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Abstract—Knowledge-based clustering algorithms can improve
traditional clustering models by introducing domain knowledge
to identify the underlying data structure. While there have been
several approaches to clustering with the guidance of knowledge
tidbits, most of them mainly focus on numeric knowledge without
considering the uncertain nature of information. To capture
the uncertainty of information, pure numeric knowledge tidbits
are expanded to knowledge granules in this paper. Then two
questions arise: how to obtain granular knowledge and how to
use those knowledge granules in clustering. To the end, a novel
knowledge extraction and granulation method and a granular
knowledge-based fuzzy clustering model are proposed in this
study. First, inspired by the concept of natural neighbors, an
automatic knowledge extraction and granulation method (KEG)
is developed. In KEG, high-density points are filtered from the
dataset and then merged with their natural neighbors to form
several dense areas, i.e., granular knowledge. Furthermore, the
granular knowledge expressed by interval or triangular numbers
is leveraged into the clustering algorithm, which is the framework
of fuzzy clustering with granular knowledge. To concretize this
model into clustering algorithms, the classical fuzzy C-Means
(FCM) clustering algorithm has been selected to incorporate the
granular knowledge produced by KEG. Then, the corresponding
fuzzy C-Means clustering with interval knowledge granules
(IKG-FCM) and triangular knowledge granules (TKG-FCM)
are proposed. Experiments on synthetic and real-world datasets
demonstrate that IKG-FCM and TKG-FCM always achieve
better clustering performance with less time cost, especially on
imbalanced data, compared with state-of-the-art algorithms.

Index Terms—Fuzzy clustering, granular computing, knowl-
edge extraction, unsupervised learning.
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KNOWLEDGE-BASED clustering is an evolutionary
branch of traditional clustering that stems from the adop-

tion of domain knowledge, which can be applied to the areas
of electronic commerce, bearing fault diagnosis, or image
segmentation. The classical Fuzzy C-Means (FCM) algorithm
[1], [2] and some improvements [3]–[5] perform clustering
tasks based only on unlabeled data. In this sense, they are
purely data-based algorithms. However, in knowledge-based
clustering, some knowledge hints are additionally provided to
support the clustering process. The effectiveness of the overall
optimization process is enhanced by focusing on a certain
search direction, thus reducing the overall search effort.

According to the source of knowledge, knowledge-based
clustering can be divided into to two categories: clustering
with existing knowledge and transfer clustering. In clustering
with existing knowledge, users or experts have some typical
values in the data in advance, such as maximum, minimum or
even partial data structures. Then this domain knowledge can
be added to the algorithm to optimize the search. Knowledge
is transferred from a source domain to target domains in
transfer clustering, which implies that some relevant features
or knowledge about the clusters in the source domain are
induced in advance by some learning procedures, and then
the learned knowledge is available for the clustering task of
the target domain.

A representative algorithm for clustering with existing
knowledge is fuzzy clustering with viewpoints (V-FCM), in
which knowledge is conceptualized as viewpoints [6]. These
viewpoints are extreme data (e.g., minimal, maximum, medi-
um) provided by the user and are regarded as an integral part
of the data structure to achieve a personalized search. Tang et
al. used the highest density point as one of the prototypes, and
then, the possibilistic fuzzy clustering algorithm with a high-
density viewpoint (DVPFCM) was established. The experi-
ments in [7] showed that DVPFCM can locate the clustering
centers more accurately under the guidance of the high-density
point. In [6] and [7], knowledge hints (viewpoints) guide the
algorithms to find the data structure and directly determine
part of the clustering results. The flexibility of the algorithms
is strongly limited in this way and neither algorithm considers
the misleading roles of viewpoints.

The self-taught clustering (STC) proposed in [8] is the first
transfer clustering algorithm based on mutual information. In
[9], Jiang and Chung proposed a transfer learning version of
spectral clustering. Deng et al. extended transfer learning to
prototype-based clustering and developed two corresponding
transfer prototype-based fuzzy clustering (TPFC) algorithms
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Fig. 1. Framework of the fuzzy clustering with granular knowledge.

[10]. The key point of these algorithms is to fuse knowledge
from the auxiliary dataset into the target dataset.

The existing knowledge-based clustering algorithms mainly
adopt pure numeric knowledge data. However, in reality, due
to the different cognitive degrees of people and the interference
of the external environment, the description and understanding
of knowledge are inconsistent and dynamic, which causes
uncertainty in the obtained information [11]. On the other
hand, knowledge itself has ambiguity, for example, there could
be a dense area that characterizes a wide range and thus
cannot be denoted by certain numeric datum [12]. Therefore,
knowledge must be translated into granularity to make full
use of the value of uncertain information. There are very few
studies on clustering with granular knowledge, and only the
fuzzy clustering with interval viewpoints (IV-FCM) proposed
by [6] utilizes interval viewpoints to achieve a personalized
search. However, the interval knowledge is still artificially
specified and directly used as parts of the prototypes.

In summary, there are three problems in current knowledge-
based clustering:

1) High cost of knowledge acquisition: The knowledge
for clustering is either directly specified by users or
extracted from auxiliary datasets [6], [8]–[10].

2) The limited form of knowledge: Most of the knowledge-
based clustering algorithms (except for IV-FCM [6])
utilize pure numeric knowledge and do not capture the
granular nature of information.

3) Overreaction of knowledge on clustering: In [6] and [7],
knowledge tidbits directly replace parts of the prototype-
s, which severely limits the flexibility of the algorithms.

Those challenges provide new impetus to our work. To im-
prove the efficiency of knowledge acquisition and to enhance
the guidance of knowledge to the clustering process, we pro-
pose a novel automatic knowledge extraction and granulation
(KEG) method as well as a fuzzy clustering framework based
on granular knowledge.

First, the source of knowledge extraction is the dataset on
which the clustering algorithm is carried out. In the proposed
KEG method, we establish a new density calculation formula
based on the concept of natural neighbors. Then, we utilize
the outlier detection method three-sigma rule to automatically
select high-density points. The natural neighbors around those
high-density points are aggregated to form dense areas, which
are denoted by interval or triangular numbers. These localized
dense areas are knowledge granules. To explore the potential
structure of the dataset, the data and granular knowledge are all

available for clustering; see the framework of fuzzy clustering
with granular knowledge in Fig. 1.

To the best of our knowledge, this article is the first
work that investigates how to automatically obtain granular
knowledge from a dataset and then how to play a leading
role with these knowledge granules without overdoing it in
clustering. One thing to note is that we are concerned with
objective-function-based fuzzy clustering and FCM to make
our investigation more focused and algorithmically tangible.
This does not necessarily mean that the granular knowledge
obtained by the proposed KEG method is restricted to merging
with this particular category of fuzzy clustering. On the con-
trary, it could be easily extended to other objective-function-
based clustering techniques such as possibilistic clustering or
subspace clustering algorithms.

The remainder of this paper is arranged as follows. We start
with a brief review of fuzzy clustering with viewpoints and the
concept of granular information in Section II. Then, we move
on to the details of the proposed knowledge extraction and
granulation method KEG and two fuzzy clustering algorithms
with knowledge granules KG-FCM (see Section III). Experi-
mental results are shown in Section IV. Finally, we state the
conclusions in Section V.

II. RELATED WORK

Our study is closely related to the classic knowledge-based
algorithm V-FCM and its granular version, fuzzy clustering
with interval viewpoints (IV-FCM). Interval viewpoints are
a model of information granules. We also briefly review the
concept of information granules. Let us define X = {xi}ni=1

as a sample set with n samples in d-dimensional space and
suppose that the data X is divided into c clusters.

A. Fuzzy Clustering with Viewpoints
In [6], Pedrycz et al. creatively proposed a knowledge-

driven clustering framework. They formalize domain knowl-
edge as viewpoints. The viewpoints are provided by the user
and are treated as externally introduced prototypes. Based
on this approach, the original, data-based FCM algorithm
is extended to V-FCM (FCM with viewpoints) and IV-FCM
(FCM with interval viewpoints).

Viewpoints in [6] are defined by two matrix, denoted as B
and F . The first one is a Boolean matrix and its elements are
shown in the following form:

bjk =

 1, if the kth feature of the jth prototype is
determined by the viewpoint,

0, otherwise.
(1)
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The size of B is c× d. The second matrix (F ) is of the same
dimensionality as B and includes the specific numeric values
of the viewpoints, which is expressed as follows:

fjk =

{
y, bjk = 1,
0, bjk = 0,

(2)

where y is the value of the viewpoint. When viewpoints are
interval data, y = [yL, yR] where yL and yR are the left-hand
side and right-hand side of y, respectively.

During the optimization of V-FCM and IV-FCM, the proto-
type vjk is directly replaced by the value of a viewpoint when
its corresponding bjk is equal to 1. This is the most significant
difference from FCM. The objective function is well-known
one shown as follows.

vjk =

{ ∑n
i=1 u

m
ijxik∑n

i=1 u
m
ij

, if bjk = 0,

fjk, if bjk = 1.
(3)

J=

n∑
i=1

c∑
j=1

umij dist2(vj , xi), (4)

where dist2(vj , xi) is the squared Euclidean distance between
the point xi and the jth clustering center vj .

Both V-FCM and IV-FCM implement a personalized search
for the structure because the viewpoints usually stand for
what a user knows or is interested in. Inspired by this, we
design a clustering algorithm guided by high-density granules
to discover data structural features more accurately.

B. Information Granules

The basis of our work is the modelling of dense areas
in a dataset as information granules. Generally, information
granules are collections of entities that are arranged together
due to their closeness (similarity, coherency, functionality,
and so on.). There are three main categories of information
granules: HFD [13], interval data and LR-type fuzzy numbers.
An interval number is a range that consists of upper and lower
bounds, and all numbers in this range have the same properties.
An interval datum x is usually formalized as [xL, xR]. LR-
type fuzzy numbers are a convenient and practical fuzzy data
type [14]. There are many different classes of fuzzy numbers
in applied problems, such as triangular [15]–[20], trapezoidal
[15], [21]–[25], Gaussian [15] fuzzy numbers, etc.

Although there have been different granule types, most
studies are based on the assumption that granular data are
given a priori, except for Gacek and Pedrycz [26] and Shen et
al. [27], who gave a mechanism to create granules. They form
information granules with the use of the principle of justifiable
granularity (PJG). The clustering algorithm proposed in [27]
runs on granules transformed from numeric data by PJG.
Therefore, their works belong to the clustering of granular
data. In our study, we aim at knowledge extraction from a
numeric dataset and knowledge granulation and the way the
knowledge granules work in clustering numeric data.

III. FUZZY CLUSTERING WITH KNOWLEDGE GRANULES

In this section, a knowledge extraction and granulation al-
gorithm (KEG) is established, and a fuzzy clustering algorithm
with knowledge granules (KG-FCM) is presented.

A. Knowledge Extraction and Granulation

The purpose of the KEG algorithm is to automatically deter-
mine high-density areas of a dataset. Those areas are modeled
as granular knowledge. Then, the KG-FCM algorithm will
find a potential data structure with the guidance of granular
knowledge. The KEG method mainly includes a data density
measurement and granular knowledge formation. These two
parts are both based on natural neighbors.

1) Natural neighbors:
The approach of natural neighbors is an interesting concept

about neighbors. This concept simulates the friendship of
human society in which the number real friends that a person
has should be the number of people who take him or her as
friends and he or she takes them as friends at the same time
[28]. In a dataset, a natural neighbor xj of a point xi is defined
as follows:

xj ∈NNθ (xi)⇔ ((xi∈KNNθ (xj)) ∧ (xj ∈KNNθ (xi)))
(5)

where NNθ(xi) is a natural neighbor set of xi for i = 1, . . . , n,
and KNNθ(xi) is a set of the first to θ-th nearest neighbors of
xi. The ∧ means the logical “and”. If xi is one of KNNθ(xj)
and xj is one element of KNNθ(xi), then xj is a natural
neighbor of xi.

KNNθ(xi)=

θ⋃
k=1

{knn (xi, k)} (6)

where knn (xi, k) is the k-th nearest neighbor of xi. The
distance between points is the Euclidean one.

The overall natural neighbor (NaN) method is summarized
in Algorithm 1. The main procedure of the NaN method is
to continuously expand the neighbor search range, see steps 3
to step 20. The times at which each data point is considered
to be the other data point’s neighbor are recorded at every
expansion, see step 6. This computing in the loop stop when
all objects have natural neighbors or the number of objects
without natural neighbors does not change, see steps 15 to 18.
In Algorithm 1, nb records the number of natural neighbors for
each sample, which is an n ∗ 1 array. The NaN method can
effectively determine the neighborhood in a dataset without
any pregiven parameters. When the neighbor search range θ
is predefined, the concept of a natural neighbor is the mutual
near neighbor mentioned in [29] and [30].

2) Knowledge extraction:
The idea of the KEG algorithm is based on the assumption

that the distance between points in dense regions is smaller
than that in sparse regions, and points lying in dense regions
possess more neighbors than those in sparse regions. Thus, we
define the density of a data point xi as

ρi = κmin max(ρi1) + (1− κ) min max(ρi2), (7)

where

ρi1 =

0, nb(xi) = 0,
nb(xi)

mean
xj∈NNθ(xi)

(dist(xi,xj))
, nb(xi) 6= 0, (8)

ρi2 =
∑
i6=j

exp

[
−
(

dist(xi, xj)

r

)2
]
. (9)
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Algorithm 1 Natural Neighbor algorithm (NaN)
Input: A set of n data points X={xi}ni=1

Output: nb,NNθ
1: procedure NAN(Data X)
2: Initialization: θ=1, nb(i)=0, NN0 =∅, KNN0 =∅;
3: while true do
4: for all xi∈X do
5: Find the θ-th nearest neighbor y of xi;
6: KNNθ(xi)=KNN(θ−1)(xi)∪{y};
7: if xi∈KNNθ(y) & xi /∈NNθ(y) then
8: nb(y)=nb(y) + 1;
9: NNθ(y)=NN(θ−1)(y)∪{xi};

10: nb(xi)=nb(xi) + 1;
11: NNθ(xi)=NN(θ−1)(xi)∪{y};
12: end if
13: end for
14: . Calculate the number of points with no neighbors
15: Numθ=count(nb(xi)==0);
16: if Num(θ−1) ==Numθ or Numθ==0 then
17: break;
18: end if
19: θ=θ + 1;
20: end while
21: return nb, NNθ;
22: end procedure

Operator dist(xi, xj) is the Euclidean distance between sam-
ples xi and xj . The function min max of (7) is the min-
max normalization to scale the ρi1 and ρi2 range in [0, 1] to
eliminate scale differences between them. From (7), we know
that the local density ρi of point xi is a sum of its natural-
neighbor density ρi1 and kernel distance-based density ρi2.
Parameters κ and 1 − κ could be considered as the relative
importance factors for two density indices. Here, the constant
κ is in [0, 1]. If 0 ≤ κ < 0.5, there is a higher importance to
the kernel distance-based density ρi2, and when 0.5 < κ ≤ 1,
the natural-neighbor density ρi1 has a higher importance. We
assign equal importance to ρi1 and ρi2 in measuring the local
density of data xi, so κ = 0.5.

To make the extracted high-density points more representa-
tive, we compute the relative distance δi between xi and points
with larger local density.

δi =

{
min

j:ρj>ρi
(dist(xi, xj)) , ∃j s. t. ρj > ρi,

maxj (dist(xi, xj)) , otherwise.
(10)

It is indicated in (8) that the natural-neighbor density ρi1 of
xi is inversely proportional to the mean distance between itself
and its natural neighbors and proportional to the number of
natural neighbors. Because two different points can have the
same number of neighbors, we also consider the mean distance
between the point and its natural neighbors, which represents
the relative dispersion around the data xi. The smaller the sum
of the neighbors’ distance and the larger the number of natural
neighbors, the denser the region the point lies in (respectively,
the larger and smaller, the sparser).

Parameter ρi2 is also the kernel distance-based local density
as defined in [31]. However, to obtain an appropriate density

assessment range and consider the distribution of a dataset,
we calculate the radius r as follows:

r = max(dist(xi, xj))/(2c), i, j ∈ {1, 2, · · · , n}. (11)

We suppose that all points are contained in a hypersphere.
The diameter of this hypersphere is the maximum distance
between points (i.e., max(dist(xi, xj))) divided by the double
cluster number c. In other words, this hypersphere is composed
of c small spheres. Therefore, the distance between points
in each cluster does not exceed r. This concept is useful in
delineating the cutoff distance proved by [7].

Compared to some density-based methods ( [31], [32]), the
proposed KEG method is parameter-free without preset radius
r and neighbor number k. KEG computes local density from
two aspects: natural neighbors and specific regional neighbors.

In clustering by fast search and finding density peaks
(DPC) and some improvement algorithms, the investigators
obtain cluster centers (i.e., more high-density points) by hand-
extraction from its ρ− δ decision graph [31], [33]–[35]. This
method is inconvenient and vulnerable to personal judgments.
We take the Aggregation dataset in [36] as an example, and its
reference clustering results are shown in Fig. 2(a). Fig. 2(c) is
the ρ− δ decision graph of DPC for the Aggregation dataset.
We can see from Fig. 2(c) that the minimum interval between
the points covered by the red grid and the blue dots, and the
minimum gap between them and the other black dots are both
relatively small. So whether the points covered by the red grid
should be selected as high-density points is undecidable. In
addition, from Fig. 2(b), we can observe that the δs values of
potential knowledge points shown by the colored dots deviate
significantly from the others (black dots).

In this paper, we first sort δ in ascending order to obtain δ′

and its corresponding data order X ′ = {x′i}ni=1, see Algorithm
2 step 15. Then we measure the relative separation in δ′s by the
difference φ between adjacent elements of δ′, see steps 16-18.
The characteristic of high-density points is that their δ values
are larger, which causes the φ between them and non-density
points to be larger as well. These larger φs are outliers relative
to others. We use the commonly used outlier detection method
three-sigma rule to detect φ outliers automatically [37], see
steps 19 to 25 in Algorithm 2. Based on the three-sigma rule,
the definition of the φ outlier is presented as follows.

Definition 1. Parameter φi belongs to an outlier if its value
is more than three standard deviations from the mean, i.e.∣∣φi − Φ

∣∣ ≥ 3σdiff ,

Φ =
1

n− 1

n−1∑
i=1

φi,

σdiff =

√√√√ 1

n− 2

n−1∑
i=1

∣∣φi − Φ
∣∣2

(12)

where Φ and σ
diff

are the mean and the standard deviation
of φs, respectively.

The larger values φs can be used as the dividing lines
between high-density and non-high-density points. For ex-
ample, if φi is significantly larger relative to other φs,
then {x′i+1, x

′
i+2, · · · , x′n} are high-density points candidates
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Fig. 2. Dataset Aggregation. (a) Data distribution. Different colors and shapes represent different clusters. (b) Decision graph of KEG. Different colors indicate
that the points are located between different division lines DOs. (c) Decision graph of DPC. (d) High-density points selected by KEG. (e) High-density points
selected by DPC.

(i.e. Knowledge points set G in step 21 of Algorithm 2),
while {x′1, · · · , x′i} are non-high-density points candidates.
Although the three-sigma rule requires that the data obey
normal distribution, according to Chebyshev’s inequality, for
non-normally distributed data, at least 88 percent of data are
in the range of three times sigma [38], [39].

If there are noises in the dataset, such as points 21, 22 and
23 shown in Fig. 3(a), they also have a relatively high δ. But
their ρs are low because they are isolated. To avoid the δ of
noises data interfering with the detection of φ outliers, we set
the δ value of the low-density points (see Definition 2) to the
average of δ, i.e., step 10 to 14 in Algorithm 2.

Definition 2. if ρi ≤ ρ − σdens, xi is a point with low local
density.

ρ =
1

n

n∑
i=1

ρi,

σdens =

√√√√ 1

n− 1

n∑
i=1

|ρi − ρ|2.
(13)

For the Aggregation dataset, five φ outliers can be found
based on (12), i.e. DO1 to DO5 in Fig. 2(b). This means
that there are five dividing lines between high-density and
non-high-density points, and their corresponding φs are the
line widths. The data points whose δs are over the line are
high-density points. All high-density points can be acquired
based on DO1. Finally, the KEG method automatically obtains
nine high-density points, as shown in Fig. 2(d). The DPC
method manually gains eight high-density points. KEG makes
each cluster have at least one high-density point, but there
is a cluster without high-density points obtained by DPC. In
contrast, there are two clusters that have two high-density
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Fig. 3. The dataset used to illustrate Algorithm 2. (a) Data distribution. Data
points are ranked randomly. Different colors represent different clusters. (b)
Decision graph of KEG. (c) Building knowledge granules. (d) Range limits
(rectangle) for knowledge granules.

points each in Fig. 2(e). Overall, the proposed KEG method can
conveniently locate high-density knowledge more accurately.

3) Knowledge granulation:

After extracting the high-density knowledge points, we
granulate those points to represent dense areas where they
are located. We adopt the two types of information granules,
interval and triangular data. Interval and triangular knowledge
granules are both modelled as hyperboxes, inside which the
high-density point and its natural neighbors are confined. The
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Algorithm 2 Knowledge extraction and granulation algorithm
(KEG)
Input: A set of n data points X={xi}ni=1, cluster number c,

granular type GT
Output: Knowledge points G, granular knowledge IG or TG

1: procedure KEG(Data X , Granular type GT )
2: (nb,NNθ)= NAN(X);
3: . Knowledge extraction
4: for i = 1 : n do
5: Calculate ρi1 using (8);
6: Calculate ρi2 using (9);
7: Calculate ρi using (7);
8: Calculate δi using (10);
9: end for

10: for i = 1 : n do
11: if ρi ≤ ρ− σdensity then
12: δi = δ;
13: end if
14: end for
15: Sort δ={δi}ni=1 in ascending order to get δ′={δ′i}ni=1

and the dataset X ′ = {x′i}ni=1 corresponding to the set δ′;
16: for i = 1 : n− 1 do
17: Calculate φi = δ′i+1 − δ′i;
18: end for
19: for i = 1 : n− 1 do
20: if

∣∣φi − Φ
∣∣ ≥ 3σdiff then

21: Knowledge points set G={g
k
|g
k

= x′i+k}
n−i
k=1;

22: The number of knowledge points K = n− i;
23: break;
24: end if
25: end for
26: . Extracted knowledge granulation
27: if GT =1 then
28: Granulate the knowledge set G using (17) for

interval knowledge IG;
29: else
30: Granulate the knowledge set G using (19) for

triangular knowledge TG;
31: end if
32: return G={g

k
}K
k=1

, granular knowledge IG or TG;
33: end procedure

data covered by the kth knowledge granule is denoted as

co
k

= {g
k
, NNθ(gk )}, k = 1, . . . ,K. (14)

The side length of a hyperbox equals the range of each fea-
ture. Here, the range of the jth feature for the kth knowledge
granule is defined as

range
kj

= max
s=1,...,n′

(co
ksj

)− min
s=1,...,n′

(co
ksj

) (15)

where co
ksj

is the projection of the sth data point covered by
the kth knowledge granule on the jth feature and n′ is the
number of data in the hyperbox.

Once the data contained in the hyperbox have been deter-
mined, we can get an interval knowledge granule set IG =
{ig

1
, . . . , ig

K
} where ig

k
is represented by its bounds as

ig
k

= [igL
k
, igR

k
] for k = 1, . . . ,K (16)

where igL
k

and igR
k

are the left and right side of the kth
interval knowledge granule, respectively. They are vectors in
Rd expressed in the form

igL
k

=[ min
s=1,...,n′

(co
ks1

), . . . , min
s=1,...,n′

(co
ksd

)]T,

igR
k

=[ max
s=1,...,n′

(co
ks1

), . . . , max
s=1,...,n′

(co
ksd

)]T.
(17)

Similarly, a triangular knowledge granule set TG =
{tg

1
, . . . , tg

K
} can be obtained where tg

k
is characterized

by a triple.

tg
k

= (tgL
k
, tgM

k
, tgR

k
) for k = 1, . . . ,K (18)

where tgL
k

, tgM
k

and tgR
k

are the left, middle and right side of
the kth triangular knowledge granule, respectively. They are
also vectors in Rd represented as

tgL
k

=[ min
s=1,...,n′

(co
ks1

), . . . , min
s=1,...,n′

(co
ksd

)]T,

tgM
k

=[g
k1
, g
k2
, . . . , g

kd
]T,

tgR
k

=[ max
s=1,...,n′

(co
ks1

), . . . , max
s=1,...,n′

(co
ksd

)]T.

(19)

To better understand the overall process of knowledge
granulation, we illustrate it in Fig. 3(c) and (d). In Fig. 3(c),
two knowledge points 6 and 17 (denoted by red and blue
pentagrams, respectively) are selected by steps 19 to 25 in
Algorithm 2. Then the knowledge points and their natural
neighbors (denoted by red and blue hollow circles) are used to
construct interval and triangular knowledge granules by (17)
and (19) resulting from the projections (denoted by red and
blue solid dots) on each feature, respectively. Finally, two
rectangles are formed, inside which we see n′ = 5 points
are confined from Fig. 3(d).

Here, the knowledge extraction and granulation framework
is established, as shown in Algorithm 2. It can automatically
obtain high-density points and granulate its corresponding
dense areas to enrich the power of knowledge. However, as
shown in Fig. 2(d), the KEG method obtains 9 high-density
points, which is above the true number of clusters, 7. This
number means that the KEG cannot accurately locate all dense
areas, which will also be shown later in experimental section
IV. Therefore, we propose a clustering algorithm with granular
knowledge to accomplish the clustering task. The details are
shown in the next section.

B. Objective Function

Based on the proposed KEG knowledge extraction and
granulation method, we can obtain K dense areas represented
by IG or TG. To exploit granular knowledge to help the
clustering task in a dataset, we develop a new fuzzy clustering
algorithm, fuzzy C-Means clustering with knowledge granules
(KG-FCM). The objective function of KG-FCM is defined by

JKG-FCM =

n∑
i=1

c∑
j=1

umijηid
2
KG (vj , xi)+ζ

 c∑
j=1

K∑
k=1

ωjkd
2
KG(vj , ggk)

+

c∑
j=1

σj

K∑
k=1

(ωjk lnωjk−ωjk)


(20)
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subject to
c∑
j=1

uij=1, 0 6 uij61, 06ηi61, 06ωjk61. (21)

In (20),

σj=dist
(
vj , Ḡ

)2
, Ḡ=

∑K
k=1gk
K

. (22)

ηi=1−
min

k=1,...,K

(
dist

(
xi, gk

))
max

j=1,...,n

(
min

k=1,...,K

(
dist

(
xj , gk

))) . (23)

Because the KEG method can provide two types of knowl-
edge, we introduce two variants of the KG-FCM algorithms:
fuzzy C-Means clustering with interval knowledge granules
(IKG-FCM) and triangular knowledge granules (TKG-FCM).
Their objective functions are similar to (20), but the distance
measurements are changed. dKG is represented by dIG and gg

k
is ig

k
in IKG-FCM, while dKG is dTG and gg

k
is tg

k
in TKG-

FCM. The specific computations are shown in (24) and (25).

d2IG(vj , igk )=

d∑
t=1

(vLjt−igLkt)
2+(vRjt−igRkt)

2

2
, (24)

d2TG

(
vj , tgk

)
=

d∑
t=1

(
α

6

(
vLjt−tgLkt

)2
+

(
1− 5

3
α

)(
vMjt −tgMkt

)2
+
α

6

(
vRjt−tgRkt

)2
+
α

6

(
vLjt−tgLkt+v

M
jt −tgMkt

)2
+
α

6

(
vRjt−tgRkt+v

M
jt −tgMkt

)2)
(25)

with 0 < α < 0.5.
Some explanations of (20) are given as follows:
1) The first term is an improvement of the classic FCM

in which ηi is a weight associated with data xi. The
data weight ηi is expressed in (23). The quantity
max

j=1,...,n
( min
k=1,...,K

(dist(xj , gk ))) serves as a normaliza-

tion coefficient that keeps the values of the weight con-
fined to the unit interval. The relationship in (23) shows
that the closer the data are to the knowledge points, the
higher their contribution to the clustering process.

2) The second term is used to bring on granular knowledge
from the KEG method to guide the clustering task. The
parameter ζ balances the influence of granular knowl-
edge and is a nonnegative value. Parameter analysis
will be shown in Section IV. In this term, ωjk weights
the influence of the granular knowledge gg

k
on the

clustering center vj . Note that the right-hand side of the
second term prevents the trivial zero solution for ωjks.

3) In IKG-FCM, centers and knowledge points are
interval values, i.e., vj = [vLj , v

R
j ] and ig

k
= [igL

k
, igR

k
].

d2IG(vj , igk ) takes the Euclidean distance, shown in (24).
In addition, for the triangular data, we use the integral
metric proposed in [40]. The weights of the left-hand
side, middle side and right-hand side of triangular data
are measured by α1,α2 and α3 in this metric. Generally,

we constrain α1 +α2 +α3 = 1, α1 > 0, α2 > 0 and
α3 > 0. In TKG-FCM, the left-hand side and right-hand
side of triangular knowledge tg

k
= (tgL

k
, tgM

k
, tgR

k
) or

center vj = (vLj , v
M
j , v

R
j ) possess the same importance,

and the middle side is more representative than ends.
Thus, α2>α1 =α3 =α (0<α< 0.5) and α2 = 1−2α.
We set α to 0.25 in the experiment. The form of
d2TG(vj , tgk ) is denoted by (25). In our algorithms,
point xi is treated as a special case of an interval or
triangular number. Therefore, the values of its left,
middle and right sides are equal to the numeric values.

According to the optimization strategy that invokes the
Lagrange multipliers, we can obtain the following update rules
for KG-FCM:

uij=
dKG (vj , xi)

−2
m−1

c∑
j′=1

dKG (vj′ , xi)
−2
m−1

, (26)

ω
jk

=exp

(
−
dKG

(
vj , ggk

)2
σ
j

)
. (27)

The centers vjs in IKG-FCM are updated by:

vLj =

n∑
i=1

umijηixi+ζ
K∑
k=1

ωjk+ igL
k

n∑
i=1

umijηi+ζ
K∑
k=1

ωjk

, (28)

vRj =

n∑
i=1

umijηixi+ζ
K∑
k=1

ωjkig
R
k

n∑
i=1

umijηi+ζ
K∑
k=1

ωjk

. (29)

Meanwhile, in TKG-FCM, updating equations for the clus-
ter centers vj are as follows:

vLj =

n∑
i=1

umijηi
(
3xi−vMj

)
+ζ

K∑
k=1

ωjk

(
2tgL

k
+tgM

k
−vMj

)
n∑
i=1

2umijηi+2ζ
K∑
k=1

ωjk

,

(30)

vMj =

n∑
i=1

umijηi
((

1− 2
3α
)
xi− α

3

(
vLj +vRj

))
+ζ

K∑
k=1

ωjktmp(
1− 4

3α
)( n∑

i=1

umijηi+ζ
K∑
k=1

ωjk

)
(31)

where the temporary variable tmp is

tmp=

(
1− 4

3
α

)
tgM
k

+
α

3
(tgL

k
−vLj )+

α

3
(tgR

k
−vRj ). (32)

vRj =

n∑
i=1

umijηi(3xi−v
M
j )+ζ

K∑
k=1

ωjk(2tgR
k

+tgM
k
−vMj )

n∑
i=1

2umijηi+2ζ
K∑
k=1

ωjk

.

(33)
We use the Euclidean distance and the integral metric to

measure the distance between two interval data and two trian-
gular data, respectively, and as a result, the centers updating
form for IKG-FCM and TKG-FCM have different forms.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2022.3195033

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on July 30,2022 at 01:36:16 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. *, NO. *, * 2022 8

C. The Clustering Algorithm and Complexity Analyses
1) Clustering algorithm:
The model KG-FCM is summarized as Algorithm 3.
2) Convergence of the KG-FCM algorithm:
Based on Zangwill’s convergence theorem, Lagrange’s the-

orem [55] and the bordered Hessian matrix [56], the proofs of
the KG-FCM convergence is presented in Appendix-I.

3) Analyses of the computational complexity:
Given the input dataset with n samples, c clusters and T run-

ning iterations, there are two main parts for the computational
complexity of KG-FCM. The first part is knowledge extraction
and its granulation, i.e., the KEG method. Its main cost of
computation is computing the distance between n samples,
and thus, the time complexity of this part is O(n2). The
second part is for the alternation training. The computational
complexity of this part is O(ncT ). Thus, the overall cost for
KG-FCM is O(n2+ncT ). Generally, the iteration number T
and the cluster number c are far smaller than samples number
n, and the computational complexity of KG-FCM can be
rewritten as O(n2). The computational cost focuses on the
data distance dist(xi, xj)(i, j = 1, · · ·, n). The data distance
does not change dynamically, and thus, we can precompute it
and store it in advance. When running the KEG method, this
information is loaded from the hard disk. This method will
greatly reduce the running time of the KG-FCM algorithm.

Algorithm 3 Fuzzy clustering algorithm based on granular
knowledge (KG-FCM)
Input: A set of n data points X = {xi}ni=1, the number

of clusters c, the fuzzy index m, the parameter ζ, the
termination criterion ε and T , and granular type GT

Output: The cluster center matrix V ={vj}cj=1, the partition
matrix U={uij}n,ci,j=1

1: procedure KG-FCM(Data X , Number c, Type GT )
2: . Get granular knowledge
3: if GT = 1 then
4: [G, IG]= KEG(X,GT );
5: else
6: [G,TG]= KEG(X,GT );
7: end if
8: Randomly select c data from X as initial cluster

centers V (0);
9: Calculate data weight ηi using (23) for i = 1, . . . , n;

10: Set the number of iterations t=0;
11: . Iterative training
12: repeat
13: Calculate U (t) by (26);
14: Calculate ωjk using (27);
15: if GT = 1 then
16: Calculate V (t+1) using (28) and (29);
17: else
18: Calculate V (t+1) using (30) to (33);
19: end if
20: Update t= t+ 1;
21: until |J (t)−J (t−1)|6ε or t>T
22: return V (t), U (t−1)

23: end procedure

IV. EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed
method on synthetic and real-world datasets. The measure-
ments used for performance evaluation and the experimental
setup are first described. Then, the performance of the pro-
posed algorithms IKG-FCM and TKG-FCM on two 2-D syn-
thetic datasets is reported and discussed. Further comprehen-
sive comparison with seven related algorithms is conducted on
11 public datasets from the UCI machine learning repository
[41]. All of the algorithms were implemented in MATLAB,
and experiments were run on a computer with a 2.90-GHz
CPU and 40-GB RAM.

A. Evaluation Indices and Experimental Setup

To quantify the performance of the proposed algorithm
and selected comparative algorithms, we use two major cate-
gories of evaluation indices, i.e., hard clustering indices and
fuzzy clustering indices. Fuzzy clustering algorithms divide
each sample into its cluster corresponding to the maximum
membership according to the membership matrix, and thus,
hard clustering indices can also be applied to fuzzy clustering
algorithms. However, the hard clustering indices ignore the
memberships in fuzzy clustering algorithms in such a way that
they often fail to faithfully reflect the performance of the fuzzy
clustering algorithms [42]. Therefore, we adopt five hard clus-
tering indices and two fuzzy clustering indices to compare the
quality of the KG-FCM and seven state-of-the-art algorithms:
K-Means, FCM, DPC [31], VFCM, IV-FCM [6], DVPFCM
[7] and the evolving fuzzy clustering approach (EFCA) [43].

Four hard clustering indices for assessing crisp partitions
are: 1) clustering accuracy (CA) [44], 2) rand index (RI) [45],
3) adjusted rand index (ARI) [46] and 4) normalized mutual
information (NMI) [47]. CA, RI and NMI take a value within
the interval [0, 1]. The higher the values are, the better the
clustering performance. The ARI can be negative and has a
wider range of values than the RI.

Since most of the adopted methods for comparison are fuzzy
clustering algorithms, the fuzzy validity metric is naturally
very appropriate. In this research, the extension index of ARI
(EARI) [42] and the Xie-Beni (XB) [48] index are used to
further evaluate and compare the performance of different
fuzzy clustering algorithms. The EARI index rewrites ARI
by accounting for the membership values using the basic
concepts from set theory. The higher the value of EARI is,
the more similar the data structure of the two clusters, and
the better the clustering performance. The XB index is a
classical and popular metric for measuring the fuzzy clustering
performance. Usually, the smaller the XB values are, the better
the fuzzy division of the clustering method. The six evaluation
indices are described in detail in Appendix-II. EFCA uses K-
Means to obtain the final clustering result, and thus there is
no XB or EARI for EFCA.

Because the performance of these fuzzy clustering
algorithms depends on the initial values, 50 runs of each
algorithm with different initializations are implemented under
specific parameter settings. Table I shows the parameters of
the adopted algorithms. These parameters are commonly used
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TABLE I
PARAMETERS SETTING OF THE ADOPTED ALGORITHMS

Algorithms Parameters
DPC Radius r: D(dn ∗ 0.02e) where D is data distance
FCM Fuzzy index m: 2
V-FCM Fuzzy index m: same to FCM
IV-FCM Fuzzy index m: same to FCM

DVPFCM
Fuzzy index m: same to FCM;
Typicality index p: 2
Parameters a and b: 1, 1

EFCA Partitioning magnitude p: 0.2
Epoch cut µ: 0

KG-FCM Fuzzy index m: same to FCM
The influence of granular knowledge ζ: 0.7

values or the optimal values given in the original papers.
The SR, RI, ARI, EARI and NMI for each iteration-based
algorithm shown as experimental results are the maximum
values obtained by running the algorithm 50 times repeatedly,
while the XBI is the minimum value of the 50 obtained
values. The maximum number of iterations, i.e., T , is 200
for all iteration-based clustering algorithms.

B. Synthetic Datasets

The unclear separation between classes and imbalanced
samples among different classes are common challenges to
clustering algorithms. To visually illustrate the behavior of
granular knowledge formed by the proposed KEG method
and to evaluate the performance of our KG-FCM algorithm
and other comparative clustering algorithms on addressing
such challenges, we create two synthetic datasets in two-
dimensional space to enable clustering results to be visually
observed and verified. These two datasets are denoted as D1
and D2, respectively. Because the clustering results on D1
and D2 of IKG-FCM and TKG-FCM are the same, their
performance on synthetic datasets is reported by KG-FCM.

Example 1: As shown in Fig. 4(a), synthetic dataset D1
includes 1150 samples and has 3 classes. Cluster 1, Cluster 2
and Cluster 3 contain 50, 1000 and 100 samples, respectively.
Therefore, the number of samples in Cluster 2 is much
larger than that in the other two clusters. The KEG method
automatically filters out three knowledge points from the D1
dataset based on the δ−ρ decision graph in Fig. 4(b). After the
knowledge granulation step of KEG, the knowledge domains
obtained are shown in Fig. 4(c). Fig. 4(d) demonstrates the
clustering results of KG-FCM and FCM, where the dots and
squares colored red, yellow and blue are the cluster centers
obtained by KG-FCM and FCM, respectively. We can observe
that three cluster centers positioned by the FCM algorithm
are all in Cluster 1 with the negative impact resulting from
the averaging phenomenon. In comparison, the proposed KG-
FCM algorithm locates the three cluster centers more accurate-
ly under the guidance of granular knowledge points, and these
centers are distributed in three different clusters. The guidance
track of the granular knowledge for the KG-FCM is represent-
ed by the dashed line shown in Fig. 4(d), while the iterative
update process of the FCM centers is displayed by solid lines.
Comparing the trends of these two lines, it can be seen that
the high-density granular knowledge has a good guiding effect
on the clustering algorithm to detect potential data structures.
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Fig. 4. The synthetic dataset D1. (a) Data distribution. (b) Decision graph
of KEG. (c) Granular knowledge location. (d) Clustering results of KG-FCM
and FCM.
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Fig. 5. The synthetic dataset D2. (a) Data distribution. (b) Decision graph of
KEG. (C) Knowledge points got by KEG. (d) Clustering results of KG-FCM
and FCM.

Example 2: To further verify the accuracy of the proposed
KG-FCM algorithm in finding clustering centers, we perform
the experiment on the second synthetic dataset D2. The results
are shown in Fig. 5. Fig. 5(a) is the distribution of D2.
The 7 clusters in D2 have different degrees of overlap and
convergence with one another, which brings a large obstacle
to the clustering algorithm to successfully locate the cluster
centers. From Fig. 5(d), it can be seen that there are two
FCM centers in the middle of two clusters owing to the gap
between the two adjacent clusters being too close. In addition,
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TABLE II
THE CLUSTER CENTERS GOT BY CLUSTERING ALGORITHMS

Algorithms Centers

v
(Alg)
1 v

(Alg)
2 v

(Alg)
3 v

(Alg)
4 v

(Alg)
5 v

(Alg)
6 v

(Alg)
7

K-Means (4.1607, 9.4185) (1.7297, 8.0174) (2.1669, 2.0372) (5.1521, 8.7803) (6.2537, 4.6150) (3.2662, 7.8024) (7.2119, 1.2829)
FCM (8.0659, 3.9321) (2.0740, 2.0016) (1.7153, 7.9981) (4.8179, 9.0733) (3.2535, 8.2474) (5.5110, 4.7519) (7.0113, 0.8900)
V-FCM (7.8890, 3.8434) (1.9241, 8.1391) (2.1840, 2.0509) (4.8226, 9.2375) (5.9100, 5.7102) (4.0101, 8.0724) (6.9035, 1.0012)
IV-FCM (8.1278, 3.8838) (1.9086, 8.1891) (1.9785, 1.9480) (4.6319, 9.0817) (6.0229, 6.0342) (4.9461, 3.4155) (7.0190, 0.8621)
DVPFCM (8.0367, 3.8611) (1.8837, 8.0000) (1.8892, 1.9703) (4.7792, 9.0666) (5.9804, 5.8182) (4.9753, 3.4057) (7.0245, 0.8824)
EFCA (8.0240, 3.9735) (2.3103, 8.0344) (2.1230, 2.0482) (4.6655, 9.0680) (5.8769, 6.3649) (4.8252, 3.3618) (7.1564, 1.1734)
DPC (8.7501, 3.7340) (1.9898, 8.0588) (2.2379, 1.5605) (5.6331, 8.7100) (6.1131, 6.0909) (4.9379, 2.9913) (6.9076, 0.7743)
KEG (8.3089, 3.8247) (1.9241, 8.1391) (1.6222, 1.8029) (4.4664, 9.4400) (6.0751, 6.0794) (5.0989, 3.3821) (6.9003, 0.7528)
KG-FCM (8.1104, 3.8761) (1.9762, 8.0260) (1.9193, 1.9441) (4.5881, 9.0743) (6.0343, 6.0324) (4.9936, 3.4193) (6.9697, 0.8905)

the cluster centers obtained by the KG-FCM algorithm appear
to be located in the densest area of each cluster, which is
denser than the dense area where the 7 high-density points
obtained by the KEG algorithm are positioned (see Fig. 5(c)).

For the D2 dataset, we further compare the final cluster
centers obtained by the KG-FCM and comparative algorithms.
The reference cluster centers of D2 are
V (Ref) = [(8, 4); (2, 8); (2, 2); (4.6, 9); (6, 6); (5, 3.5); (7, 0.8)].

Table II lists the cluster centers of the clustering algorithms.
Then, we can compute the average distance d̄ between clus-
tering centers got by algorithms and true centers. The results
are shown in Fig. 6. The d̄ is calculated as

d̄ =

∑c
i=1 dist(v

(Alg)
i , v

(Ref)
i )

c
(34)

where v(Alg)i is the ith center got by the clustering algorithm,
and v

(Ref)
i is the ith actual center. The results obtained

by our proposed KG-FCM algorithm are closest to the true
values and its average distance is only 0.0855. There is an
interesting result that the average distance metric of V-FCM
is more than 8 times that of IV-FCM. This finding means that
granular knowledge is more helpful than knowledge points.
Furthermore, IV-FCM and DVPFCM perform better than other
comparative algorithms on D2. However, these two algorithms
both directly use the extracted knowledge as parts of the
clustering centers, which leads to overacting, therefore, they
are less powerful than our proposed KG-FCM algorithm.
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Fig. 6. The average distances between clustering centers and reference centers
on the D2 dataset.

C. UCI Datasets

1) Data information:
The UCI database [41] has been widely used by researchers

worldwide as a primary source of machine learning datasets

since it was created in 1987. In the next experiments, we
adopt eleven typical and popularly used UCI datasets to
validate the clustering performance of our proposed IKG-
FCM and TKG-FCM algorithms, including the Iris, Wine,
Glass Identification (Glass), Breast Cancer Wisconsin (BCW),
Wholesale Customers (Wholesale), User Knowledge Modeling
(UKM), Arcene Training (Arcene), Anuran Calls (MFCC-
s), Madelon, Letter (A,B,C,D) Recognition (LR ABCD) and
HTRU2 datasets.

TABLE III
SUMMARY OF THE USED UCI DATASETS

No. Name Samples Features Classes size of classes
1 Iris 150 4 3 50,50,50
2 Wine 178 13 3 59,71,48
3 Glass 214 9 6 70,76,17,13,9,29
4 BCW 569 30 2 212,357
5 Wholesale 440 7 2 298,142
6 UKM 258 5 4 24,63,83,88
7 Arcene 100 10000 2 56,44
8 MFCCs 7195 22 10 672,542,3478,310,472,

1121,270,114,68,148
9 Madelon 1999 500 2 999,1000
10 LR ABCD 3096 16 4 789,766,736,805
11 HTRU2 17898 8 2 16259,1639

The Iris dataset is perhaps the best known database in testing
machine learning algorithms. The dataset contains 3 classes of
50 samples each, where one class is linearly separable from
the other 2 while the latter are not linearly separable from each
other. The Wine, BCW and Arcene datasets have more features
than that of Iris, especially the Arcene dataset with 10000 fea-
tures, which is the highest dimensional dataset. In addition, the
common characteristic of the five datasets Glass, Wholesale,
UKM, MFCCs and HTRU2 is that the instances among clus-
ters are not balanced. The sample number of the HTRU2 set
is 17898, which is the largest in all used datasets. A more de-
tailed introduction of these datasets is summarized in Table III.

2) Experimental results:
In this study, the distance metrics used for the interval and

triangular knowledge are different, and as a result, we present
two novel clustering algorithms, IKG-FCM and TKG-FCM.
The experimental results of these two algorithms are recorded
separately in the experiments. For the DPC algorithm, the
number of selected cluster centers on the decision graph is as
close as possible to the real number on the basis of ensuring
that the high density points are a distance away from other
points. The setting parameters are shown in Table I.
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TABLE IV
THE CA OF DIFFERENT ALGORITHMS FOR DIFFERENT UCI DATASETS

Algorithms K-Means DPC FCM V-FCM IV-FCM DVPFCM EFCA IKG-FCM TKG-FCM
Iris 0.8933 (8) 0.6667 (9) 0.9067 (7) 0.9400 (6) 0.9467 (5) 0.9600 (1) 0.9600 (1) 0.9600 (1) 0.9600 (1)
Wine 0.9045 (7) 0.8933 (9) 0.9045 (7) 0.9382 (6) 0.9494 (3) 0.9438 (5) 0.9494 (3) 0.9663 (1) 0.9663 (1)
Glass 0.4626 (9) 0.4766 (7) 0.4673 (8) 0.5374 (4) 0.5280 (5) 0.5234 (6) 0.5421 (3) 0.5607 (1) 0.5514 (2)
BCW 0.8295 (9) 0.9104 (5) 0.8401 (8) 0.9209 (3) 0.9174 (4) 0.8840 (7) 0.8998 (6) 0.9332 (1) 0.9315 (2)
Wholesale 0.7409 (9) 0.8409 (7) 0.7750 (8) 0.8659 (5) 0.8659 (5) 0.8727 (4) 0.8818 (3) 0.8841 (1) 0.8841 (1)
UKM 0.4839 (9) 0.4888 (8) 0.4988 (6) 0.4938 (7) 0.5062 (5) 0.5112 (4) 0.5533 (3) 0.5782 (1) 0.5583 (2)
Arcene 0.5758 (9) 0.6162 (5) 0.6162 (5) 0.6162 (5) 0.6263 (4) 0.6162 (5) 0.6364 (3) 0.6566 (1) 0.6566 (1)
MFCCs 0.5576 (9) 0.7404 (4) 0.5600 (8) 0.6126 (7) 0.6461 (5) 0.6428 (6) 0.7607 (3) 0.8214 (1) 0.8149 (2)
Madelon 0.5023 (6) 0.5458 (4) 0.5183 (5) 0.5003 (9) 0.5008 (7) 0.5008 (7) 0.5798 (3) 0.6118 (1) 0.5938 (2)
LR ABCD 0.5223 (9) 0.6505 (3) 0.5310 (8) 0.5985 (6) 0.5869 (7) 0.6295 (5) 0.6318 (4) 0.6550 (1) 0.6531 (2)
HTRU2 0.9186 (8) 0.7000 (9) 0.9254 (7) 0.9560 (5) 0.9584 (4) 0.9544 (6) 0.9590 (3) 0.9682 (1) 0.9648 (2)
Arank 8.3636 6.3636 7.0000 5.7273 4.9091 5.0909 3.1818 1.0 1.6364

TABLE V
THE RI OF DIFFERENT ALGORITHMS FOR DIFFERENT UCI DATASETS

Algorithms K-Means DPC FCM V-FCM IV-FCM DVPFCM EFCA IKG-FCM TKG-FCM
Iris 0.8797 (8) 0.7763 (9) 0.8923 (7) 0.9267 (6) 0.9341 (5) 0.9495 (1) 0.9495 (1) 0.9495 (1) 0.9495 (1)
Wine 0.8781 (7) 0.8654 (9) 0.8775 (8) 0.9175 (6) 0.9324 (3) 0.9261 (5) 0.9311 (4) 0.9543 (1) 0.9543 (1)
Glass 0.6944 (8) 0.7030 (7) 0.6931 (9) 0.7310 (3) 0.7167 (5) 0.7053 (6) 0.7187 (4) 0.7372 (1) 0.7345 (2)
BCW 0.7167 (9) 0.8365 (5) 0.7308 (8) 0.8394 (4) 0.8482 (3) 0.7946 (7) 0.8194 (6) 0.8751 (1) 0.8721 (2)
Wholesale 0.6430 (9) 0.7318 (7) 0.6505 (8) 0.7672 (5) 0.7672 (5) 0.7773 (4) 0.7911 (3) 0.7946 (1) 0.7946 (1)
UKM 0.6592 (8) 0.6275 (9) 0.6889 (6) 0.6933 (5) 0.6732 (7) 0.7047 (4) 0.7050 (3) 0.7103 (2) 0.7111 (1)
Arcene 0.5065 (9) 0.5222 (5) 0.5222 (5) 0.5222 (5) 0.5271 (4) 0.5222 (5) 0.5325 (3) 0.5444 (1) 0.5444 (1)
MFCCs 0.7391 (9) 0.9477 (4) 0.8400 (7) 0.7990 (8) 0.8559 (6) 0.8723 (5) 0.9484 (3) 0.9576 (2) 0.9588 (1)
Madelon 0.4998 (8) 0.5039 (4) 0.5004 (5) 0.4997 (9) 0.4998 (6) 0.4998 (6) 0.5125 (3) 0.5248 (1) 0.5174 (2)
LR ABCD 0.7101 (9) 0.7564 (5) 0.7177 (8) 0.7358 (6) 0.7262 (7) 0.7667 (3) 0.7612 (4) 0.7744 (1) 0.7709 (2)
HTRU2 0.8504 (8) 0.5799 (9) 0.8618 (7) 0.9158 (6) 0.9203 (4) 0.9129 (5) 0.9230 (3) 0.9376 (1) 0.9321 (2)
Arank 8.3636 6.6364 7.0909 5.7273 5.0000 4.6364 3.3637 1.1818 1.4545

TABLE VI
THE ARI OF DIFFERENT ALGORITHMS FOR DIFFERENT UCI DATASETS

Algorithms K-Means DPC FCM V-FCM IV-FCM DVPFCM EFCA IKG-FCM TKG-FCM
Iris 0.7302 (8) 0.5681 (9) 0.7560 (7) 0.8341 (6) 0.8512 (5) 0.8857 (2) 0.8860 (1) 0.8857 (2) 0.8857 (2)
Wine 0.7263 (7) 0.6990 (9) 0.7253 (8) 0.8149 (6) 0.8485 (3) 0.8343 (5) 0.8463 (4) 0.8975 (1) 0.8975 (1)
Glass 0.2016 (9) 0.2046 (8) 0.2180 (7) 0.2425 (6) 0.2594 (5) 0.2772 (4) 0.2773 (3) 0.3381 (1) 0.3362 (2)
BCW 0.4334 (9) 0.6720 (5) 0.4616 (8) 0.6777 (4) 0.6931 (3) 0.5834 (7) 0.6346 (6) 0.7494 (1) 0.7432 (2)
Wholesale 0.2292 (9) 0.4629 (7) 0.2460 (8) 0.5236 (5) 0.5189 (6) 0.5470 (4) 0.5735 (3) 0.5804 (1) 0.5804 (1)
UKM 0.1881 (7) 0.1553 (9) 0.2040 (6) 0.2096 (5) 0.1615 (8) 0.2347 (4) 0.2538 (3) 0.3055 (1) 0.2838 (2)
Arcene 0.0439 (5) 0.0439 (5) 0.0439 (5) 0.0439 (5) 0.0540 (4) 0.0439 (5) 0.0648 (3) 0.0888 (1) 0.0888 (1)
MFCCs 0.4070 (9) 0.8698 (4) 0.5432 (8) 0.5692 (7) 0.5964 (6) 0.7093 (5) 0.8715 (3) 0.8953 (1) 0.8818 (2)
Madelon 0.0005 (6) 0.0079 (4) 0.0008 (5) -1E-06 (9) 1E-06 (7) 1E-06 (7) 0.0250 (3) 0.0495 (1) 0.0347 (2)
LR ABCD 0.2386 (9) 0.4149 (3) 0.2771 (8) 0.3189 (6) 0.3096 (7) 0.3906 (4) 0.3709 (5) 0.4178 (1) 0.4153 (2)
HTRU2 0.5320 (8) 0.1074 (9) 0.5800 (7) 0.6313 (5) 0.7289 (2) 0.6148 (6) 0.7191 (4) 0.7479 (1) 0.7265 (3)
Arank 7.8182 6.5455 7.0000 5.8182 5.0909 4.8182 3.7273 1.0909 1.8182

TABLE VII
THE NMI OF DIFFERENT ALGORITHMS FOR DIFFERENT UCI DATASETS

Algorithms K-Means DPC FCM V-FCM IV-FCM DVPFCM EFCA IKG-FCM TKG-FCM
Iris 0.7419 (8) 0.7337 (9) 0.7550 (7) 0.8192 (6) 0.8449 (5) 0.8642 (4) 0.8862 (1) 0.8738 (2) 0.8738 (2)
Wine 0.7242 (8) 0.7262 (7) 0.7176 (9) 0.7879 (5) 0.8160 (3) 0.7865 (6) 0.8143 (4) 0.8662 (1) 0.8662 (1)
Glass 0.3626 (8) 0.3703 (6) 0.3461 (9) 0.3649 (7) 0.4106 (5) 0.4245 (2) 0.4265 (1) 0.3970 (3) 0.4143 (4)
BCW 0.3915 (9) 0.5521 (6) 0.3956 (8) 0.5565 (5) 0.6294 (3) 0.5211 (7) 0.5573 (4) 0.6460 (1) 0.6364 (2)
Wholesale 0.1929 (9) 0.4055 (7) 0.3666 (8) 0.4061 (6) 0.4258 (4) 0.4077 (5) 0.4703 (1) 0.4411 (3) 0.4482 (2)
UKM 0.2879 (6) 0.1898 (9) 0.2841 (7) 0.3152 (5) 0.2108 (8) 0.3423 (4) 0.3760 (3) 0.4224 (1) 0.4172 (2)
Arcene 0.0398 (6) 0.0320 (7) 0.0320 (7) 0.0320 (7) 0.0637 (5) 0.0901 (1) 0.0712 (4) 0.0875 (2) 0.0875 (2)
MFCCs 0.6287 (9) 0.7170 (3) 0.6590 (8) 0.6653 (6) 0.6669 (5) 0.6624 (7) 0.7080 (4) 0.7683 (1) 0.7497 (2)
Madelon 0.0212 (3) 0.0061 (5) 0.0010 (6) 0.0010 (6) 0.0010 (6) 0.0010 (6) 0.0195 (4) 0.0364 (1) 0.0256 (2)
LR ABCD 0.3439 (9) 0.4788 (3) 0.4052 (7) 0.4225 (6) 0.3619 (8) 0.4697 (4) 0.4502 (5) 0.5323 (1) 0.5261 (2)
HTRU2 0.4698 (7) 0.0820 (9) 0.4332 (8) 0.5047 (5) 0.5444 (4) 0.4903 (6) 0.5494 (3) 0.5868 (1) 0.5637 (2)
Arank 7.4545 6.4545 7.6364 5.8182 5.0909 4.5454 3.0909 1.5455 2.0909

TABLE VIII
CLUSTER NUMBER OR KNOWLEDGE NUMBER GOT BY DPC AND KEG

Datasets Iris Wine Glass BCW Wholesale UKM Arcene MFCCs Madelon LR ABCD HTRU2
DPC 2 3 5 2 2 4 4 11 2 4 2
KEG 2 3 4 2 2 4 2 10 2 4 2
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TABLE IX
THE EARI AND XB OF DIFFERENT FUZZY CLUSTERING ALGORITHMS FOR DIFFERENT UCI DATASETS

Algorithms FCM V-FCM IV-FCM DVPFCM IKG-FCM TKG-FCM

EARI XB EARI XB EARI XB EARI XB EARI XB EARI XB
Iris 0.7740 (6) 0.3204 (6) 0.8750 (5) 0.3075 (5) 0.8810 (4) 0.2794 (4) 0.9404 (3) 0.2195 (1) 0.9450 (2) 0.2302 (3) 0.9460 (1) 0.2299 (2)
Wine 0.8280 (6) 0.4784 (6) 0.8875 (5) 0.4397 (5) 0.9032 (4) 0.2886 (1) 0.9160 (3) 0.3870 (4) 0.9437 (2) 0.3804 (3) 0.9438 (1) 0.2935 (2)
Glass 0.4653 (6) 0.2944 (5) 0.4764 (5) 0.2841 (3) 0.5564 (3) 0.2962 (6) 0.5305 (4) 0.2858 (4) 0.6672 (1) 0.2206 (1) 0.6324 (2) 0.2670 (2)
BCW 0.6450 (6) 0.6816 (6) 0.7200 (5) 0.4569 (4) 0.7681 (3) 0.4085 (3) 0.7385 (4) 0.4710 (5) 0.8787 (2) 0.2068 (1) 0.8790 (1) 0.2945 (2)
Wholesale 0.4020 (6) 0.7577 (6) 0.5585 (4) 0.5885 (5) 0.5965 (3) 0.4175 (4) 0.5510 (5) 0.4001 (3) 0.7951 (1) 0.2025 (1) 0.7951 (1) 0.2751 (2)
UKM 0.3968 (6) 0.7017 (4) 0.4176 (5) 0.6543 (1) 0.4297 (4) 0.7906 (6) 0.4595 (3) 0.7747 (5) 0.3621 (1) 0.6832 (3) 0.3368 (2) 0.6760 (2)
Arcene 0.1330 (6) 0.7866 (6) 0.3588 (4) 0.7247 (5) 0.3685 (3) 0.6146 (4) 0.3468 (5) 0.5845 (3) 0.5047 (2) 0.4625 (1) 0.5071 (1) 0.4967 (2)
MFCCs 0.5030 (5) 1.1704 (6) 0.4935 (6) 0.2190 (1) 0.6774 (4) 0.4155 (5) 0.8494 (3) 0.3006 (4) 0.9410 (1) 0.2532 (3) 0.9323 (2) 0.2508 (2)
Madelon 0.0334 (4) 18.775 (6) 0.0015 (5) 0.7861 (4) 0.1683 (3) 0.8715 (5) 0.0012 (6) 0.6719 (3) 0.4361 (1) 0.0644 (1) 0.3387 (2) 0.0657 (2)
LR ABCD 0.4069 (6) 1.3183 (6) 0.4641 (5) 0.4947 (3) 0.5221 (4) 0.5696 (4) 0.5230 (3) 1.0081 (5) 0.7070 (1) 0.2140 (1) 0.6451 (2) 0.2477 (2)
HTRU2 0.4500 (6) 0.2869 (6) 0.4790 (5) 0.2843 (5) 0.5006 (3) 0.1340 (3) 0.4980 (4) 0.1107 (2) 0.7321 (2) 0.0980 (1) 0.7323 (1) 0.1615 (4)
Arank 5.7 5.7 4.9 3.7 3.5 4.1 3.9 3.5 1.5 1.7 1.5 2.2

TABLE X
AVERAGE RUN TIME OF 8 ALGORITHMS ON 11 UCI DATASETS

Datasets K-Means FCM V-FCM IV-FCM DVPFCM EFCA IKG-FCM TKG-FCM
Iris 0.0033 (1) 0.0535 (7) 0.0294 (5) 0.0313 (6) 0.0151 (4) 0.0886 (8) 0.0065 (2) 0.0110 (3)
Wine 0.0030 (1) 0.0242 (7) 0.0188 (5) 0.0203 (6) 0.0168 (4) 0.1134 (8) 0.0134 (2) 0.0158 (3)
Glass 0.0036 (1) 0.0706 (7) 0.0530 (5) 0.0629 (6) 0.0439 (4) 0.3306 (8) 0.0430 (3) 0.0379 (2)
BCW 0.0066 (1) 0.0851 (7) 0.0446 (5) 0.0468 (6) 0.0360 (4) 0.3168 (8) 0.0341 (3) 0.0302 (2)
Wholesale 0.0049 (1) 0.0674 (7) 0.0337 (6) 0.0255 (5) 0.0252 (4) 0.3047 (8) 0.0132 (2) 0.0169 (3)
UKM 0.0064 (1) 0.1684 (6) 0.2120 (7) 0.1649 (5) 0.1362 (4) 0.4020 (8) 0.1125 (3) 0.0823 (2)
Arcene 0.0301 (1) 1.1063 (7) 0.6585 (6) 0.6159 (4) 0.6539 (5) 3.4573 (8) 0.5507 (3) 0.3908 (2)
MFCCs 0.1635 (1) 2.4885 (4) 0.7022 (2) 2.8061 (6) 2.3488 (5) 6.9323 (8) 1.0184 (3) 2.8780 (7)
Madelon 0.0581 (2) 0.2559 (6) 0.0264 (1) 0.3241 (7) 0.1978 (4) 1.2919 (8) 0.1835 (3) 0.2174 (5)
LR ABCD 0.0276 (1) 0.8063 (7) 0.1469 (2) 0.4173 (6) 0.3370 (5) 2.5401 (8) 0.2900 (4) 0.2650 (3)
HTRU2 0.2489 (3) 1.5348 (6) 0.0967 (2) 0.4748 (5) 2.9624 (7) 7.1977 (8) 0.0927 (1) 0.2651 (4)
Arank 1.27 6.45 4.18 5.64 4.55 8 2.64 3.27

The CA, RI, ARI and NMI of each algorithm on different
UCI datasets are shown in Tables IV, V, VI and VII. The EARI
and XB values of the fuzzy clustering algorithms are recorded
in Table IX. These indices values are the best results obtained
from 50 repeated runs on algorithms (except for the DPC
algorithm). The best results are in bolded in Table IV to IX.
Next to each validity is the relative ranking of the algorithm
on the dataset. The Arank of each table is the average rank of
the algorithms on all UCI datasets used.

As shown in Table IV to Table VII, the comparison ex-
periments on 11 UCI datasets demonstrate that our proposed
IKG-FCM and TKG-FCM predominantly outperform the other
seven clustering algorithms in terms of CA, RI, ARI and
NMI, except for the Arcene dataset. Among 44 evaluation
parameters (11 datasets-by-4 measure indices), IKG-FCM
championed 37 times consistently on all 11 datasets, while
it ranked second five times and third two times. For the
TKG-FCM algorithm, its performance is slightly inferior to
that of IKG-FCM. However, in 44 comparisons, TKG-FCM
performs better than the other algorithms 42 times (excluding
IKG-FCM). This observation shows that interval knowledge
is more conducive to clustering than triangular knowledge.
Interval knowledge represents the entire density area without
emphasizing the representative points as TKG-FCM does. This
approach weakens the negative effects of the strong guidance
of the knowledge points.

In addition, for the significantly unbalanced datasets Glass
and Anuran Calls (MFCCs), the clustering validity of the KG-
FCM (IKG-FCM and TKG-FCM) algorithms is noticeably su-
perior to other clustering algorithms. Table IV indicates more
than a 17% improvement on Glass (from 0.4626 to 0.5607) and
47% for MFCCs (from 0.5576 to 0.8214) in comparison to the

K-Means method. In addition, when accounting for the average
rank of each algorithm, it can be seen that the performance
relationship of the clustering algorithms is as follows:
K-Means < FCM < DPC < V-FCM < IV-FCM < DVPFCM
< EFCA < TKG-FCM < IKG-FCM.

The performance of IV-FCM is better than that of V-FCM
and sometimes even outperforms DVPFCM, which proves
that the interval viewpoint possesses more positive guidance.
The DVPFCM algorithm considers the typicality of data to
clusters,and thus, it is more robust. However, the V-FCM, IV-
FCM and DVPFCM all output knowledge points directly as
parts of clustering centers, which severely limits the flexibility
of the algorithms. On average, the DPC algorithm performs
slightly worse. This result could occur because the number of
clusters is not determined correctly (see Table VIII).

The knowledge number of KEG is shown in Table VIII. We
keep the number of knowledge points equal to the reference
number of clusters in bold. Compared to the actual cluster
number of each set in Table III, KEG sometimes extracts
excess or less high-density knowledge than the true number
of clusters. However, the proposed IKG-FCM and TKG-
FCM algorithms control the influence of granular knowledge
through parameter ω to maximize the positive guidance of
knowledge and weaken its incorrect supervision.

As seen from Table IX, IKG-FCM and TKG-FCM outper-
form the other four fuzzy clustering algorithms (not including
EFCA) in terms of both EARI and XB. This finding occurs
mainly because the two algorithms, IKG-FCM and TKG-
FCM, not only predetermine the influence of the samples on
the clustering according to the high-density points extracted
by KEG but also locate the cluster centers more accurately
with the help of granular knowledge. Thus the fuzziness of
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Fig. 7. Analysis of the parameters setting on results on Iris, Wine and Glass
dataset for IKG-FCM and TKG-FCM. (a) Average best NMI indices variation
with regard to m and ζ for IKG-FCM, (b) Average best NMI indices variation
with regard to m and ζ for TKG-FCM, (c) Effect of the parameter ζ on IKG-
FCM, (d) Effect of the parameter ζ on TKG-FCM.

the cluster partitions by IKG-FCM and TKG-FCM are lower
than those of the other four clustering algorithms.

3) Parameter Analyses:
In IKG-FCM and TKG-FCM, there are two parameters,

including the fuzziness degree m and the parameter ζ to
balance the influence of granular knowledge, which must be
set in advance. To analyze the effect of parameters m and ζ
on the clustering performance of IKG-FCM and TKG-FCM,
we present the results on the Iris, Wine and Glass datasets.

Fig. 7(a) and (b) display average best NMI indices for
various values of m and ζ, where each color corresponds
to a different average best NMI. And the darker the red, the
higher the average best NMI value. So, from Fig. 7(a) and (b),
we deduce that the performance of IKG-FCM and TKG-FCM
reach the best when m is in [1.05, 1.2], and ζ is in [0.2, 1.0].
Overall, the IKG-FCM algorithm performs better than TKG-
FCM because the darker red coverage area of Fig. 7(a) is
broader than Fig. 7(b). This result has also been observed for
Tables IV to IX. Moreover, when m is in [1.04, 2.4], the per-
formances of IKG-FCM and TKG-FCM are not very sensitive
to the value of m, while parameter ζ does not exceed 1.0. Their
obtained average best NMI values are all above 0.68 and differ
from the maximum value of 0.74 by no more than 0.06.

Choosing the best m remains an open problem for fuzzy
clustering [49]–[51]. A value of 2.0 for m is commonly used
in fuzzy clustering algorithms, and thus, we fix the value
of m at 2.0 in this study [50], [52]. If a slightly better
algorithm performance is sought, m = 1.08 could be a choice.
Experimental results in [51] show that the fuzzy clustering
algorithms achieve the best performance when m is taken
around 1.08.

We further compare the impacts of ζ on the clustering
performance with different values. Fig. 7(c) and (d) illustrate
the changes in the four evaluation metrics with regard to

 Iris

260

263

293

317

347

398

251

Fig. 8. The average iterations of 7 algorithms on 11 UCI datasets.

ζ ∈ [0, 5.0] when m is fixed as 2.0. Fig. 7(c) and (d) show
that when ζ is set to 0.7, our IKG-FCM and TKG-FCM reach
their peak performances.

4) Iterations and run time of each algorithm:
With the same initialization, the iteration runs and run

time of each algorithm are compared on the 11 tested UCI
datasets. EFCA runs on multiple epochs of a dataset, and in
each epoch, only a portion of the data are clustered by K-
Means. Therefore, we do not compare the iterations of EFCA
with other algorithms. As shown in Fig. 8, overall, except
for K-Means, TKG-FCM and IKG-FCM use the fewest runs
(259.6 and 262.5, respectively) in comparison to the other
four algorithms to achieve convergence on the datasets. In
particular, TKG-FCM and IKG-FCM have the fewest iterations
on the MFCCs dataset and even outperform K-Means.

Table X presents the running time of each algorithm on the
used UCI datasets. Combining the iterations of each algorithm
shown in Fig. 8, IKG-FCM runs faster than TKG-FCM
when their iteration numbers are similar. This finding occurs
because the distance calculation between triangular data is
more complicated. EFCA is the most time-consuming because
it requires multiple runs of FCM to complete clustering.
The IV-FCM algorithm runs slower than V-FCM because
the distance calculation between interval data is more time-
consuming than the calculation of the Euclidean distance.
In addition, the DVPFCM involves the calculation of the
typicality matrix, which increases its running time and makes
it slower than the V-FCM algorithm. Overall, the running time
of each algorithm is ordered as: K-Means<IKG-FCM<TKG-
FCM<V-FCM<IV-FCM<FCM<DVPFCM<EFCA.

5) Friedman and post-hoc tests:
To check whether significant differences exist between the

proposed IKG-FCM, TKG-FCM algorithms and comparative
methods, Frideman [53] and Nemenyi post-hoc test [54] are
utilized. The significance levels of both tests are set to 5%. The
last row in Tables IV-VII presents the average rank of the dif-
ferent algorithms. With k=9 algorithms andN=11 datasets,
the results of the Friedman test are computed as follows:

τχ2 =
12N

k(k + 1)
(

k∑
i=1

r2i −
k(k + 1)2

4
),

τ
F

=
(N − 1)τχ2

N(k − 1)− τχ2

(35)

where ri is the average rank of the ith algorithm. The results
are presented in Table XI. τ

F
is subject to the F distribution

with the degree of freedom k−1=8 and (k−1)(N−1)=80.
For the significance level α = 0.05, the critical value of
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Fig. 9. Nemenyi test based on CA in Table IV.

F (8, 80) is 2.056<τ
F

, which indicates that the methods are
statistically different.

TABLE XI
RESULTS OF FRIEDMAN TEST

Friedman Test CA RI ARI NMI
τ
F

45.5625 48.9828 43.5293 66.8231

We further discriminate the difference of these algorithms
with a Nemenyi post-hoc test by sorting the CA in the above
experiments, which states that the performance of the two
methods is significantly different if the ranking difference
between two algorithms is larger than the critical threshold
CD. CD is computed by (36).

CD = qα

√
k(k + 1)

6N
. (36)

We can obtain qα = 2.855 from the Nemenyi table when
the confidence level α=0.1. Then, CD=3.3339 is obtained.
Fig. 9 shows the results of the Nemenyi test, where the x
axis shows the value of the average rankings and the y axis
corresponds to 9 algorithms. For each algorithm, its average
ranking is represented by a blue point and its confidence
interval is shown by a blue line with length CD. The two red
dotted lines show the upper confidence levels of IKG-FCM
and TKG-FCM. If the vertical lines of two algorithms have
an overlap, the two algorithms are not significantly different.
From Fig. 9, it is clearly shown that IKG-FCM and TKG-
FCM obtain a lower average rank than the other 7 algorithms.
IKG-FCM and TKG-FCM are significantly different from K-
Means, DPC, FCM, V-FCM, IV-FCM and DVPFCM. They
have a relatively small difference with EFCA.

V. CONCLUSIONS

In this study, we first propose a new granular knowledge
extraction and granulation method KEG. We then introduce
the knowledge-based clustering mechanism to develop two
versions of KG-FCM methods based on the types of granular
knowledge obtained by KEG. KEG has the characteristic of
automatically identifying high-density points by the three-
sigma rule. In addition, the selected high-density points are
extended to granular knowledge by merging these points’
natural neighbors. We adopted two forms to express granular
knowledge. One is the interval data, while the other is trian-
gular fuzzy numbers. Therefore, two KG-FCM methods are
proposed: IKG-FCM and TKG-FCM. In both objective func-
tions, a knowledge role term is added to guide the clustering
procedure to find the potential data structure. The superiorities
of the KG-FCM algorithms can be summarized as follows:

1) Compared to existing knowledge-based clustering algo-
rithms (V-FCM, IV-FCM and DVPFCM), parts of proto-
types are not directly replaced by domain knowledge. In
IKG-FCM and TKG-FCM, the clustering centers are up-
dated with the guidance of granular knowledge during it-
erations, which avoids the excessive influence of knowl-
edge and improves the flexibility of the algorithms.

2) Domain knowledge is more representative. The interval
or triangular knowledge provided by the proposed
KEG method is located in high-density areas because
their corresponding origin points have a higher density
compared to other points. Therefore, the KG-FCM algo-
rithms can grasp the high-density property of granular
knowledge to find clustering centers more correctly.

3) The effectiveness of IKG-FCM and TKG-FCM was
also proven by the experiments on synthetic and
real datasets. The experimental results show that our
methods achieve better performance in the distance
between clustering centers and reference centers and
various evaluation indices of some of the datasets,
especially imbalanced datasets. Moreover, comparing
the clustering time and iterations of our methods with
other comparative algorithms, we find that the guidance
of granular knowledge speeds up the convergence of
the algorithms. In general, the results of IKG-FCM are
slightly better than those of TKG-FCM. This finding
demonstrates that not emphasizing a point of an area is
of help to the clustering algorithm.

In future studies, it will be worthwhile to reduce the
computing complexity of the KEG knowledge extraction
method to make our proposed knowledge-based clustering
algorithms more efficient on large-scale data. Furthermore,
most clustering algorithms need to assign the number of
clusters before processing. IKG-FCM and TKG-FCM are not
exceptions. Thus, further discovering KG-FCM algorithms by
automatically finding the optimal number of clusters could be
a future investigation.

REFERENCES

[1] J. C. Dunn, “A fuzzy relative of the isodata process and its use
in detecting compact well-separated clusters,” Journal of Cybernetics,
vol. 3, no. 3, pp. 32–57, 1973.

[2] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function
Algorithms. Plenum Press, 1981.

[3] H. Li and M. Wei, “Fuzzy clustering based on feature weights for mul-
tivariate time series,” Knowledge-Based Systems, vol. 197, p. 105907,
2020.

[4] K. Honda, K. Hayashi, S. Ubukata, and A. Notsu, “Fuzzy-possibilistic
clustering for categorical multivariate data,” in the 60th Annual Con-
ference of the Society of Instrument and Control Engineers of Japan.
IEEE, 2021, pp. 9–14.

[5] C. Wu and X. Zhang, “A novel kernelized total bregman divergence-
driven possibilistic fuzzy clustering with multiple information con-
straints for image segmentation,” IEEE Transactions on Fuzzy Systems,
vol. 30, no. 6, pp. 1624–1639, June 2022.

[6] W. Pedrycz, V. Loia, and S. Senatore, “Fuzzy clustering with view-
points,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 2, pp. 274–
284, April 2010.

[7] Y. Tang, X. Hu, W. Pedrycz, and X. Song, “Possibilistic fuzzy clustering
with high-density viewpoint,” Neurocomputing, vol. 329, pp. 407–423,
2019.

[8] W. Dai, Q. Yang, G. Xue, and Y. Yu, “Self-taught clustering,” in
Proceedings of the 25th International Conference on Machine Learning,
2008, pp. 200–207.

This article has been accepted for publication in IEEE Transactions on Fuzzy Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2022.3195033

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on July 30,2022 at 01:36:16 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. *, NO. *, * 2022 15

[9] W. Jiang and F. Chung, “Transfer spectral clustering,” in Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2012, pp. 789–803.

[10] Z. Deng, Y. Jiang, F. Chung, H. Ishibuchi, K. Choi, and S. Wang,
“Transfer prototype-based fuzzy clustering,” IEEE Transactions on
Fuzzy Systems, vol. 24, no. 5, pp. 1210–1232, October 2015.

[11] S. Eden, “Environmental issues: Knowledge, uncertainty and the envi-
ronment,” Progress in Human Geography, vol. 22, no. 3, pp. 425–432,
1998.

[12] W. Pedrycz, Knowledge-based clustering: From data to information
granules. John Wiley & Sons, 2005.

[13] R. J. Hathaway, J. C. Bezdek, and W. Pedrycz, “A parametric model for
fusing heterogeneous fuzzy data,” IEEE Transactions on Fuzzy Systems,
vol. 4, no. 3, pp. 270–281, August 1996.
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