM were still
sensitive to the initialization of cluster centers and easily affected
by noise, although they realized the selection of features in the
clustering process. Verma et al. [20] introduced the particle
swarm optimization (PSO) idea into FCM, and put forward a
hybrid FCM-PSO (H-FCM-PSO for short) algorithm by com-
bining the advantages of FCM and PSO. It avoided local minima
trapping problem since the centroid of its cluster was computed
by using PSO through candidate solution.

Domain knowledge can be introduced into fuzzy clustering
with the aid of information granules. The Viewpoint-based
Fuzzy C-Means (V-FCM) algorithm was proposed by Pedrycz
et al. [21]. Here the viewpoints were the entry points of do-
main knowledge, and the core mechanism here embodied the
processing of information granules. Usually, the viewpoint was
determined by the user. Through the setting of viewpoint,
users could observe the structure of data from some suitable
perspective. The V-FCM algorithm realized the control of the
cluster centers in the iterative process through the viewpoint
and led to good results. Following this point, Tang et al. [22]
proposed the Density Viewpoint-induced Possibilistic Fuzzy
C-Means (DVPFCM) algorithm, which presented the Hyper-
sphere Density-based Clustering Center Initialization (HDCCI)
method to generate the cluster centers by looking for the density
peak points. It overcame the sensitivity to the initial cluster
center and took the local cluster center with the largest density
as the viewpoint. This approach made the cluster center less
susceptible to noise and outliers.

There are two key problems in the current viewpoint-based
fuzzy clustering methods.
� The extraction strategy of viewpoints is imperfect. How

to choose ideal viewpoints becomes a critical problem.
The viewpoints in V-FCM were artificially specified and
appeared to be arbitrary to some extent. Although the
DVPFCM algorithm utilized the RLM algorithm as a strat-
egy to extract viewpoints, it still appeared rough in terms
of specific processing techniques.

� In the original expression, the description and calculation
of information granules are not elaborate enough. In par-
ticular, a more detailed expression mode is needed for
the effect of each feature attribute of the data under the
environment of information granules.

Aiming at these problems, in this study, we put forward
the density Viewpoint-based Weighted Kernel Fuzzy Clustering

Fig. 1. Overall research idea of the VWKFC algorithm.

(VWKFC) algorithm. Fig. 1 shows the main idea of the method.
Its originality is embodied as follows. 1) A novel computing
method is presented for density viewpoints, in which a new
density radius is provided. 2) The kernel distance is employed
instead of the Euclidean distance to calculate local density of
data points, and then a more reasonable initialization strategy of
the cluster centers is established. 3) The concept of the weight
information granule is established, which includes a feature
weight matrix for different features and a sample weight for
each data point.

The paper is arranged as below. In Section II, we propose
the Kernel-based Hypersphere Density Initialization (KHDI)
algorithm as a strategy of pretreatment, and then come up with a
new weighted fuzzy clustering algorithm called VWKFC, which
is driven by the kernel mechanism, density viewpoints as well as
weight information granules. Section III shows the experimental
studies to verify the performance of the VWKFC algorithm.
Section IV gives a summary and outlook.

II. THE VWKFC ALGORITHM

A. The KHDI Algorithm

Most of the previous fuzzy clustering algorithms are sensitive
to the initialization of the cluster centers, and are easy to be
disturbed by noise (or outliers). It is difficult to find correct
clustering structure when processing high-dimensional datasets.
To overcome the sensitivity to the initialization of the cluster
centers, here we put forward a new cluster center initialization
method.

Assume that the dataset is X = {xj}Nj=1. Commonly the
Euclidean distance is taken as the non-similarity measurement
between different data points, namely dij = ‖xi − xj‖2 (i, j ∈
{1, 2, . . . , N}). Given that in some cases it is difficult to find a
proper function to partition the data in the original space, then
it is difficult to obtain the ideal effect by using the Euclidean
distance. Then a good guidance tool is the kernel function, which
can transform the data points in the original feature space into
the higher-dimensional feature space.
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Based on this idea, we use the kernel distance to replace
the commonly used Euclidean distance (where φ is a mapping
from the original space to the high-dimensional space, which
embodies the kernel function):

dij=‖φ(xi)− φ(xj)‖2=K(xi, xi)−2K(xi, xj)+K(xj , xj).
(1)

Here the Gaussian radial basis function (RBF) is adopted for
calculation, and the kernel is expressed as

K(x, y) = e−
‖x−y‖2
2σ2 . (2)

σ is the width parameter to control the range of the kernel
function. Because the distribution of this function is the width
parameter to control the radial range of the kernel function. The
distance is given as

dij = 2− 2K(xi, xj) = 2− 2e−
‖xi−xj ‖2

2σ2 . (3)

Here the kernel distance is utilized instead of the Euclidean
distance, which is able to make the clustering algorithm more
robust to noise and outliers [15], [16]. Based on such idea, we
propose the Kernel-based Hypersphere Density Initialization
(KHDI) algorithm.

Due to the introduction of the Gaussian RBF, to facilitate
the calculation, we first need to conduct standardized pro-
cessing to the data. Here, we adopt range transformation to
normalize the data. Suppose that X = {x1, x2, . . . , xN} is the
data to be processed. Here for xj (j = 1, 2, . . . , N), there is
xj = {xj1, xj2, . . . , xjL}, and L is the feature number of the
data points. We can get an original data matrix:

X =

⎡
⎢⎣x11 x12 · · · x1L

· · · · · · · · · · · ·
xN1 xN2 · · · xNL

⎤
⎥⎦ . (4)

For xjl (j = 1, 2, . . . , N ; l = 1, 2, . . . , L) in the matrix, nor-
malization is performed as follows:

x′
jl =

xjl −mink(xkl)

maxk(xkl)−mink(xkl)
(k ∈ {1, 2 · · · , N}). (5)

Here we reveal the effect of using (5). By means of range
transformation, the influence of different variables (features)
in the data is eliminated. The features of different orders of
magnitude are transformed to the [0, 1] interval, so that all the
features play the same role in the clustering process. Another
advantage of standardizing is that the data is mapped to the
interval of [0, 1] after transformation. Then we only need to set
σ in the RBF as 1 to achieve good results.

After standardized processing, we calculate the local den-
sity ρi of each data point xi with the following formula (i =
1, 2 · · · , N ):

ρ′i =
N∑
j=1

χ(dij − r), ρi =
ρ′i −mini(ρ

′
i)

maxi(ρ′i)−mini(ρ′i)
. (6)

Here χ(x) =
{
1, if x < 0

0, otherwise
and dij is calculated according to (3)

and r denotes the density radius.

In the DVPFCM algorithm, they treat the distribution of the
whole dataset as a hypersphere and its diameter is the maximum
distance between points. Then the density radius in DVPFCM
is calculated by:

r = max(dij)/2C (i, j ∈ {1, 2 · · · , N}). (7)

Here C is the number of cluster centers. However, we find that
the pivotal distance also need to be taken into account, as it
reflects the degree of compactness within the data. Therefore in
this study, the value of density radius is changed into:

r = (max(dij)−min(dij))/C (i, j ∈ {1, 2 · · · , N}). (8)

Here (8) takes into account both max and min, which is more
comprehensive and detailed than (7).

To determine the initial density center, we need to compute
the pivotal distance δi derived from the data points with larger
local densities, which is expressed as

δ′i = min{dij |ρj > ρi, j = 1, 2, . . . , N}. (9)

If xk has the highest local density, then we employ the piv-
otal distance as δ′k = max{dkj |j = 1, 2, . . . , N}. Then δ′ is

also normalized to the interval [0,1], i.e., δi =
δ′i−mini(δ

′
i)

maxi(δ′i)−mini(δ′i)
(i = 1, 2 · · · , N ).

The work here is based on the idea of which the cluster centers
are determined by the search of density peak. If a data point xj

is the cluster center, then it should have a high local density ρj
and a large pivotal distance δj . Therefore, we sort the data with
the following parameter τj :

τj = ρj × δj . (10)

The larger the parameter τj , the more likely that the correspond-
ing data point xj is the cluster center. If it is not the center point
of clustering, it may have a high local density ρj , but its distance
δj will be relatively small. If it is a noise or outlier point, it may
have a large pivotal distance δj , but its local density ρj will be
small. As a result, the mechanism of large τj can help resist
noise and outliers.

Then, we arrange the data in descending order according to
the parameter τj , and select the data points that are likely to be
the cluster centers. In order to prevent the selected cluster centers
from being too close to each other, a sound way is to ensure that
the distance between the selected initial cluster centers is greater
than the following distance dc:

dc =
max(dij)

aC
(i, j ∈ {1, 2 · · · , N}). (11)

Here parameter a is used to adjust the distance between centers.
We employ the idea of viewpoints in [21], which was directly

provided by the user. But the selection method of viewpoints
here is different. In detail, after obtaining the initialized cluster
centers, we take the cluster center with the largest parameter τj
(namely the first data point in descending order) as a viewpoint
xd. Because such data point xd has a high local density and a
large pivotal distance, we can take it as a real cluster center and
explore the whole data structure from this point of view.

For the KHDI algorithm, the introduction of the kernel-based
distance (instead of the Euclidean one) has a certain effect to
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TABLE I
THE KHDI ALGORITHM

resist noise and outliers. Moreover, with the help of (10), the
mechanism of large τj allows the viewpoint and the initial cluster
centers (obtained by KHDI) to avoid noise and outliers as much
as possible. To sum up, on the strength of the kernel-based
distance and the mechanism of large τj , the KHDI algorithm
can reduce the influence of noise and outliers to a certain extent.

The operational flow of KHDI is shown as Table I.

B. The VWKFC Algorithm

We put forward the concept of the weight information granule.
This includes two phases. On the one hand, we give a feature
weight matrix, in which different weights are assigned to dif-
ferent features of any data. On the other hand, we provide a
sample weight to each data in a dataset. Such structure for
dataset is called a weight information granule. As a result, in
the process of clustering, the original data is developed into a
weight information granule.

Through the KHDI algorithm, we get the initialized cluster
centers V (0) and viewpoint xd. Here we use the viewpoint xd

to replace one cluster center. There are several cluster centers,
and then we need to determine which cluster center should
be replaced by the viewpoint xd. Aiming at such problem,
we can find the cluster center vq closest to viewpoint xd in
the obtained cluster center matrix. Then xd replaces vq and
occupies the position q. As a result, such position q is used
to represent the row position of the viewpoint in the cluster
center matrix. In detail, we use q = arg(min(dqd)) to represent
the position of the viewpoint in the cluster center matrix. dqd
represents the distance between xd and vq . That is, we find the
cluster center vq with the smallest distance to viewpoint xd, and
replace vq with viewpoint xd. In this case, we calculate it by the
kernel distance dqd = ‖φ(xd)− φ(vq)‖2. During the operation

of the algorithm, since the value of q will constantly change, the
position of the viewpoint will also constantly change.

Here we put forward the density Viewpoint-based Weighted
Kernel Fuzzy Clustering (VWKFC) algorithm. Its objective
function is shown as follows (where φ is the mapping in (1)):

J =

C∑
i=1,i�=q

N∑
j=1

αju
m
ij

L∑
l=1

wil‖φ(xjl)− φ(vil)‖2

+

N∑
j=1

αju
m
qj

L∑
l=1

wql‖φ(xjl)− φ(xdl)‖2

+ γ−1
C∑
i=1

L∑
l=1

wil lnwil. (12)

Among them,

αj =
1

C

C∑
i=1

exp
(
−‖xj − v

(0)
i ‖

)
. (13)

And the constraint conditions are (j = 1, 2, . . . , N, i =
1, 2, . . . , C):

C∑
i=1

uij = 1;
L∑

l=1

wil = 1; wil > 0. (14)

In (12), C represents the number of clusters, and N denotes
the number of data points to be processed. L is the number
of features of the data, and q indicates the row position of the
viewpoint. Besides,uij stands for the membership degree of j-th
data point xj to the i-th cluster, and its range is [0, 1]. m is the
fuzzy coefficient, and its value range is (1,+∞). wil signifies
the weight of the feature, indicating the importance of the l-
dimension feature of the data to the i-th cluster center in the
clustering process. γ is a positive regularized parameter.

On the basis of our experience, we have found that each sam-
ple xj (i.e., the data point xj in the datasetX) may have different
importance for the clustering process (j ∈ {1, 2, . . . , N}). For
example, if some samples are located at or near the center
of a bunch of data, then these samples are obviously more
important for clustering. In consequence, we wish to design a
weight related to each sample xj in the objective function of the
proposed algorithm. Here we call it the sample weight, which
is denoted by αj for every xj (j ∈ {1, 2, . . . , N}). Note that

v
(0)
i represents the i-th initial cluster center obtained by KHDI.

The initial cluster centers V (0) obtained by KHDI is basically
close to the reference cluster centers. Therefore, we can measure
the importance of each data point xj through the initial cluster
centers V (0). Note that the kernel distance is used here, which
is more exquisite than the Euclidean distance, especially for
high-dimensional data. In view of this point of view, we can
employ the average kernel distance between xj and all initial

cluster centers v
(0)
i to express the importance, i.e., using (13)

to characterize the sample weight αj . Then, the closer xj is
to the initial cluster centers, the larger the sample weight αj

is, and the greater the role this point xj plays in clustering.
As a consequence, the weight of noise points and outliers far
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away from the initial cluster centers will be reduced as much
as possible, and thus the influence and role of noise points and
outliers on the clustering result will be greatly weakened.

Note that it is a minimization problem for this objective
function expressed by (12), while our goal is to find the minimum
value of (12). As for the underlying design idea, this objective
function is divided into three items. The first item is calculated
when the cluster center is for the case of non-viewpoint, in
which it corresponds to the situation of i ∈ {1, 2, . . . , q − 1, q +
1, . . . , C}. Here the sample weightαj and the feature weightwil

are utilized, which constitute a weight information granule. The
second item is computed when the cluster center is a viewpoint
(obtained by the KHDI algorithm), which focuses on the case
of i = q. It reflects the effect of the viewpoint mentioned above.
Therefore, the second item does not need to include the cluster
numberC. As for the third item, i.e., γ−1

∑C
i=1

∑L
l=1 wil lnwil,

it reflects the negative entropy of feature weight wil. Note
that the feature weight wil characterizes the probability of the
l-dimension contributing to clustering results (i = 1, . . . , C;
l = 1, . . . , L). The third item can stimulate more dimensions
to contribute to the identification of clusters. Through this kind
of strategy, we are able to avert the trouble of recognizing
clusters by few dimensions when we are faced with sparse data.
As a consequence, the third item can optimize the distribution
of feature weights, and identify the important features in the
data. This makes the objective function more scientific and
effective. Moreover, the first and second items express the same
connotation, just for different i. In fact the first two items can
form a whole. Finally, by choosing the appropriate value of γ,
we can balance the first two terms and the third term, so as to
achieve a better clustering effect.

Furthermore, we can combine the first term and the second
term of (12) and unify the viewpoints and non-viewpoints in
the cluster centers to express them in G = {gil}C,L

i=1,l=1. The
simplified objective function is expressed as follows:

C∑
i=1

N∑
j=1

αju
m
ij

L∑
l=1

wil‖φ(xjl)−φ(gil)‖2+γ−1
C∑
i=1

L∑
l=1

wil lnwil,

(15)

in which gil =

{
xil, i �= q,
xdl, i = q.

(16)

xdl represents the l-dimension feature of viewpoint xd obtained
by KHDI.

C. Iterative Formulas of VWKFC

Through the use of the Lagrange multiplier method, the
updated iterative formulas of VWKFC are as follows (i =
1, 2, . . . , C; j = 1, 2, . . . , N ; l = 1, 2, . . . , L):

uij =

(∑L
l=1 wil‖φ(xjl)− φ(gil)‖2

)− 1
m−1

∑C
s=1

(∑L
l=1 wsl‖φ(xjl)− φ(gsl)‖2

)− 1
m−1

. (17)

TABLE II
THE VWKFC ALGORITHM

wil =
exp{−γ

∑N
j=1 αju

m
ij‖φ(xjl)− φ(gil)‖2}∑L

s=1 exp{−γ
∑N

j=1 αjum
ij‖φ(xjs)− φ(gis)‖2}

.

(18)

gil =

⎧⎪⎪⎨
⎪⎪⎩
xdl, i = q,

∑N
j=1 αju

m
ijwile

−
(xjl−gil)

2

2σ2 xjl

∑N
j=1 αjum

ijwile
−

(xjl−gil)
2

2σ2

, i �= q.
(19)

We summarize the execution process of the VWKFC algo-
rithm, which is displayed in Table II.

D. Proof for the Convergence of the VWKFC Algorithm

Zangwill gave a point-to-set function Ψ : Y → Q(Y ), where
Q(Y ) denoted the power set of Y and a closed point-to-set
map was defined. But the VWKFC algorithm is a point-to-point
function while the “closed” attribute is “continuity” for the
situation of point-to-point function. Let R be the set of all real
numbers.

Theorem 1: (Zangwill’s convergence theorem, [23])Let the
point-to-point function Ψ : Y → Q(Y ) derive {zk}∞k=0 with
zk+1 = Ψ(zk). Suppose that a solution set S ⊆ Y is provided
and

i) there exists a continuous function J : Y → R such that, if
y /∈ S, then J(Ψ(y)) < J(y), while if y ∈ S, then J(Ψ(y)) ≤
J(y);

ii) Ψ is continuous at y if y /∈ S;
iii) all elements zk are in a compact set of S ⊆ Y .
If these conditions are satisfied then the algorithm shall stop

at the solution set denoted by Ω or the limit of any convergent
subsequence shall be in Ω.

Denote Mf = {U = [uij ]C×N |∑C
i=1 uij = 1,

∑N
j=1 uij >

0, uij ≥ 0} and Mw = {W = [wil]C×L|
∑L

l=1 wil = 1, wil >
0 (i = 1, 2, . . . , C)}, and MV = {G = [gil]C×L}.

In order to verify the convergence of VWKFC, we need
to define VWKFC operator Ψ∗. Then we could discover the
sufficient and necessary condition for a strict minimizer of the
VWKFC objective function by discussing the Jacobian matrix
and the bordered Hessian matrix.
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Let UT : (RL)C ×Mw → Mf with UT (G,W) = U∗ =
[uij ]C×N , where uij is computed by (17).

Let WT : Mf × (RL)C → Mw with WT (U,G) = W∗ =
[wil]C×L, where wil is determined by (18).

Let GT : Mf × (RL)C ×Mw → (RL)C with
GT (U,G,W) = G∗ = [gil]C×L where gil is obtained by
(19).

Definition 1: The VWKFC operator Ψ∗ : Mf ×
(RL)C ×Mw → Mf × (RL)C ×Mw is defined by Ψ∗ =
Ψ3 ◦Ψ2 ◦Ψ1 where Ψ1 : Mf × (RL)C ×Mw → Mf ×
(RL)C ×Mw with Ψ1(U,G,W) = (UT (G,W),G,W),
Ψ2 : Mf × (RL)C ×Mw → Mf × (RL)C ×Mw with
Ψ2(U,G,W) = (U, GT (U,G,W),W) and Ψ3 : Mf ×
(RL)C ×Mw → Mf × (RL)C ×Mw with Ψ3(U,G,W) =
(U,G,WT (U,G)). Then, one has

Ψ∗(U,G,W)

= (Ψ3 ◦Ψ2 ◦Ψ1)(U,G,W) = Ψ3(Ψ2(Ψ1(U,G,W)))

= Ψ3(Ψ2(UT (G,W),G,W)) = Ψ3(U
∗, GT (U

∗,G,W),W)

= (U∗,G∗,WT (U
∗,G∗)) = (U∗,G∗,W∗).

where

U∗ = UT (G,W),G∗ = GT (U,G,W),W∗ = WT (U,G).

Theorem 2: (Lagrange’s theorem, [24]) Suppose that f :
Df → R (where Df ⊆ Rn) and hi : Dhi

→ R (where Dhi
⊆

Rn, i = 1, . . . , t, t < n) are continuously partially differen-
tiable and x0 = (x0

1, . . . , x
0
n) ∈ Df is a local extreme point

of f such that hi(x1, . . . , xn) = 0 holds (i = 1, . . . , t). Let
La(x; λ) = f(x1, . . . , xn) +

∑t
i=1 λihi(x1, . . . , xn) and

|J | =

∣∣∣∣∣∣∣∣
∂h1(x)
∂x1

· · · ∂h1(x)
∂xt

...
...

∂ht(x)
∂x1

· · · ∂ht(x)
∂xt

∣∣∣∣∣∣∣∣
�= 0

atx0 (where |J |means the determinant of J). Then, one has that
the gradient of La(x; λ) at (x0; λ0) is 0, i.e., LA(x0; λ0) = 0.

Theorem 3: (Local sufficient conditions, [24]) Let f : Df →
R (whereDf ⊆ Rn), andDhi

⊆ Rn (in which i = 1, . . . , t, t <
n) be twice continuously partially differentiable and let (x0; λ0)
with x0 ∈ Df be a solution of the system La(x0; λ0) = 0. Let

HLa(x, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 ∂2La
∂λ1∂x1

· · · ∂2La
∂λ1∂xn

...
...

...
...

0 · · · 0 ∂2La
∂λt∂x1

· · · ∂2La
∂λt∂xn

∂2La
∂x1∂λ1

· · · ∂2La
∂x1∂λt

∂2La
∂x1∂x1

· · · ∂2La
∂x1∂xn

...
...

...
...

∂2La
∂xn∂λ1

· · · ∂2La
∂xn∂λt

∂2La
∂xn∂x1

· · · ∂2La
∂xn∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be the bordered Hessian while take into account its leading
principle minors |H̄r(x

0; λ0)| of r = 2t+ 1, 2t+ 2, . . . , n+ t
at (x0; λ0). As a result, the following conclusion can be obtained.

i) If all leading principle minors |H̄r(x
0; λ0)|, 2t+ 1 ≤ r ≤

n+ t, possess the sign (−1)t, then x0 = (x0
1, . . . , x

0
n) is a local

minimum point of f satisfying hi(x) = 0 (i = 1, . . . , t).

ii) If the signs of all |H̄r(x
0; λ0)|, r = 2t+ 1, 2t+

2, . . . , n+ t, are alternated and the sign of |H̄n+t(x
0; λ0)| =

|H̄L(x
0; λ0)| is that of (−1)n, then x0 = (x0

1, . . . , x
0
n) is a local

maximum element of f satisfying hi(x) = 0 (i = 1, . . . , t).
iii) If neither the criteria of i) nor those of ii) hold, then

x0 is not a local extreme element of h satisfying hi(x) = 0
(i = 1, . . . , t). Here, the situation in which one or several lead-
ing principal minors have a value of zero is not considered a
violation of i) or ii) (unnumered Equation)shown at the bottom
of next page.

Theorem 4: (Generalized Heine-Borel theorem, [25]) Each
closed and basically bounded subset of a topological space is
compact.

For convenience, we denote Θij =
∑L

l=1 wil‖φ(xjl)−
φ(gil)‖2 (i = 1, 2, . . . , C and j = 1, 2, . . . , N ).

Lemma 1: Suppose that G = Ĝ and W = Ŵ are fixed, then
JVWKFC(U, Ĝ,Ŵ) subject to

∑C
i=1 uij = 1 is locally mini-

mized at U∗ = [u∗
ij ]C×N if and only if u∗

ij satisfies (17).

Proof: Because for any i, the constraints
∑C

i=1 uij = 1 are
the same, viz., hi(x1, . . . , xN ) = . . . = hN (x1, . . . , xN ), we
can only analyze a specific i. Therefore, ∀i, the Lagrangian
function is

J∗ =
C∑
i=1

N∑
j=1

αju
m
ij

L∑
l=1

wil‖φ(xjl)− φ(gil)‖2

+ γ−1
C∑
i=1

L∑
l=1

wil lnwil + λ

(
C∑
i=1

uij − 1

)
,

in which λ is embodied as a Lagrangian multiplier. Using the
gradient of J∗ w.r.t. uij and λ, one has

∂J∗

∂uij
= αjmum−1

ij

L∑
l=1

wil‖φ(xjl)− φ(gil)‖2 + λ = 0, and

∂J∗

∂λ
=

C∑
i=1

uij − 1 = 0.

It can be concluded that:

uij =

(
−λ

αjm
∑L

l=1 wil‖φ(xjl)− φ(gil)‖2

) 1
m−1

.

From the constraint condition of membership degree, we
achieve:

C∑
i=1

uij =

C∑
i=1

(
−λ

αjm
∑L

l=1 wil‖φ(xjl)− φ(gil)‖2

) 1
m−1

= 1.

Then, from these two formulas, one has

uij =

(∑L
l=1 wil‖φ(xjl)− φ(gil)‖2

)− 1
m−1

∑C
s=1

(∑L
l=1 wsl‖φ(xjl)− φ(gsl)‖2

)− 1
m−1

.

As a result, “only if” condition is proved.
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Moreover, we validate the case for “if” condition from The-
orem 3. If G = Ĝ and W = Ŵ are fixed, then

∂2J∗

∂uij∂urh
= �ij�rhαjm(m− 1)um−2

ij

×
L∑

l=1

wil‖φ(xjl)− φ(gil)‖2

and

∂2J∗

∂uij∂λ
=

∂2J∗

∂λ∂uij
= 1.

Here � is a Kronecker index with

�ij =

{
1, i = j,

0, i �= j
, �rh =

{
1, r = h,

0, r �= h
.

Thus, the bordered Hessian matrix w.r.t. uij and λ is

HLa (uij , λ) =

⎛
⎜⎜⎜⎜⎝

0 1 1 · · · 1

1 ∂2J∗
∂ui1∂ui1

0 · · · 0
...

...
. . .

...
1 0 0 · · · ∂2J∗

∂uCN∂uCN

⎞
⎟⎟⎟⎟⎠ .

Then every leading principle minors are analyzed as un-
numbered equation shown at the bottom of this page. Hence,
it follows from Theorem 3 that JVWKFC(U, V̂,Ŵ) satisfying∑C

i=1 uij = 1 is locally minimized atU∗ = [u∗
ij ]C×N with∀i, j

u∗
ij =

(∑L
l=1 wil‖φ(xjl)− φ(gil)‖2

)− 1
m−1

∑C
s=1

(∑L
l=1 wsl‖φ(xjl)− φ(gsl)‖2

)− 1
m−1

.

�
Lemma 2: Suppose that U = Û and G = Ĝ are fixed, then

JVWKFC(Û, Ĝ,W) satisfying
∑L

l=1 wil = 1 andwil > 0 is min-
imized at W∗ = [w∗

il]C×L if and only if w∗
il satisfies (18).

Proof: The Lagrangian function is

J∗
1 =

C∑
i=1

N∑
j=1

αju
m
ij

L∑
l=1

wil‖φ(xjl)− φ(gil)‖2

+ γ−1
C∑
i=1

L∑
l=1

wil lnwil + λ1

C∑
i=1

(1−
L∑

l=1

wil),

in which λ1 is utilized as a Lagrangian multiplier. The partial
derivative of feature weight wil is calculated and the result is set
to zero, and the following result is obtained (i = 1, 2, . . . , C; l =
1, 2, . . . , L):

N∑
j=1

αju
m
ij‖φ(xjl)− φ(gil)‖2 + γ−1(1 + lnwil)− λ1 = 0.

After derivation, we get:

wil = e(λ1γ−1) exp

⎧⎨
⎩−γ

N∑
j=1

αju
m
ij‖φ(xjl)− φ(gil)‖2

⎫⎬
⎭ .

From the constraint condition of feature weight, one has:

e(λ1γ−1)
L∑

l=1

exp

⎧⎨
⎩−γ

N∑
j=1

αju
m
ij‖φ(xjl)− φ(gil)‖2

⎫⎬
⎭ = 1.

Then we obtain the updated expression of wil :

wil =
exp{−γ

∑N
j=1 αju

m
ij‖φ(xjl)− φ(gil)‖2}∑L

s=1 exp{−γ
∑N

j=1 αjum
ij‖φ(xjs)− φ(gis)‖2}

.

Hence, the “only if” condition is validated.
For the “if” condition, if U = Û and G = Ĝ are fixed, then

one has ∂J2
VWKFC

∂wil∂wrl
= �ir

1
γwil

. Here � is a Kronecker index with

�ir =

{
1, i = r,

0, i �= r
.

Leading principle minors of HLa(uij , λ):

|H̄3(u
∗
j , λ

∗)| =
∣∣∣∣∣∣
0 1 1
1 αjm(m− 1)um−2

1j Θ1j 0

1 0 αjm(m− 1)um−2
2j Θ2j

∣∣∣∣∣∣
μj=μ∗

j ,λ=λ∗

= −[αjm(m− 1)um−2
1j Θ1j + αjm(m− 1)um−2

2j Θ2j ]uj=u∗
j ,λ=λ∗ < 0,

∣∣H̄4(u
∗
j , λ

∗)
∣∣ = −

⎛
⎜⎜⎝

3∑
i=1

3∏
p=1
p �=i

αjm(m− 1)um−2
pj Θpj

⎞
⎟⎟⎠

uj=u∗
j ,λ=λ∗

< 0,

. . . and

∣∣H̄C+1(u
∗
j , λ

∗)
∣∣ = −

⎛
⎜⎜⎝

C∑
i=1

C∏
p=1
p �=i

αjm(m− 1)um−2
pj Θpj

⎞
⎟⎟⎠

uj=u∗
j ,λ=λ∗

< 0.
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Hence the Hessian matrix of JVWKFC(Û, Ĝ,W) w.r.t. wil is

diag

(
1

γw1l
,

1

γw2˜l
, . . . ,

1

γwCl

)

and evidently, the Hessian matrix is positive definite. So
JVWKFC(Û, Ĝ,W) is minimized at W ∗ = [w∗

il]N×L with ∀i, l

w∗
il =

exp{−γ
∑N

j=1 αju
m
ij‖φ(xjl)− φ(gil)‖2}∑L

s=1 exp{−γ
∑N

j=1 αjum
ij‖φ(xjs)− φ(gis)‖2}

.

�
Lemma 3: Suppose that U = Û, G = Ĝ and W = Ŵ are

fixed, and the guidance of the density viewpoint is employed
during clustering, thenJVWKFC(Û, Ĝ,Ŵ) is minimized atG∗ =
[g∗il]C×L if and only if g∗il satisfies (19).

Proof: When calculating the distance between the data points
and the cluster centers, we use Gaussian RBF, i.e., ‖φ(xjl)−
φ(gil)‖2 = 2− 2e−

(xjl−gil)
2

2σ2 .
According to (16), when i = q occurs, the value of the

cluster center is the value of the density viewpoint, i.e., gil =
xdl. When i �= q, we take the partial derivative as ∂JVWKFC

∂gil
=∑N

j=1 2αju
m
ijwile

− (xjl−gil)
2

2σ2
(gil−xjl)

σ2 . Then set ∂JVWKFC
∂gil

= 0

(i = 1, 2, . . . , C; l = 1, 2, . . . , L). After derivation, we obtain
the updated expression:

gil =

⎧⎪⎪⎨
⎪⎪⎩
xdl, i = q,

∑N
j=1 αju

m
ijwile

−
(xjl−ĝil)

2

2σ2
xjl

∑N
j=1 αjum

ijwile
−

(xjl−ĝil)
2

2σ2

, i �= q.

Here we use ĝil on the right-hand side of the formula above to
differentiate. In fact, gil corresponds to current iteration; while
ĝil corresponds to the result of the last iteration and is regarded
as constant in current iteration. Such mode is illuminated by the
processing strategy of KFCM. Hence the “only if” condition is
validated.

Moreover, the proof of the “if” condition is as below.
If U = Û, G = Ĝ = [ĝil]C×L and W = Ŵ are fixed, then

one has ∂2JVWKFC
∂gil∂grl

=
∑N

j=1
2
σ2αju

m
ijwile

− (xjl−ĝil)
2

2σ2 (noting ĝil is
regarded as constant in current iteration). Here � is a Kronecker

index as �ir =

{
1, i = r,

0, i �= r
.

The Hessian matrix of JVWKFC(Û, Ĝ,Ŵ) is

diag

( N∑
j=1

2

σ2
αju

m
1jw1˜le

− (xjl−ĝ1l)
2

2σ2 ,

N∑
j=1

2

σ2
αju

m
2jw2˜le

− (xjl−ĝ2˜l)
2

2σ2 , . . . ,

N∑
j=1

2

σ2
αju

m
CjwCle

− (xjl−ĝCl)
2

2σ2

)
.

Evidently, the Hessian matrix is positive definite. In other words,
JVWKFC(Û, Ĝ,Ŵ) is minimized at which g∗il is obtained from
(19). �

Lemma 4: JVWKFC is continuous on Mf × (RL)C ×Mw.
Proof: In JVWKFC, {gil → ‖φ(xjl)− φ(gil)‖2}, {uij →

um
ij}, and {wil → lnwil} are continuous. The sum of products

of {wil → wil} and {gil → ‖φ(xjl)− φ(gil)‖2} is continuous.
Besides, the sum of products of {uij → um

ij}, {wil → wil}
and {gil → ‖φ(xjl)− φ(gil)‖2} is likewise continuous. More-
over, the sum of products of {wil → wil} and {wil → lnwil}
is continuous. Consequently, JVWKFC is continuous on Mf ×
(RL)C ×Mw. �

Let ΩVWKFC be the solution set of JVWKFC.
Lemma 5: For any (U,G,W) /∈ ΩVWKFC , one has

that JVWKFC(Ψ∗(U,G,W)) = JVWKFC(U
∗,G∗,W∗) <

JVWKFC(U,G,W).
Proof: Suppose that (U,G,W) /∈ ΩVWKFC . Then,

one has JVWKFC(Ψ∗(U,G,W)) = JVWKFC(Ψ3 ◦
Ψ2 ◦Ψ1(U,G,W)) = JVWKFC(U

∗,G∗,W∗) <
JVWKFC(U

∗,G,W∗) by Lemma 3. It implies that
JVWKFC(U

∗,G,W∗) < JVWKFC(U
∗,G,W) by Lemma

2, and that JVWKFC(U
∗,G,W) < JVWKFC(U,G,W)

by Lemma 1. As a result, JVWKFC(Ψ∗(U,G,W)) =
JVWKFC(U

∗,G∗,W∗) < JVWKFC(U,G,W) for any
(U,G,W) /∈ ΩVWKFC . �

Lemma 6: The VWKFC operator Ψ∗ is continuous on Mf ×
(RL)C ×Mw.

Proof: In VWKFC, one has Ψ1(U,G,W) =
(UT (G,W),G,W), where

UT (G,W)=

(∑L
l=1 wil‖φ(xjl)−φ(gil)‖2

)− 1
m−1

∑C
s=1

(∑L
l=1 wsl‖φ(xjl)−φ(gsl)‖2

)− 1
m−1

=uij ,

Note that {gil → ‖φ(xjl)− φ(gil)‖2} and {φ(gsl) →
‖φ(xjl)− φ(gsl)‖2} are continuous. The sum of products
of {wil → wil} and {gil → ‖φ(xjl)− φ(gil)‖2} is
continuous, while the sum of products of {wil → wil}
and {gsl → ‖φ(xjl)− φ(gsl)‖2} is continuous. Besides,
{(∑L

l=1 wil‖φ(xjl)− φ(gil)‖2) → (
∑L

l=1 wil‖φ(xjl)−
φ(gil)‖2)− 1

m−1 } is continuous while {(∑L
l=1 wsl‖φ(xjl)−

φ(gsl)‖2) → (
∑L

l=1 wsl‖φ(xjl)− φ(gsl)‖2)− 1
m−1 } is

continuous. Moreover, the quotient of two continuous
functions, is likewise continuous. So Ψ1 is continuous on
Mf × (RL)C ×Mw.

In a similar way, as for Ψ2(U,G,W) =
(U, GT (U,G,W),W), we can obtain Ψ2 is continuous
on Mf × (RL)C ×Mw. Moreover, as for Ψ3(U,G,W) =
(U,G,WT (U,G)), we can achieve Ψ3 is continuous on
Mf × (RL)C ×Mw.

All in all, the operator ΨT ∗ = Ψ3 ◦Ψ2 ◦Ψ1 is continuous on
Mf × (RL)C ×Mw. �

Lemma 7: Suppose that [conv(X)]C is the C-fold
Cartesian product of the convex hull of X , and that
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(UT (G
(0),W(0)),G(0),W(0)) is the starting position of it-

eration using Ψ∗. Then Ψ
(t)
∗ (UT (G

(0),W(0)),G(0),W(0)) ∈
Mf × [conv(X)]C ×Mw is compact in Mf × (RL)C ×Mw.

Proof: Suppose that (UT (G
(0),W(0)),G(0),W(0)) is the

starting position of iteration usingΨ∗ whereUT (G
(0),W(0)) =

(UT11(G
(0),W(0)), UT21(G

(0),W(0)), . . . , UTNC(G
(0),W(0))

with

UTij(G
(0),W(0))

=

(∑L
l=1 w

(0)
il ‖φ(xjl)− φ(g

(0)
il )‖2

)− 1
m−1

∑C
s=1

(∑L
l=1 w

(0)
sl ‖φ(xjl)− φ(g

(0)
sl )‖2

)− 1
m−1

= u
(0)
ij .

Then

g
(1)
il = GTil(U

(0),G(0),W(0))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
xdl, i = q,

∑N
j=1 αj(u

(0)
ij )mw

(0)
il e

−
(xjl−g

(0)

il
)2

2σ2
xjl

∑N
j=1 αj(u

(0)
ij )mw

(0)
il e

−
(xjl−g

(0)

il
)2

2σ2

, i �= q.

It can be divided into two cases. On the one hand, suppose that
i = q. Then g

(1)
il = xdl. Note that xd ∈ X from the KHDI al-

gorithm, and obviously g
(1)
il ∈ [conv(X)]C . On the other hand,

suppose that i �= q. Let

℘ij =
αj(u

(0)
ij )mw

(0)
il e−

(xjl−g
(0)

il
)2

2σ2

∑N
j=1 αj(u

(0)
ij )mw

(0)
il e−

(xjl−g
(0)

il
)2

2σ2

, ∀i.

Hence, 0 ≤ ℘ij ≤ 1, ∀i, j, and g
(1)
il =

∑N
j=1 ℘ijxjl with

N∑
j=1

℘ij =

N∑
j=1

αj(u
(0)
ij )mw

(0)
il e−

(xjl−g
(0)

il
)2

2σ2

∑N
j=1 αj(u

(0)
ij )mw

(0)
il e−

(xjl−g
(0)

il
)2

2σ2

= 1.

As a result, g(1)il ∈ [conv(X)]C . Summarizing above, G(1) ∈
[conv(X)]C . Persistently recursively, G(t) ∈ [conv(X)]C ,
∀t ≥ 1.

Moreover, it is evident that one has

w
(1)
il = WTil(U

(0),G(1))

=
exp{−γ

∑N
j=1 αj(u

(0)
ij )m‖φ(xjl)−φ(g

(1)
il )‖2}∑L

s=1 exp{−γ
∑N

j=1 αj(u
(0)
ij )m‖φ(xjs)− φ(g

(1)
is )‖2}

and W(1) ∈ Mw. Also we have

u
(1)
ij = UTij(G

(1),W(1))

=
(
∑L

l=1 w
(1)
il ‖φ(xjl)− φ(g

(1)
il )‖2)− 1

m−1∑C
s=1(

∑L
l=1 w

(1)
sl ‖φ(xjl)− φ(g

(1)
sl )‖2)− 1

m−1

∈ Mf ,

and U(1) ∈ Mf . Persistently recursively,
W(t) ∈ Mw and U(t) ∈ Mf , ∀t ≥ 1. Hence,

Ψ
(t)
∗ (UT (G

(0),W(0)),G(0),W(0)) ∈ Mf × [conv(X)]C ×
Mw, ∀t.

Finally, we validate that Mf × [conv(X)]C ×Mw is com-
pact in Mf × (RL)C ×Mw. Because X is finite, every xj ∈ X
has finite elements. As a result, the diameter of X (which
equals to the one of conv(X)) is bounded. Because conv(X)
is the convex hull of finitely many generators xj , it is closed.
Hence, conv(X) is bounded and closed in RL, and hence
conv(X) is compact. On the strengths of Theorem 3, it can be
obtained that [conv(X)]C is also compact. For Mw, noting that∑L

l=1 wil = 1,wil > 0 (i = 1, 2, . . . , C) andwil ∈ (RL)C , ev-
idently one hasMw is bounded and closed. Because

∑N
j=1 uij >

0 and
∑C

i=1 uij = 1, Mf is closed and bounded. Consequently,
Mf × [conv(X)]C ×Mw is compact in Mf × (RL)C ×Mw.

It implies that Ψ
(t)
∗ (UT (G

(0),W(0)),G(0),W(0)) ∈ Mf ×
[conv(X)]C ×Mw is compact in Mf × (RL)C ×Mw. �

In the light of Lemma 4 to Lemma 7 by validating the condi-
tion of Zangwill’s convergence theorem, we achieve Theorem 5
of the convergence theorem for VWKFC.

Theorem 5: Suppose that X = {x1, . . . , xN} is bounded in
RL with the VWKFC objective function JVWKFC(U,G,W)

satisfying
∑C

i=1 uij = 1 as well as
∑L

l=1 wil = 1, and
that Ψ∗ : Mf × (RL)C ×Mw → Mf × (RL)C ×Mw

is the VWKFC operator as characterized in Definition
1. Then, for any VWKFC convergent subsequence
Ψ

(tk)∗ (UT (G
(0),W(0)),G(0),W(0)) shall tend to the optimal

solution (U∗,G∗,W∗) inΩVWKFC , and the VWKFC sequence

Ψ
(t)
∗ (UT (G

(0),W(0)),G(0),W(0)) shall monotonically
converge to the optimal solution (U∗,G∗,W∗) in ΩVWKFC .

III. EXPERIMENTAL STUDIES

A. Experimental Settings

Here we use eight algorithms for comparison, which include
the FCM, KFCM, RLM, VFCM, EWFCM, FRFCM, DVPFCM
and H-FCM-PSO algorithms. The platform is Windows 10,
and the programming languages are Matlab 2013b and Python
3.5. During the experiment, we ran the proposed algorithm on
five artificial datasets, eight UCI datasets [26], the ORL face
dataset [9], two high-dimensional datasets, and three datasets
with various shapes. Experiments on different types of datasets
help reflect the fairness of comparison.

For all algorithms, we mainly utilize default values of the
parameters. The specific settings are m = 2.5, a = 2, γ = 1.
For PFCM and DVPFCM, we employ a1 = 1, a2 = 1, p = 2.
For VFCM, we obtain the high-density viewpoint through the
HDCCI method. Considering that the performance of these
algorithms depends on the initialization state, we run each
experiment 30 times with different initializations, and average
them to get the values of each evaluation index.

We employ five evaluation indexes, including classification
accuracy (ACC) [27], normalized mutual information (NMI)
[28], Calinski-Harabasz (CH) [29], ARI extension index (EARI)
[30]–[32] and Xie-Beni (XB) index [33]. Among them, ACC,
NMI and CH are hard clustering indexes, which can be applied to
both hard and soft clustering algorithms. EARI and XB indexes
are soft clustering indexes. Different evaluation indexes reflect
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TABLE III
RUNNING RESULTS OF COMPARISON ALGORITHMS ON ARTIFICIAL DATASETS

TABLE IV
DETAILS FOR UCI DATASETS

Fig. 2. Running results of VWKFC on artificial datasets. (a) Data-a. (b) Data-b.
(c) Data-c. (d) Data-d. (e) Data-e.

the performance of the clustering method at disparate perspec-
tives. Using five different indexes can more comprehensively
reflect the clustering results, thus making the comparison more
reliable.

Note that the RLM algorithm is a Boolean clustering al-
gorithm. Here we supplement its membership matrix whose
membership degrees are made up of zeros and ones. Then we
can also provide the values of EARI and XB for RLM.

As for choosing the values of parameters, we firstly select
some values through some past experience. Secondly, we run a
clustering algorithm by trial and error with these basic values
of parameters. Finally, we employ the values of parameters
corresponding to the best result.

B. Artificial Datasets

The running results of VWKFC on five artificial datasets (i.e.,
Data-a, Data-b, Data-c, Data-d and Data-e) are shown as Fig. 2.

Fig. 3. (a) ρ− δ decision graph of Data-b dataset. (b) τ distribution diagram
of Data-b dataset.

From Fig. 2, we can see that data points belonging to different
clusters are marked with different colors and shaped after the
operation of VWKFC. We can find that the VWKFC algorithm
performs well in these datasets. Among them, the black dots
in the rendering diagram represent the location of the cluster
centers obtained by VWKFC. It can be found that the location of
the cluster centers obtained by VWKFC is accurate. Especially
in the Data-e dataset, 12 different cluster centers are accurately
found in the case of severe class overlap.

To verify the effectiveness of the proposed KHDI algorithm
(as the initialization method), Fig. 3(a) is the ρ− δ decision
graph of Data-b processed by KHDI. As can be seen from
Fig. 3(a) the local density is evenly distributed within the interval
of [0, 1]. Among them, the pivotal distance δ of most data points
is at a level less than 0.05, and these data points are represented
by a dot “·” in the figure. By observing Fig. 3(a), there exist
7 data points that are different from other data points. They
have a pivotal distance δ and a large local density ρ that are
significantly higher than other data points. The seven points are
marked by the different symbols. Correspondingly, Fig. 3(b) is
the parameter τ distribution diagram of Data-b. It is observed
that τ for these 7 data points in Fig. 3(b) is evidently larger than
most data points. The value of τ of most data points is almost
close to 0. According to the idea of KHDI, these 7 data points
correspond to the seven initial cluster centers for Data-b. One can
well perceive from Fig. 3 that KHDI can distinguish potential
cluster centers from common data points and effectively discover
initial cluster centers.

In Table III, we offer the value of the evaluation indexes
obtained by comparative algorithms after running on Data-a and
Data-b. The results of FCM, KFCM and RLM are the worst. The
effect of V-FCM is better due to the introduction of viewpoints.
Then, EWFCM, FRFCM, DVPFCM and H-FCM-PSO also
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TABLE V
RUNNING RESULTS OF COMPARISON ALGORITHMS ON UCI DATASETS

obtain nice values. The VWKFC algorithm achieves best results
in terms of all evaluation indexes.

Why is the VWKFC algorithm the best here? In fact, VWKFC
achieves the initialization of the cluster centers through KHDI,
which avoids the algorithm falling into the local optimal value
due to improper initialization of the cluster centers. In the
process of clustering, the selection of features in VWKFC is
realized through feature weights, making the clustering result
more accurate. The influence of noise and outliers on clustering
effect is reduced by introducing high-density viewpoint obtained
by KHDI.

C. UCI Datasets

Furthermore, we evaluate the performance of VWKFC on
8 UCI datasets. Table IV shows the specific details of these
UCI datasets, including the number of data samples, the number
of attributes, and the reference classes. Table V shows the
index values obtained by each clustering algorithm running on
different UCI datasets.

From Table V, FCM and KFCM show a more modest effect.
As a non FCM clustering method, RLM performs better than
FCM and KFCM. By introducing viewpoints, V-FCM gets
better results than FCM, KFCM and RLM. Then, EWFCM
and FRFCM obtain more excellent performance. In virtue of
using RLM-based initialization strategy and viewpoint idea,
DVPFCM obtains more perfect performance. In addition, by
using the optimization mechanism of PSO, the H-FCM-PSO
algorithm also obtains good results. But VWKFC is still the
best one.

For example, in the Iris dataset, the ACC value of VWKFC
reaches 0.9467. On datasets with higher feature dimensions,
such as Breast_cancer, Spect and Statlog, the ACC value of
VWKFC reaches 0.9332, 0.8543 and 0.9521. This indicates that
VWKFC has certain advantages over previous algorithms in pro-
cessing datasets with more attribute characteristics. Compared
with the traditional feature weight clustering algorithms (e.g.,
EWFCM and FRFCM), the VWKFC algorithm initializes the
cluster center and introduces the viewpoint through the KHDI
algorithm to avoid that the objective function falls into the
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TABLE VI
PERCENTAGE IMPROVEMENT IN ACC OF VWKFC COMPARED WITH RELATED

ALGORITHMS

TABLE VII
AVERAGE NUMBER OF ITERATIONS OF THE ALGORITHMS RUNNING ON

DIFFERENT DATASETS

local minimum point due to improper initialization of cluster
centers. Compared with V-FCM and DVPFCM, the VWKFC
algorithm can obtain better clustering effect when processing
high-dimensional data by assigning weights to features.

Table VI shows the percentage improvement of the VWKFC
algorithm in ACC compared with the comparison algorithms
in each dataset, including artificial and UCI datasets. From
Table VI, we get 1.48% improvement of the proposed VWKFC
in ACC compared with H-FCM-PSO, and 1.71% improvement
than DVPFCM, and 6.25% improvement than FRFCM, and
9.90% improvement than EWFCM, and 13.10% improvement
than V-FCM, and finally 16.69% improvement than RLM.

Besides, we calculate the average number of iterations of each
algorithm on different datasets, which is shown in Table VII.
Since there is no iterative process in the running process of the
RLM algorithm, we do not compare it with RLM here. We sort
the average number of iterations of different algorithms on the
same dataset in ascending order, and the numbers in parentheses
represent the positions that have been sorted. As can be seen,
the average numbers of iterations of VWKFC on Data-a, Iris,
Spect, Statlog are the lowest among all algorithms, and the
average numbers of iterations of VWKFC on Data-b, Wine,
Seeds and Wifi localization are the second among all algorithms.
It is worth noting that, on the dataset of Letter_AB, the average
number of iterations of VWKFC is 39, which is greater than
the number of iterations of all algorithms except EWFCM. This
indicates that VWKFC may be not perfect in processing dataset
of character recognition. From the perspective of the average
number of iterations, FRFCM is the best while VWKFC is the

second best. Experiments manifest that VWKFC can converge
after fewer iterations than other algorithms. This is mainly due
to the introduction of more accurate initial cluster centers and
viewpoint by KHDI, which greatly accelerates the convergence
speed.

In Table VIII, we calculate the average running time of each
algorithm on different datasets. Here we have sorted the average
running time of these algorithms in ascending order and marked
the sorted position in parentheses. As can be seen, compared with
some algorithms, VWKFC needs more running time although
it runs fewer iterations. This is because the VWKFC algorithm
in addition needs to calculate the weight matrix. However, the
extra cost in running time is worth due to the resulting benefit
of VWKFC.

D. ORL Face Dataset

We exhibit the results on the ORL face dataset. To verify the
effect of VWKFC in face clustering, we use a total of 200 face
images of the last 20 people in ORL face dataset. The evaluation
indexes ACC and CHI are used to evaluate the clustering effect.
Table IX shows the results of each algorithm on ORL face
dataset. Among them, the index ACC of VWKFC on ORL face
dataset is 0.7032, and the index CH is 10.6749. Experiments
show that the VWKFC algorithm can achieve the best clustering
effect on the ORL face dataset.

E. High-Dimensional Datasets

We show the running results of comparison algorithms on
two high-dimensional datasets, including Libras (with 90 di-
mensions and 360 samples) and D256 [34] (with 256 dimensions
and 1024 samples). From Table X, we find that DVPFCM gets
good result and VWKFC obtains the best performance. This
shows that the effect of the VWKFC algorithm is also ideal for
high-dimensional datasets.

F. Datasets With Various Shapes

Table XI show the results on three datasets with various
shapes, which include Pathbased, Jain, and Spiral. From Ta-
ble XI, VWKFC and RLM obtain the best result from five
evaluation indexes. In detail, Path-based and Jain have relatively
dense data in the same cluster, so distance-based clustering
algorithm can get a better effect. As for the Spiral dataset, data
is spiral and the data distribution shows the characteristic shape
of dataset ontology, so density-based clustering method (e.g.
RLM) is suitable, meanwhile VWKFC also works fine.

G. Determining the Number of Clusters

Here we can provide useful information on how to determine
the number of clusters. From the KHDI algorithm, the value of
τ of most data points is almost close to 0, but there exist some
special points with high τ values. The number of these special
points gives the suggestion of clustering number. For example, in
Fig. 3(b), there exist 7 special points with high τ values, which
implies that the clustering number may be 7 (noting that the
ground-truth clustering number is 7).
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TABLE VIII
AVERAGE RUNNING TIME OF EACH ALGORITHM ON DIFFERENT DATASETS

TABLE IX
RUNNING RESULTS OF THE VWKFC ALGORITHM ON THE ORL FACE DATASET

TABLE X
RUNNING RESULTS OF COMPARISON ALGORITHMS ON TWO HIGH-DIMENSIONAL DATASETS

TABLE XI
RUNNING RESULTS OF COMPARISON ALGORITHMS ON DATASETS WITH VARIOUS SHAPES

To discover the issue of determine the number of clusters,
we employ some commonly-used clustering validity indexes
including the XB index, the Wu-and-Li index (WLI) [35] to-
gether with the imbalanced index (IMI) [36]. Now, supposing
that we do not know the clustering number of an artificial
dataset Data-b and a UCI dataset Aggregation. We employ
the clustering number corresponding to the extreme values of
these cluster validity indexes as the ideal number of clusters.

Table XII shows the optimal number of clusters obtained by
the VWKFC algorithm on the strength of these indexes. We
observe that the results of XB, WLI and IMI show that the
ideal clustering number of the Data-b and Aggregation datasets
is all 7. So the VWKFC algorithm can recognize how many
clusters are in the Data-b and Aggregation datasets. From
such point of view, it can help find the correct clustering
number.
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TABLE XII
THREE CLUSTER VALIDITY INDEXES FOR THE TWO DATASETS USING VWKFC

IV. CONCLUSION

In this study, we propose the density viewpoint-based
weighted kernel fuzzy clustering (VWKFC) algorithm. The
main work and contributions are as follows:

i) We establish the kernel-based hypersphere density ini-
tialization (KHDI) algorithm. We use the kernel distance
instead of the Euclidean distance to calculate local den-
sity of data points. A more accurate initialization of the
cluster centers is provided before the algorithm itera-
tion. It prevents the algorithm from falling into a local
minimum due to improper initialization of the cluster
centers.

ii) We put forward a novel computing method for density
viewpoints. A new density radius is given in KHDI, and
then the data point with the highest local density obtained
by KHDI is regarded as the viewpoint, and the structure of
the whole data is observed on this basis. By this way, the
influence of noise and outliers on the cluster center during
iteration is reduced to a certain extent.

iii) The concept of the weight information granule is pro-
posed. In order to obtain good results when the algorithm
processed datasets with high feature dimensions and clus-
tering irrelevant feature attributes, we introduce feature
weight matrix. Different weights are assigned to different
features to reduce the influence of unrelated features in
clustering process. At the same time, we assign a sample
weight to each data point, resulting in that the influence
of noise and outliers to the clustering can be controlled to
be small.

iv) Based on the kernel function, viewpoints obtained from
the KHDI algorithm, weight information granules as well
as a maximum entropy regularization item, we propose
a new fuzzy clustering algorithm called the VWKFC
algorithm. And its convergence theorem is proved.

v) Experimental results verify that VWKFC is superior over
the comparison algorithms in both artificial datasets and
UCI datasets with regard to five evaluation indexes. The
number of iterations required by the VWKFC algorithm
is generally lower than that of the comparison algorithms.
This implies that the proposed algorithm is able to achieve
convergence at a faster speed. Moreover, main parameters
in VWKFC are analyzed. We find that VWKFC can pro-
vide useful information on how to determine the number
of clusters, which employ three acknowledged cluster-
ing validity indexes. Finally, the proposed algorithm is
applied to ORL face dataset, high-dimensional datasets,
datasets with various shapes, and obtains best clustering
result.

In the future work, we will further explore the application of
the VWKFC algorithm to more practical fields which include
text clustering, data mining, image processing and others. We
hope that the proposed VWKFC algorithm can play a vital role
in different fields. In addition, we are going to combine fuzzy
clustering with fuzzy reasoning [37], [38].
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